
TRANSIENT CONTROL AND VOLTAGE REGULATION OF 
POWER SYSTEMS USING APPROXIMATE SOLUTION OF 

HJB EQUATION 
 

Mahdi Jalili Kharaajoo, M.J. Yazdanpanah 
Control & Intelligent processing Center of Excellence, 

 Electrical and Computer Engineering Department, 
University of Tehran, P.O. Box: 14395/515, Tehran, Iran 
E-mails: mahdijalili@ece.ut.ac.ir and yazdan@ut.ac.ir 

 
 

Keywords: Power system transient stability, Voltage 
regulation, Optimal Control, Nonlinear feedback control, HJB 
equation. 
 
Abstract 
 
In this paper a new method to design a nonlinear optimal 
controller using approximate solution of the HJB equation is 
presented. Using this method the power system stabilizer and 
voltage regulator is designed. In this paper the advantages of 
the controller with nonlinear feedback will be shown. 
Simulation results reveal the effectiveness of the proposed 
approach. 
 
1   Introduction 

 
A power system must be modeled as a nonlinear system for 
large disturbances. Although power system stability may be 
broadly defined according to different operating conditions [6], 
an important problem, which is frequently considered, is the 
problem of transient stability. It concerns the maintenance of 
synchronism between generators following a severe 
disturbance. By the excitation control in a generating unit 
transient stability can be greatly enhanced. Another important 
issue of power system control is to maintain steady acceptable 
voltage under normal operating and disturbed conditions, 
which is referred as the problem of voltage regulation 
[5,8,9,11,13]. 
So far, a lot of research about the design of power system 
stabilizers have been considered, which consist of wide-range 
of strategies, such as adaptive controllers [3,7] or fuzzy expert 
systems [1,10]. In [2] a comparison of some approaches for the 
design of power system stabilizers has been presented. One of 
these approaches is the use of LQR controllers. In spite of its 
simplicity, the use of this method has some disadvantages, like 
the sensitivity of the controller to the variation of system 
parameters or the limited range of controllable disturbances. In 
the other words, the domain of validity of the LQR controllers 
in contrast to the actual systems, which are nonlinear, has 
considerable limitations. These limitations have encouraged 
control engineers to introduce nonlinear controllers to design 
power system stabilizers. In spite of its complexity, nonlinear 
controllers have the advantage of increasing the region of the 
stability of the system. In [16] it has been proved that a 
controller with nonlinear feedback always has a larger domain 
of validity than the controllers with linear feedback. In [17] this 
claim has been shown for a flexible link manipulator. In this 

paper we will consider the above issues by approximate 
solution of the HJB equation using Taylor’s Series expansion. 
In the transient stabilizing control, a common phenomenon is 
that the post-fault voltage value varies considerably from the 
prefault one [4,13,18]. From the practical point of view, 
voltage quality is a very important index of power supply in 
power system operation. So, the post-fault value is expected to 
reach the normal value as closely as possible. In [4] a global 
control law to maintain the transient stability and achieve 
satisfactory post-fault voltage level of a power system when 
subjected to a severe disturbance has been designed. The 
control signal from the global controller is the average of the 
signals from the local control laws, each weighted by the value 
of its operating region membership function. Since the 
membership function can be determined by direct measurable 
variables of power systems. In this paper we will design local 
controllers of global control law using approximate solution of 
the HJB equation. 

      
2   Dynamic Model of Power Systems 

 
In this paper, a simplified dynamic model of a power system, 
namely, a single machine to infinite bus (SMIB) power system 
is considered [6,13]. This model consists of a single 
synchronous generator connected through a parallel 
transmission line to a very large network approximated by an 
infinite bus. The model is shown in figure 1. 
In recent years, most of the nonlinear excitation controllers 
have been developed based on the classical third order dynamic 
generator model and the simulation results presented them 
showed that such a simplification has very little effects on the 
performances of the designed controllers in the system 
presented in more details [6]. 
The classic third order single-axis dynamic model of the SMIB 
power system Fig.1 can be written as follows [4,6,13,18]: 

 
2.1 Mechanical equations 
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The mechanical input power Pm is treated as a constant in the 
excitation controller design, i.e., it is assumed that the governor 
action is slow enough not to have any significant impact on the 
machine dynamics. 

 
 



2.2 Generator electrical dynamics 
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2.3 Electrical equations (Assumed qd xx =′ ) 
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More details about power system modeling are in [6]. The 
definition of the above parameters is as follows: 
 

)(tδ        Power angle of the generator, radians 

)(tω       Rotor speed of the generator, radian/s 

oω          Synchronous machine speed, radian/s 

mP          Mechanical power,  p.u. 

)(tPe     Active electrical power delivered by the generator,  p.u. 

)(tEq′  Transient EMF in the quadratic axis of the generator,  p.u. 

)(tEq    EMF in the quadratic axis of the generator,  p.u. 

)(tE f     Equivalent EMF in the excitation coil,  p.u. 

)(tVt      Generator terminal voltage,  p.u. 

)(tu f       Input of the SCR amplifier of the generator,  p.u. 

sV        Infinite bus voltage,  

p.u. LTdds xxxx ++=  

LTdds xxxx ++′=′  

LTs xxx +=  

 
Fig. 1:  A single machine infinite bus power system. 
 

The fault considered in this paper is a symmetrical three-phase 
short circuit fault, which occurs on the middle of one of the 
transmission lines. When the fault on the transmission lines is 
removed, the breakers of the lines are opened. 

 

3 Design of Optimal Nonlinear Feedback Controller Based 
on Approximate Solution of the HJB Equation 

 
Optimal control is the determination of control signals in order 
to minimize or maximize a definite cost function while 
fulfilling some constraints. Using dynamic programming and 
optimality principle, results in a nonlinear partial differential 
equation known as the HJB equation. This equation has the 
following form [12,15,14]: 
Assume a system with the following differential equation: 
 )),(),(( ttutxa=ℑ          (12) 

where x  is the state variables vector and u  is the system input 
vector. The problem of optimal control design is to control the 
above system such that the following cost function is 
minimized: 
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where g , h  are definite functions and ot , ft  are constants. So, 
according the HJB equation: 
 0)),,),((),(()),(( ** =+ ttJtxutxHttxJ xt      (14) 

where *J  is the minimum of cost function and *u  is the input 
vector that minimize H , and H is Hamilton function that is 
defined as follows: 
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As it can be seen the HJB equation is a partial differential 
equation, and finding exact analytical solution for *J is too 
difficult. However, there are methods to find approximate 
solution for *J . One of these possible solutions is using 
Taylor’s Series Expansion of desired order. According to (14) 

*u is a function of *
xJ , so expressing *

xJ  in the form of 
Taylor expansion of order n  leads to a controller of order (n-
1). In order to obtain *

xJ  in the form of Taylor expansion of 
order n , we will use the method proposed in [17]. 
Considering the introduction presented above, we will follow 
the design of optimal nonlinear control for power systems. For 
simplicity, the design of a first order controller will be 
considered, that is equal to estimate of *J up to order 2. For 
this case the deviation of variables δ , ω  and qE ′  from their 
steady state initial values are selected as control variables. A 
similar procedure can be used to design of higher order 
controllers. In fact the first order controller is the LQR 
controller that can be obtained directly by solving Riccati 
equation. 

 
3.1 Nonlinear Feedback Transient Controller Design 

 
In order to design an optimal controller, first, a cost function 
should be considered. For this system, because of the 
significance of the variation of power angle, rotor relative 
speed, and control signal, the following cost function is 
considered. 
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where r , 1q  and 2q  are positive constants. For this work we 
will use the following values for them: 

1,50,100 21 === rqq  
Control variables are deviation of power angle, rotor relative 
speed and generator transient EMF from their steady state 
initial values: 
  ]        []       [ `

321 qExxxu ∆∆== ωδ   (17) 
In order to obtain a first order controller for the system, the 
Taylor’s Series expansion of *J  of order 2 is needed. For this, 
we will use the procedure discussed before. So the first order 
presentation of power system   (1)-(3) is: 
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where 
qoqoo EExxx ′−′=−=−= 321 ,, ωωδδ  

The definition of the variables ox1 , ox2 , ox3  and also the 
constants 51,...,cc  are as follows: 
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qoooooo Exxx ′=== 321                              ωδ  
 So, the Hamilton function is: 
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To find *u  that minimize H , we should obtain derivative of 
H at u  and get it zero: 
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Driving (19) by *u , obtain the minimum value of H . 
Expressing of *J , that is second ordered polynomial of control 
variables, cab be as follows: 
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In (21) the coefficient of 61,..., kk  are unknown. In this case 
*
xJ  is: 
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So, 
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By substituting *u  and *
xJ  from (23) and (22) in (19) and 

sorting the coefficients, after setting equivalent to zero all 
terms, we will have the following nonlinear equations: 
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As it is seen, equations (24) are nonlinear equations of 
unknown parameters 61,..., kk  that can be solved using 
symbolic software like MAPLE or MATHEMATICA. In this 
work we have used MAPLE.5 for that. 

 
3.2 Nonlinear Feedback Voltage Controller Design 

 
To design a voltage controller we define new control variables 
as follows: 

qoqotot EExxVVx ′−′=−=−= 321 ,, ωω  
Using (11) we can rewrite the system equations (1)-(3) as 
follows: 
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where 
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We will design the voltage controller with the same procedure 
that the transient controller designed. In here the cost function 
is: 
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For this case we consider the following parameters: 
1,50,100 21 === rqq  

 
4   Global Control of Power Systems 

 
As stated in the introduction, our global control objective is to 
achieve good control performance over of the wide range for 
the anticipated operating region. Specifically, we have the 
following control task: 
Global Control Problem: design a smooth nonlinear feedback 
control law for the excitation system (1)-(3) such that the 
closed-loop power system is transiently stable when subjected 



to a fault, and restores the steady prefault voltage value after 
the disturbance. 
We used the following trapezoid-shaped like membership 
functions which are able to indicate different operating stages 
[4]: 
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Where a1, a2 are positive design constants providing 
appropriate scaling which can be chosen according to the 
different sensitivity requirement of power frequency and 
voltage. 
Membership function (28) is plotted in Fig. 2. It can be seen 
that )(zδµ  gets its dominant value when z  is far away from 
the origin, which corresponds to the transient period: on the 
other hand, )(zvµ  does so when z  is close to the origin, 
which indicates the post-transient period. Since the 
membership function values are determined by the directly 
measurable variables, ω and tV∆ , the fault sequence need not 
to be known beforehand. 
Therefore, the whole operating region is partitioned into the 
following two subspaces by the membership functions, where 

1S  indicates the transient period and 2S  indicates the post 
transient period. 
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The characteristic function of each subspace )2,1( =lSl  
defined by: 
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Note that 1ττ 21 =+ . 
It should be pointed out that ω and tV∆  are chosen as the 
index variables in (30) since they sufficiently represent 
operating status for the problem transient stability and voltage 
regulation. If the problem under consideration is voltage 
stability, reactive power could be included in the index. 
Similarly the proposed method can be extended to other power 
system control issues. The chosen membership functions have 
a trapezoid-shaped like which is well known in fuzzy control to 
separate operating conditions. The system performance is not 
sensitive to different parameters a1 and a2. 

 

 
Fig. 2: Membership function, δµ ”_____”, vµ ”------“. 

 

The global control law is the average of the individual control 
laws, weighted by the operating region membership functions, 
i.e., the input fu  takes the form: 

 21 fVff uuu µµδ +=           (33)   

where 1fu  is the transient controller and 2fu  is the voltage 
controller. 
The global control (33) has the following interpretation: in the 
transient period system states are far away from the 
equilibrium, the primary control is to regulate them to inter a 
neighborhood of the equilibrium without large oscillations; 
then in the post-transient period around the equilibrium the 
voltage need to be tuned to reach the prefault level. The 
membership function plays the role of appropriate weighting 
and smooth interpolation of the two controllers. One of the 
appealing abilities of the method is that the operating status is 
automatically distinguished by the membership functions that 
are functions of directly measurable variables. The form of the 
control law (33) is such that a smooth transfer between the 
local controllers is automatically achieved. 

 
5   Simulation Results 

   
The prefault conditions of the system are:  
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The fault is a symmetrical three-phase short circuit fault with 
its sequences described as: 
Case 1. A permanent fault occurs: 

  Stage 1: The system is in the prefault steady states; 
Stage 2: A fault occurs at ott = ;  

Stage 3: The fault is removed at fo ttt += ; 
Stage 4: The system is in the post fault state; 

Case 2. A permanent fault occurs and the mechanical input 
power increases: 

Stage 1: The system is in the prefault steady states; 
 Stage 2: A fault occurs at ott = ;  

Stage 3: The fault is removed at fo ttt += ; 
Stage 4: The mechanical input power of the generator 
has a 20% step increase at 1tt = ; 
Stage 5: The system is in the post fault state;   

Case 3. A temporary fault and a permanent fault occur: 
Stage 1: The system is in the prefault steady states; 
Stage 2: A fault occurs at ott = ;  

Stage 3: The fault is removed at fo ttt += ; 



Stage 4: The system conditions restore to the pefault 
conditions at 2tt = ;  
Stage 5: Another fault occurs on the same situation at 

3tt = ; 

Stage 6: The fault is removed at fttt += 3 ; 
Stage 7: The system is in the post fault state; 
 

We choose the following parameters in the simulation: 
ststststo 2.1,8.,1,1.0 321 ====   

we will chose for ft different values. 
In this section we consider the fault of Case 1 with 

sec1.0=ft . In Fig. 3 the power system responses using 
transient controllers are shown. As it can be seen all of the 
controllers can stabilize the system, but in the post-transient 
period the level of the generator terminal voltage is not its 
prefault value and is higher than it. So, we should design a 
controller due to regulate the generator terminal voltage in 
addition to stabilize the system. In order to further investigating 
the performance of each controller, we use the energy of 
vibrations as a criterion to evaluate the quality of control 
action. The energy of power angle vibration can be defined as 
follows: 
 ∫ −= t

o o dtE τδτδδ
2))(()(            (34) 

With the above criterion we can compare the ability of 
controllers to damp the vibrations. This comparison is shown in 
Fig. 4. It can be seen that among these controllers the third 
order controller has the best performance in controlling the 
energy of the vibrations. 

 
    Fig. 3: Power system response for the fault of Case 1. 

 

 
Fig. 4: The energy of power angle vibrations using different 

order controllers. 

In order to investigate the effect of the nonlinear feedback 
controllers to the system response, consider the fault of Case 2 
that mechanical input power increases after a determined time. 
In Fig. 5 the closed loop response with the second and third 
order controllers are shown. As it can be seen in this case the 
system with the second order controller is unstable (dotted 
line), but the third order controller can stabilize the system 
(solid line). For further investigation consider a fault of Case 3 
on the infinite bus with sec1.0=ft . The power system 
response for this case using different order controllers is shown 
in   Fig. 6 We can see that the first order controller can not 
stabilize the system (dotted line), but the system with the 
second order controller is stable (solid line). 
 

 
Fig. 5: Power system response for the fault of Case 2  with 

sec1.0=ft using the second order “------“ and the third 
order “_____” controllers. 

 
 

 
Fig. 6: Power system response for the fault of Case 3  with 

sec1.0=ft using the first order “------“ and the third order 
“_____” controllers. 

 
Is this section we will use the global control law obtained 
before. In Fig. 7 the closed-loop system response using the first 
order global control law for the fault of Case 1 is shown. It is 
seen that the closed-loop system is stable and the post-fault 
generator terminal voltage regulated to its prefault value. In 
Fig. 8 the power system response for the fault of Case 2 with 
the third order global controller is shown, in this case using the 
first order controller or the second order one can not stabilize 
the system. As it can be seen the closed-loop system with this 
control action has good transient and post-fault performance. In 
Fig. 9 the power system response for the fault of Case 3 with 
the second order global control law is shown, in the previous 
section it has been shown that using the first order controller 
can not stabilize the closed-loop system. We can see that, this 
controller can stabilize the system and regulate the voltage to 
the prefault value of that in this situation. 



 
Fig. 7: Power system response for the fault of Case 1 on the 

transmission line using the first order global controller.         

 
Fig. 8: Power system response for the fault of Case 2 on the 

transmission line using the third order global controller. 
 

 
Fig. 9: Power system response for the fault of Case 3 on the 
transmission line using the second order global controller. 

 
6   Conclusion 

 
In this paper the design of global nonlinear feedback controller 
for power systems based on the approximate solution of the 
HJB equation was presented. First a transient controller 
designed by solving the HJB equation of the system to enhance 
the system’s stability. We formed the HJB equation to obtain 
the optimal input that minimized the cost function. The 
corresponding index was defined as the sum of weighted 
squares of power angle, rotor relative speed and transient EMF. 
The HJB equation is a partial differential equation for which an 
analytical solution is difficult to be found. So, we used an 
approximate method using Taylor’s Series expansion. The 
procedure of obtaining the first order approximation of the 
solution was presented with details. 

Although, using designed transient controller could 
stabilize the system, the final generator terminal voltage was 
increased, which is not desirable for power systems. So, we 

designed the voltage controllers with the same procedure. In 
this case the cost function was defined as the sum of weighted 
squares of terminal voltage, rotor relative speed and transient 
EMF. To achieve the global control action that guarantee both 
transient stability and voltage regulation we used a membership 
function that was a function of measurable parameters of the 
system (rotor relative speed and generator terminal voltage). 
Then the global control law was formed as a weighted 
summation of both transient controller and voltage controller 
with respect to their membership functions. In this way in the 
transient period the transient controller is more effective, and in 
the post-transient period the voltage controller is the dominant 
controller. So, we could design the global control law for 
power systems using approximate solution of the HJB 
equation. Simulations results showed the effectiveness of the 
proposed approach.  
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