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Abstract

Pneumatic muscles are interesting in their use as actua-
tors in robotics, because they have a high power/weight
ratio, a high tension force and a long durability. However,
their physical model is highly nonlinear. In this paper a
nonlinear control strategy is presented. The main objec-
tive is to control a trolley, which is driven by an artificial
muscle to follow a reference path. The cascaded control,
which is presented here is based on a physical model of an
experimental setup. The inner loop is responsible for the
force control, which cancels the nonlinearities of the sys-
tem and ensures therefore a linear input/output behavior.
The outer control loop consists of a feedforward and an
observer based feedback controller. In addition the ob-
server is extended with a disturbance observer in order to
compensate model errors. Measurement results show the
efficiency of the presented control strategy.

1 Introduction

Pneumatic actuators are interesting for their use in au-
tomation concepts. Unfortunately, due to their exces-
sive nonlinearities [Tak99], a high precision control, es-
pecially the trajectory tracking control can not be han-
dled by linear control design methods in a satisfactory
way [Neu00]. Advanced control strategies like feedback
linearization [Saw02], adaptive control [Tan99] based on
neural networks [Tao96] have been investigated and ex-
plored. As an alternative to a single action pneumatic
cylinder one can use so called pneumatic muscles as actu-
ator for trajectory tracking problems. Compared to cylin-
ders, their main advantages are: high power/weight ratio,
usability in rough environments, maintenance free, fric-
tionless, path of action up to 2.5m. A major drawback
of fluidic muscles is that they have a position-pressure
dependency of the force and a nonlinear position depen-
dency of the volume. These nonlinearities make it difficult
to perform accurate position tracking tasks. [Rep99] pre-
sented a tracking controller based on gain scheduling. In
this approach the muscle is modelled as a two passive el-
ement model consisting of a spring element and a viscous
element. Nevertheless, the parameters have to be mea-

sured intensively. Furthermore, there are no experimental
results shown to valuate the efficiency of the controller.
[Lin99] described the development of an angle controlled
mechanical oscillator using a dead-beat proportional dis-
crete controller. The muscle force is hereby modelled in
a physical way and depends on many parameters, which
are only valid for McKibben [Cho96] muscle. Experi-
mental results show that the controller works relatively
slow. [Hil02] presented a physical model of an experimen-
tal setup, whereby the parameters are identified experi-
mentally. Using a feedback linearization technique in this
approach a position accuracy of 100µm is ensured. This
paper continues the work on control of fluidic muscles,
which is presented in [Hil02]. The motivation is to de-
velop a more accurate and more robust control strategy.

2 System Illustration

In the following, a commercial pneumatic muscle is con-
sidered, which was presented in 1999 by the pneumatic
manufacturer Festo [Neu01]. It consists of a cylindri-
cal, an isotropic flexible rubber tube and two connection
flanges. When the muscle is inflated with compressed air,
it widens. Hence a tension force, as well as a contraction
movement in the longitudinal direction is created. The
muscle is simply a flexible pulling actuator and cannot
transmit pressure forces. The tension force is at its maxi-
mum at the beginning of the contraction and drops with
the stroke to zero. It produces a maximum pulling force
at 6bar of 4000N , contracts up to 25% of its rated length
and possesses a very long life period of at least 10 million
switching cycles. In order to investigate trajectory track-
ing strategies, an experimental setup using a pneumatic
muscle with a rated length of 1.2m and a rated diameter
of 40mm was realized. Figure 1 shows the working prin-
ciples of the test stand. A fluidic muscle drives a trolley,
which can be loaded with sand bag in the longitudinal di-
rection. In this configuration the muscle contracts at a
relative pressure of prel = 6bar to z = 300mm. Figure 2
shows the essential components of the test stand. In or-
der to influence the pressure and flow rate, an electronic
proportional directional control valve in 5/3-way function
is used. The in z-direction moving trolley is guided nearly
frictionless. An optical position incremental encoder mea-
sures the position of the trolley. A pressure sensor gauges
the pressure inside the tube.
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Fig. 1: Explanation of the test stand action; (a) fully deflated muscle
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Fig. 2: Experimental setup; z: position of the slide, 1: valve, 2:

fluidic muscle (rated length: 1.2m), 3: moving trolley, 4: position

encoder, 5: bags to vary the mass, 6: pressure sensor.

3 System Model

To depict the dynamic and static behavior of the system,
a mathematical set of nonlinear equations is derived. The
initial point is to describe the pressure inside the muscle in
relation to the valves air flow rate. The ideal gas equation
describes the dependency of the gas mass:

mg =
pV

RT
, (1)

where mg=gas mass inside the muscle, p=pressure in-
side the muscle, V=muscles inner volume, R=specific
gas constant, T=gas temperature. Because the muscle
tube consists of an elastomer, it can only pass partly the
heat through the material. Any variation of the muscle’s
volume or pressure behave between the ideal condition
isothermal and adiabatic and can be described by the
polytrophic gas law:

pbV
χ
b = peV

χ
e = constant, (2)

where the index ”b” indicates the beginning and index
”e” points the end of the variation of the muscle’s volume
or pressure. The polytrophic exponent χ is identified to
χ = 1.26. The total differential of equation (1) combined
with equation (2) form the differential derivative for the
pressure:

ṗ =
χ

V

(
RTṁg − pV̇

)
. (3)

The expression inside the brackets of equation (3) consid-
ers the power balance of the pressurized flow rate. The
reciprocal volume before the bracket take account of the
compressibility of the gas. The opening area of the valve
is controlled by an underlying position controller. That
guarantees proportionality between the opening area a

and the set point voltage U :

a = c · U, (4)

where c is the specific ratio of the valve type. The supplied
gas flow rate ṁg can be expressed [Bac89]:

ṁg = U · c · ps · ψ , (5)

with ψ =

√√√√√ 2η

RTs(η − 1)



(
p

ps

) 2
η

−

(
p

ps

) η+2
η


,

where η = specific heat ratio, ps = supply pressure, Ts =
supply temperature. This nonlinear valve characteristic
was measured experimentally and shows a shifted zero
line inside a dead zone due to the mechanical construc-
tion of the valve. In order to get a precise valve mapping,
the characteristic curve was measured by inflating and de-
flating a closed pressure vessel using the valve. Dynamic
effects of the underlying position controller for the valve-
slide stroke are neglected. Assuming a constant supply
pressure ps, the mass flow is a numerical function φ of the
pressure p inside the muscle and the set point voltage U :

ṁg = φ(p, U) . (6)

Next, it is necessary to describe the inner volume of the
muscle. In this work the elastic and dynamic characteris-
tics of the muscle’s textile-fiber tubing are neglected. That
means, the volume depends merely on the position and
not on the pressure and its derivatives. By measuring the
volume, one can approximate the volume as a polynomial
function of third order depending on the position:

V (z) =
3∑

i=0

biz
i . (7)

The dynamic behavior of the trolley can be derived using
Newtons second law:

msz̈ = Fm − Ff −msg, (8)

where Fm = longitudinal force of muscle, Ff = friction
force of bearing, ms = total trolley mass,z̈ = acceleration



of slide, g = gravitational constant. The frictional force Ff
of the bearing is supposed to be a combination of coulomb
friction Fc = fc · sgn(ż) and viscous friction Fv = fv · ż. In
order to get an analytical function, the coulomb part of
the friction is approximated by Fc = fc · tanh

(
ż
ε

)
. Thus,

the friction can be expressed as:

Ff (ż) = fc · tanh

(
ż

ε

)
+ fv · ż . (9)

An approximation of the muscle force for a McKibben
pneumatic muscle has been derived by [Cho96]. The pri-
mary idea is to observe the energy conservation of me-
chanical and gas energy displacements:

dWmech
!
= dWgas . (10)

As dynamical effects of the muscles textile-fiber tubing are
neglected one can express: dWmech = Fmdz and dWgas =
(p−p0)dV [Cho96]. Thus, the muscle force can be written
as:

Fm = (p− p0) ·
dV

dz
, (11)

where p0 = environment pressure. To calculate the force
(11) it may be possible to use the relation in (7), however
experimental results show large errors. Due to this, the
function (11) is modified. With equation (11) the pneu-
matic muscle can be considered as an one way cylinder
with flexible diameter. That means the expression dV

dz
in

equation (11) could be interpreted as a variable piston
area. Assuming that expression dV

dz
depends only on the

length of the muscle [Lin99], [Cho96], the function of the
force can be described as:

Fm(p, z) = (p− p0) ·A(z), (12)

where A(z) = virtual piston area depending on the posi-
tion. The piston area A(z) is identified experimentally on
the test stand as follows. Equation (12) yields for very
slow movements with equation (8) with and (9):

A(z) =

msg − fc · tanh

(
ż

ε

)

p− p0

, for p > p0 . (13)

While the pressure is changed very slowly, the position and
velocity of the slide are measured and the effective piston
area can be calculated using function (13). This strategy
is executed for different loads (e.g. between ms = 30kg
andms = 120kg) and the results are used for a polynomial
fit of fifth order. A higher polynomial order improves the
accuracy of the curve fitting nonessential. As reported
by [Neu01], the shape of this function decreases with the
position in a monotonic manner. The muscle force can
expressed as:

Fm(p, z) = (p− p0) ·

5∑

i=0

ciz
i . (14)
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Fig. 3: Trajectory control structure with subsidiary force control.

Equations (7), (8), (9), (14) lead to the nonlinear system
model of the experimental setup:

ṗ =
χ

3∑

i=0

biz
i

(
RTṁg −

3∑

i=1

ibiz
i−1

· żp

)
(15)

z̈ =
1

ms

(
(p− p0) ·

5∑

i=0

ciz
i

− fc · tanh

(
ż

ε

)
. . .

. . . +fv · ż −msg
)

. (16)

4 Controller Design

Core module of the control consists of a force control loop
based on the inverse flow equation, inverse muscle-force
function and the inverse valve characteristic. With an
asymptotical tracking of the pressure, the force control
assures a linear input/output behavior approximated by
a first order delay element.

The trajectory tracking control comprises an observer
based state feedback controller and a feedforward control.
These modules guarantee a fast and vibration-free track-
ing of the position and ensure steady states in the desired
position, velocity, acceleration and jerk. A compensation
module cancels the weight of the trolley and the coulomb-
part of the friction.

Figure 3 shows the layout of the control modules and sys-
tem. The reference trajectory zd is calculated by a tra-
jectory planning module. In consideration of kinematical
constraints it computes time indexed reference function
for position, velocity, acceleration and jerk.



4.1 Force control

Defining the gas flow rate ṁg as output, equation (15)
leads to the inverse flow:

ṁg =

∑3
i=0 biz

i

χRT

(
ṗ+

χ
∑3

i=1 ibiz
i−1

∑3
i=0 biz

i
· żp

)
. (17)

With the measurement of the position z velocity ż and
pressure p it can be easily proved that the flow equation
satisfy the criteria for differential flatness [Fli92], [Fli93],
[Rot96]. Hence, the pressure derivation is not part of the
system it can be chosen freely:

ν
!
= ṗ, (18)

where ν denotes the external reference input. This state
feedback strategy compensates the nonlinearity of the flow
equation to a first order integrator form [Isi95]. To stabi-
lize the pressure, the external reference input is chosen so
as to assure a vanishing tracking error e = pd − p:

ν = ṗd +Kp(pd − p) with Kp > 0 , (19)

where Kp specifies the control parameter and pd denotes
the desired pressure inside the muscle. Equations (17),
(18) and (19) result to the nonlinear control function:

ṁg =

3∑

i=0

biz
i

·

ṗd +Kp(pd − p)

χRT
+

3∑

i=1

ibiz
i−1

·

żp

RT
. (20)

The desired pressure pd can be expressed as the inverse
muscle force function:

pd =
Fd∑5
i=0 ciz

i
+ p0, (21)

where Fd is the desired muscle force, which is calculated
by the trajectory tracking controller. To derive the set
point voltage of the valve according to the desired mass
flow rate, the inverse valve characteristic (eq. (6)) is cal-
culated numerically. By measuring the actual pressure p,
the set point voltage of the valve can be expressed by:
U = φ−1(p, ṁg). Due to a dead zone of the valve re-
sponse, the inversion causes a jump in the voltage. To get
a homogeneous function, the dead zone is widened by a
straight line.

The resulting structure of the force control can be seen
in figure 4. The control input is the desired force which
is converted to the corresponding pressure and derivative
of the pressure. The nonlinear control is subject to an
asymptotic pressure tracking, whereas the pressure inside
the muscle, the position and velocity of the trolley are
measured. The advantage of the presented force control
is that it produce a linear input/output behavior:

Fm(s) =
1

1 +
s

Kp

Fd(s) . (22)
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4.2 Trajectory tracking control

Feedforward compensation

The equations of motion (8)+(9) describe the time re-
sponse of the position z:

Fm = msz̈ + fc tanh

(
ż

ε

)
+ fv ż +msg (23)

As the weight of the trolley and the coulomb part of the
friction are time-constant (except at reversal or beginning
movements) it is proposed to compensate it by a bias force
(see figure 3): Fcom = msg + fc. Thus, the equation of
motion is reduced to:

Fm = msz̈ + fv ż . (24)

State feedback control design

The inverse Laplace transformation of transfer function
(22) and the reduced equation of motion (24) lead to the
linear state space representation:

ẋ = A x+B u, y = C x, (25)

where

A =



−Kp 0 0
0 0 1

m−1
s 0 −fvm

−1
s


 , B =



Kp

0
0


 ,

C =
[

0 1 0
]
, x =

[
Fm z ż

]T
, u = Fmd .

In order to obtain an asymptotic tracking a state feedback
control

Fff = K x (26)

is implemented. The feedback gains Kj are designed due

to pole assignment Pj according to:
∏3
j=1(s − Pj)

!
=

det(sI−A+B K), where I is the identity matrix. Solving
this equation system results to the feedback gains:

K1 = −Kpm
−1
s fv −K

−1
p (P0 + P2 + P1)− 1



K2 = −msK
−1
p P0P1P2 (27)

K3 =
(
m−1

s f2
v − fv(−P0 − P1 − P2) + . . .

. . . ms(P0P2 + P0P1 + P1P2)
)
K−1

p .

Observer design

The system state Fm needed for the state feedback con-
trol can’t be measured. Therefore an observer has to es-
timate this state. In addition the observer is extended
to a disturbance observer. Since the force control based
on the inverse muscle force function, model errors of this
function causes therefore a disturbance force Fdis. The
transfer function of the force control (22) is expanded as
follows:

Fm(s) =
1

1 +
s

Kp

Fmd(s) +
1

1 +
s

Kp

Fdis(s) . (28)

The disturbance force is assumed to be piecewise constant:

Ḟdis = 0 . (29)

The inverse Laplace transformation of transfer function
(28), equation of motion (24) and equation (29) lead to
the following linear state space representation:
[
ẋest
ẋm

]
=

[
A11 A12

A21 A22

] [
xest
xm

]
+

[
B1

B2

]
u, (30)

where the state vector xest = [Fdis Fm]T is to be esti-
mated and the state vector xm = [z ż]T is measured, in-
put function u equal to the desired muscle force Fmd and
the system matrices are:

A11 =

[
0 0
Kp −Kp

]
, A12 =

[
0 0
0 0

]
, A21 =

[
0 0

0 m−1
S

]
,

A22 =

[
0 1

0 bm−1
S

]
, B1 = [0 RKraft]

T , B2 = [0 0]T .

Based on equation (30) it is designed a reduced-order
observer according to:

ρ̇ = (A11 −H A21)ρ+ (B1 −H B2)u+ . . . (31)

. . . ((A11 −H A21)H +A12 −H A22)xm.

With the substitution:

x̂est =

[
F̂dis

F̂m

]
= ρ+H xm (32)

it can be estimated the state vector x̂est. The observer
matrix H are computed by pole assignment Oj according

to:
∏2
j=1(s − Oj)

!
= det(sI − A11 + H A21). Solving this

equation system leads to the observer gains:

H1 = H3 = 0, H2 = msKpO1O2, H4 = ms

(
O1 +O2 −K

−1
p

)
. (33)

The computed variable F̂m is then proceeded further to
the state feedback control. The estimated disturbance
force F̂dis is used to compensate model failures caused
by the force control (see figure 3).

Feedforward control design

Realizing a feedforward control ensures vanishing steady
state error for the position as well as for its first, second
and third derivative. The feedforward control can be writ-
ten as:

Fff = V zd = V0zd + V1żd + V2z̈d + V3
...
z d, (34)

and is transformed into frequency domain:

Fff (s) = (V3 s
3 + V2 s

2 + V1 s+ V0) · Zd(s) . (35)

The transfer function of the closed loop system can be
calculated by:

Z(s) = C(sI −A+B K)−1B · Fff (s) . (36)

Equation (36) combined with equation (35) lead to the
complete system transfer function:

G(s) = (37)

V3 s
3 + V2 s

2 + V1 s+ V0

ms

Kp

s3 + (K1ms +
fv

Kp

+ms)s
2 + (fv(K1 + 1) +K3)s+K2

The gains Vj are chosen in that way, that the coefficients
of the numerator polynomial of G(s) equal those of the
denominator polynomial:

V0 = K2, V1 = fv(K1 + 1) +K3, V2 = K1ms +
fv

Kp

+ms, V3 =
ms

Kp

.

5 Experimental Results

To show the power of the presented control strategy, a
plotted movement of the trolley with a total mass of
ms = 90kg is presented in figure 5. Typical properties of
the control are: dynamical tracking error of e = 1− 2mm
and static tracking error of estat = 10µm. The lower plot
of figure 5 shows the pressure history inside the muscle.
Although the velocity of the trolley is constant, the pres-
sure rises with the amount of the position in a nonlinear
way. Figure 6 shows the difference between the deacti-
vated and the activated control changing the payload mass
stepwise from ms = 90kg to ms = 100kg. In the case of
the deactivated control the trolley is pretty low damped
and position error up to e = 20mm can be observed. In
contrast to this, the activated control guarantees a good
damping and low position errors. The disturbance ob-
server estimates the error in force (lower plot) correctly of

F̂dis = −100N .

6 Conclusion

A concept to control the position of payload is presented.
As actuator it is used a pneumatic muscle which is pro-
duced by the manufacturer Festo. The used muscle pos-
sesses a high pulling force to 4000N and a long life period
of at least 10 million switching cycles. For the control de-
sign a lumped substitute model for an experimental setup
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is derived. The physical states pressure inside the muscle,
position and velocity of the slide describe the dynami-
cal and static behavior of the setup. The limitation of
the substitute model is, that the function of the muscle
force based on experimental results and is therefore an
approach. The model is characterized by nonlinearities.
Thus, it is presented a nonlinear control concept consist-
ing of an inner force control and an outer feedforward and
an observer based feedback controller. The force control
bases on a pressure tracking and compensates the whole
nonlinearities of the system. Therefore the force control
assures a linear input/output behavior approximated by
a first order delay element. In order to get an asymp-
totic tracking of the position, it is implemented a linear
observer based feedback control. To compensate model
failures the observer is extended with a disturbance ob-
server. The presented feedforward control ensures steady
states concerning to the desired position, velocity, accel-
eration and jerk. Measurements prove the suitability of
the control concept. A low static position error of 10µm
demonstrates that pneumatic muscle can be used for high
precision tasks in robotics.
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