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Abstract

In this paper we propose a methodology to determine the struc-
ture of the yield coefficient matrix K in a mass balance based
model and to identify its coefficients from a set of available
data. The first step consists in estimating the number of re-
actions that must be taken into account to represent the main
mass transfer within the bioreactor. This provides the dimen-
sion of K. Then we propose a method to directly determine the
structure of the matrix (i.e. mainly its zeros and the signs of its
coefficients). These methods are illustrated with simulations of
a process of lipase production from olive oil by Candida ru-
gosa.

1 Introduction and motivation

The dynamical behaviour of a stirred tank bioreactor is often
described by a general mass-balance model of the following
form (see e.g. [1, 2]):

dξ(t)

dt
= K r(t) + v(t), (1)

In this model, the vector ξ = (ξ1, ξ2, . . . , ξn) T is made-up
of the concentrations of the various species inside the liquid
medium. The term v(t) represents the net balance between in-
flows, outflows and dilution effects. The term K r(t) represents
the biological and biochemical conversions in the reactor (per
unit of time) according to some underlying reaction network.
The (n × p) matrix K is a constant (pseudo-)stoichiometric
matrix. r(t) = (r1(t), r2(t), . . . , rp(t))

T is a vector of reac-
tion rates (or conversion rates).

The stoichiometric matrix K plays a key role in the mass bal-
ance modelling. Each column of the matrix corresponds to a
chemical or biological reaction of the underlying reaction net-
work. The coefficients kij j = 1, . . . , p are associated with
the jth reaction. A positive kij > 0 means that the ith species
ξi is a product of the jth reaction, while a negative kij < 0
means that ξi is a substrate of the jth reaction. If kij = 0 the
species ξi is not involved in the jth reaction.

In this paper, we are concerned with modelling situations where
the on-line concentrations ξi of the involved species are mea-
sured but the structure of the reaction network is a priori ques-
tionable and therefore the matrix K is partially unknown. The
objective, as in [6], is to provide guidelines to the user for the
identification of the structure of the reaction network and the
determination of the stoichiometric matrix K from the avail-
able data. The problem is illustrated with an example.

Example: Let us consider the example of a competitive growth
on two substrates [10] which could represent, for instance, the
production of lipase from olive oil by Candida rugosa. Here
the microorganism is supposed to grow on two substrates that
are produced by the hydrolysis of a primary complex organic
substrate.

The following 3-step reaction scheme has been assumed in the
literature:

• Hydrolysis:

k1S1 + E −→ S2 + k2S3 + E

• Growth on S2:

k3S2 + k4O −→ X + k5P

• Growth on S3:

k6S3 + k8O −→ X + k7E + k9P

where S1 is the primary substrate (olive oil), S2 (glycerol) and
S3 (fatty acid) are the secondary substrates. E is the enzyme
(lipase), X the biomass (Candida rugosa), O the dissolved
oxygen and P the carbon dioxide.

The associated stoichiometric matrix is:

K =





















−k1 0 0
1 −k3 0
k2 0 −k6

0 0 k7

0 1 1
0 −k4 −k8

0 k5 k9























4
with ki > 0, i = 1, . . . , 9.

We shall assume that this reaction network is unknown to the
user and has to be discovered from data of the species concen-
trations. Here the data will be simulated by a model but of
course in practice the data are obtained from experiments.

In particular applications, the choice of a reaction network and
its associated stoichiometric matrix K results in general from
modelling assumptions. Sometimes however, a complete de-
scription of the reaction scheme is a priori not available. This
can be a consequence of a lack of phenomenological knowl-
edge on some of the involved mechanisms, letting a part of
the reaction network questionable. The problem can also arise
when it is desired to reduce a complicated given reaction net-
work to a much simpler model. This situation especially occurs
for models describing wastewater treatment processes which
involve a very large amount of bacterial species and of differ-
ent molecules to be degraded (see e.g. [8]).

We first propose a method to determine the size of the matrix K

ı.e. the number of independent reactions that are distinguish-
able from the available data. Then we show how the structure
of the matrix K can be estimated, using the a priori available
knowledge on the process. By structure we mean the sign and
the location of the non-zero entries of the matrix K. In addi-
tion, the method can also provide an estimate of the parameters
kij if the available knowledge is sufficient.

2 Determination of the number of reactions

2.1 Introduction

In this section, we intend to determine the minimum number
of reactions which are needed in order to explain the observed
behaviour of the process, without any prior knowledge on the
underlying reaction network. We assume that the vectors ξ(t)
of species concentrations and v(t) of inflow/outflow balances
are measured during some time interval and exhibit signifi-
cant variations with time. We assume also that the number
of measured variables is larger than the number of reactions:
n > p. The stoichiometric matrix K and the vector of reac-
tion/conversion rates r(t) are unknown.

2.2 Theoretical determination of dim(Im(K))

The model equation (1) can be viewed as a linear dynamical
system with state ξ and inputs r(t) and v(t) (although we know
obviously that r and v may be state dependent). If we take the
Laplace transform of this equation, we get:

sΞ(s) = KR(s) + V (s) (2)

where Ξ(s), R(s) and V (s) are the Laplace transforms of ξ(t),
r(t) and v(t) respectively. A linear filter or smoother with
transfer function G(s) can then be used in order to clean the
data (noise reduction, decrease of autocorrelations etc ...):

U(s) = KW (s) with U(s) = G(s)[sΞ(s) − V (s)]

and W (s) = G(s)R(s)

or, in the time domain:

u(t) = Kw(t) (3)

with u(t) and w(t) the inverse Laplace transforms of U(s) and
W (s) respectively. They can be computed directly from the
data by appropriate filtering/smoothing techniques possibly in-
volving delay operators.

Now the question of the dimension of the matrix K can be for-
mulated as follows: what is the dimension of the image of K,
in other words, what is the dimension of the space where u(t)
lives. Note that we assume K to be a full rank matrix. Other-
wise, it would mean that the same dynamical behaviour could
be obtained with a matrix K of lower dimension, by defining
other appropriate reaction rates. The determination of the di-
mension of the u(t) space is a classical problem in statistical
analysis. It corresponds to the principal component analysis
(see e.g. [9]) that determines the dimension of the vectorial
space spanned by the vectors ki which are the rows of K. To
reach this objective, we consider the n × N matrix U obtained
from a set of N records of u(t):

U = (u(t1), . . . , u(tN ))

We will also consider the associated matrix of reaction rates,
which is unknown:

W = (w(t1), . . . , w(tN ))

We assume that matrix W is full rank. It means that the reac-
tions are independent (none of the reaction rates can be written
as a linear combination of the others). We assume that there are
more measurement time instants than state variables: N > n.

Property 1 For a matrix K of rank p, if W has full rank, then
the n×n matrix M = UUT = KWWT KT has rank p. Since
it is a symmetric matrix, it can be written:

M = PT ΣP

where P is an orthogonal matrix (P T P = I) and

Σ =

























σ1 0 . . . 0
0 σ2 0 0
...

. . .
σp

0
. . .

...
0 . . . 0

























with σi−1 ≥ σi > 0 for i ∈ {2, ..., p}.



Moreover, the eigenvectors associated to the σi generate an
orthonormal basis of ImK.

Proof: it is a direct application of the singular decomposition
theorem [7] since rank (M) = rank (KW ) = rank (K) =
rank (Σ) = p.

Now from a theoretical point of view, it is clear that the number
of reactions can be determined by just counting the number of
non zero singular values of UUT .

2.3 Practical implementation

In practice, the ideal case presented above is perturbed for four
main reasons:

• The reaction scheme that we are looking for is a first ap-
proximation of chemical or biochemical reactions which
can be very complex. The “true” matrix K is probably
much larger. The reactions that are fast or of low magni-
tude can be considered as perturbations of a dominant low
dimensional reaction network that we are actually trying
to estimate

• The measurements are corrupted with noise. This noise
can be very important, especially for the measurement of
biological quantities which suffer from a lack of reliable
sensors.

• The measurements are seldom all available exactly at the
same time instant ti, and therefore they must be interpo-
lated if we need values of ξ(ti) and v(ti) at ti in order to
build the vector U .

• In order to compute u(t) we need a numerical implemen-
tation of the filter G(s). This can generate additional per-
turbations.

2.3.1 Data normalisation

In order to avoid conditioning problems and to give the same
weighting to all the variables, the data vectors u(ti) are nor-
malised as follows:

ũ(ti) =
u(ti) − e(u)√

Nσ(u)

where e(u) is the average value of u(ti), and σ(u) their stan-
dard deviation.

2.3.2 Practical determination of the number of reactions

In practice, for the reasons we have mentioned above, it is well
known that there are no zero eigenvalues for the matrix M =
UUT .

The question is then to determine the number of eigenvectors
that must be taken into account in order to produce a reasonable
approximation of the data u(t). To answer that question, let us

remark that the eigenvalues σi of M correspond to the variance
associated with the corresponding eigenvector (inertia axis) [9].

The method then consists in selecting the p first principal axis
which represent a total variance larger than a fixed confidence
threshold.

For instance, in the next example, we will consider a thresh-
old (depending on the information available on noise measure-
ments) at 95% of the variance. This leads to the selection of 3
axis, and therefore p = 3.

Remark: if rank (M) = n it means that rank(W ) ≥ n. In
such a case we cannot estimate p and measurements of addi-
tional variables are requested in order to apply the method pre-
sented here.

Parameter Values Units
c0 0.5 g/l.day−1

c1 3 day−1

c2 1 g/l
c3 0.2 g/l
c4 20 g.day−1l−1

c5 1 g/l
c6 0.2 g/l
c7 2 g2/l2

c8 2 g/l
c9 0.2 g/l
c10 5 day−1

c11 15 g/l
c12 0.5 day−1

c13 0.5 g/l

Table 1: Parameter values.

Example:

We come back to the example of a competitive growth on two
substrates which has been introduced above. For the simulation
purpose, we assume that the kinetics of the three reactions are
given by the following expressions :

φ1(S1, E) = c0
S1

S1+c8

E
E+c9

φ2(S2, O,X) = c1
S2

S2+c2

O
O+c3

X

φ3(S2, O,X) = c4
S3

(S3+c5)(S2+c6)
O2

O2+c7

;

The transfer between liquid and gaseous phase is represented
by the classical Henry’s law:

qco2 = c10(P − c11) and qo2 = c12(O − c13)

The values of the coefficients ci can be found in Table 1. The



matrix K is chosen as follows:

K =





















−3 0 0
1 −5 0

0.3 0 −0.5
0 0 0.2
0 1 1
0 −2 −1
0 0.3 1.5





















A 30 day run of the model has been performed. The collected
data have been corrupted with a white noise of high magnitude
(30% of the standard deviation of each component) and sam-
pled. Finally 380 data points are available.

The data (before sampling) are presented on Figure 1. The state
variables S2, S3, E, X , P , O and of the gaseous flow rates
qO2

and qCO2
have been measured. We assume here that the

state variable S1 was not recorded in order to illustrate the fact
that our approach is applicable even if the full set of state vari-
ables is not available for measurement. Moreover the dilution
rate and the substrate inflow rate (see Figure 2) have been se-
lected in order to guarantee that the system is enough excited
and therefore that the recorded signals will have a sufficiently
informative content to expect good identification results. The
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Figure 1: Experiment simulated from the kinetic modelling
corrupted with an additive white noise.

vectors u(ti) are then computed from these data and subse-
quently normalised as explained before. Finally, the eigenvec-
tors of UUT are computed.

Figure 3 represents the cumulated variance associated with the
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Figure 2: Dilution rate and influent concentrations S2in and
S3in used for the simulated experiment.
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Figure 3: Total variance explained with respect to the number
of reactions for the production of lipase from olive oil by Can-
dida rugosa.

number of considered inertia axis. For instance, we can see
that two reactions are sufficient to explain 82% of the observed
variance. Since three reactions explain 95% of the total vari-
ance, it seems reasonable in this example to use 3 reactions for
the model. 4
The reader can refer to [4] for an application to real data, for

growth and vanillin production by cultures of the fungus Pyc-
noporus cinnabarinus in bioreactors.

3 Estimation of the stoichiometric matrix K

Now that we have a value for the number of involved reactions,
we are in a position to start the estimation of the (totally or
partially) unknown matrix K.

3.1 Determination of ImK

Let us use the property 1 which states that ImK is spanned by
the eigenvectors ρi associated with the non zero eigenvalues of
UUT . Now, from the experimental data collected through the
matrix UUT we get p eigenvectors ρi that span K. It means
that each column ki of K is a linear combination of the ρi. In
other terms, there exists a p × p matrix G such that

K = ρG



where the columns of matrix ρ are the eigenvectors ρj . In other
words, the family of possible stoichiometric matrices K is pa-
rameterised by G.

Remark: In general, since the reaction rates are unknown, the
matrix G (and therefore the matrix K) is not identifiable: this
can be easily understood on a very simple example. If r1(ξ)
and r2(ξ) are two reaction rates, the term Kr(ξ) can be written:

Kr(ξ) = k1r1(ξ) + k2r2(ξ)

= k1+k2

2 (r1(ξ) + r2(ξ)) + k1−k2

2 (r1(ξ) − r2(ξ))

And therefore matrices K = [k1 k2] and K̄ = [k1+k2

2
k1−k2

2 ]
can both produce the same result. The reaction rates associated
with the second matrix are then: r̄1(ξ) = r1(ξ) + r2(ξ) and
r̄2(ξ) = r1(ξ) − r2(ξ).

3.2 Additional hypotheses

In order to make the matrix G (and K) uniquely identifiable,
we need to introduce additional structural constraints.

First, we shall impose (without loss of generality) that each re-
action rate is normalised with respect to one species, and there-
fore that each column of the matrix K contains one +1 or one
-1. This induces obviously additional constraints on the possi-
ble matrices G. Note that sometimes we may not know the sign
of the element: the two possible cases must then be considered.

When additional constraints are still necessary, we use biolog-
ical assumptions.

For instance, we can assume that a specific component is not
involved in one of the p reactions (meaning that there is a zero
in K). It is clear for example that the first reaction will involve
only the substrates which were present at the beginning of the
fermentation. We can also impose the conservation of elemen-
tary mass balances, or at least only allow for a leak of mass in
the system. One can also try to find a matrix K involving the
minimum number of components in each reaction (i.e. contain-
ing the maximum number of zeros). If these hypotheses are not
sufficient, several matrices K can then be identified, parame-
terised by some parameter, and their biological meaning must
then be assessed.

3.3 Validation

The main result provided by the previous analysis is the deter-
mination of the variables which are substrates or products in the
reactions or, in other words, the obtained signs of the entries of
K.

Another expected result can be the determination of the vari-
ables which are not involved in a reaction, corresponding to
zero elements in the matrix K. However it is actually very un-
likely that the analysis will provide estimates of the elements
of K which are exactly zero. The idea consist then in replac-
ing the very small elements by zeros, and to validate the cor-
responding reaction scheme using the techniques presented in
[3, 5].

Example:

We shall now illustrate the proposed approach with the simula-
tion study of lipase production from olive oil. From the previ-
ous study of the number of reactions, we know that 3 reactions
should be considered.

We assume here that the first reaction is known, and therefore
we only focus on the two other reactions.

K used for simulation identified matrix K
















−5 0
0 −0.5
0 0.2
1 1
−2 −1
0.3 1.5

































−3.54 0
0 −0.51

0.01 0.22
1 1

−1.34 −0.87
0.18 1.51

















Table 2: True coefficients of matrix K and identified values.

A set of noisy data of the state variables S2, S3, E, X , P ,
O and of the gaseous flow rates qO2

and qCO2
is produced by

simulation as described in Section 2. The goal is to determine
the 6 × 2 matrix K from this data set. More specifically, a
question that we want to address is to determine, from the data,
which of the two reactions produces the enzyme E.

Now we can compute the quantities Ui associated with the 6
state variables using a moving average. Next we compute the
matrix M = UT U . The eigenvectors ρi associated with the
two largest eigenvalues are then the basis of ImK. Since G is
a 2 × 2 matrix, the columns k1 and k2 of K can be written:

k1 = α11ρ1 + α12ρ2 and k2 = α21ρ1 + α22ρ2 (4)

Now we proceed in two successive steps:

i. Normalisation.

The stoichiometric coefficients associated to the biomass
growth are normalised : k14 = 1 and k24 = 1. We get then:

k14 = 1 = α11ρ14 + α12ρ24

k24 = 1 = α21ρ14 + α22ρ24
(5)

Using equations 4 and 5 with the obtained values of ρ1 and ρ2,
we can now write matrix K parametrised by α11 and α22 as
follows:

K =

















−1.42α11 − 2.65 −1.2α22 + 1.12
0.2α11 − 0.13 0.17α22 − 0.67

−0.08α11 + 0.062 −0.071α22 + 0.28
1 1

−0.19α11 − 1.2 −0.16α22 − 0.72
−0.53α11 + 0.51 −0.45α22 + 1.93

















ii. Additional hypotheses.

Now to determine uniquely matrix K two additional assump-
tions must be introduced.



Hypothesis: A reaction still takes place when only S2 [resp.
S3] is present at the initial time, and no S3 [resp. S2] is pro-
duced.

In other words this means that S2 is the only substrate of one
reaction and that S3 is the only substrate of the other one. Thus
we will impose k12 = 0 and k21 = 0 .

These additional constraints allows us to compute α11 (0.621)
and α22 (0.93).

Finally we end up with an estimate of the matrix K (see Table
2). It is worth noting that the identified matrix K is close to
the true one. The value of the (theoretically zero) coefficient
k13 is 0.01 which can be neglected with respect to the other
coefficients of K. Hence, the unknown part of the structure of
the matrix K has been recognised. Moreover the estimates of
the non-zero entries of the matrix K are quite accurate. 4

4 Conclusion

Modelling of bioprocesses is a difficult issue since there does
not exist any laws on which the model can rely as in other fields
like mechanics or electronics. Therefore it is very important
to check the model adequation with the data. The proposed
method should guarantee a mass balance based model whose
complexity is in adequation with the data.
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