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Abstract

In this paper a new method to design a nonlinear optimal
controller using approximate solution of the HIB equation is
presented. Using this method the power system stabilizer and
voltage regulator is designed. In this paper the advantages of
the controller with nonlinear feedback will be shown.
Simulation results reveal the effectiveness of the proposed
approach.

1 Introduction

A power system must be modeled as a nonlinear system for
large disturbances. Although power system stability may be
broadly defined according to different operating conditions [6],
an important problem, which is frequently considered, is the
problem of transient stability. It concerns the maintenance of
synchronism between generators following a severe
disturbance. By the excitation control in a generating unit
transient stability can be greatly enhanced. Another important
issue of power system control is to maintain steady acceptable
voltage under normal operating and disturbed conditions,
which is referred as the problem of voltage regulation
[5,8,9,11,13].

So far, a lot of research about the design of power system
stabilizers have been considered, which consist of wide-range
of strategies, such as adaptive controllers [3,7] or fuzzy expert
systems [1,10]. In [2] a comparison of some approaches for the
design of power system stabilizers has been presented. One of
these approaches is the use of LOR controllers. In spite of its
simplicity, the use of this method has some disadvantages, like
the sensitivity of the controller to the variation of system
parameters or the limited range of controllable disturbances. In
the other words, the domain of validity of the LOR controllers
in contrast to the actual systems, which are nonlinear, has
considerable limitations. These limitations have encouraged
control engineers to introduce nonlinear controllers to design
power system stabilizers. In spite of its complexity, nonlinear
controllers have the advantage of increasing the region of the
stability of the system. In [16] it has been proved that a
controller with nonlinear feedback always has a larger domain
of validity than the controllers with linear feedback. In [17] this
claim has been shown for a flexible link manipulator. In this

paper we will consider the above issues by approximate
solution of the HJB equation using Taylor’s Series expansion.
In the transient stabilizing control, a common phenomenon is
that the post-fault voltage value varies considerably from the
prefault one [4,13,18]. From the practical point of view,
voltage quality is a very important index of power supply in
power system operation. So, the post-fault value is expected to
reach the normal value as closely as possible. In [4] a global
control law to maintain the transient stability and achieve
satisfactory post-fault voltage level of a power system when
subjected to a severe disturbance has been designed. The
control signal from the global controller is the average of the
signals from the local control laws, each weighted by the value
of its operating region membership function. Since the
membership function can be determined by direct measurable
variables of power systems. In this paper we will design local
controllers of global control law using approximate solution of
the HJB equation.

2 Dynamic Model of Power Systems

In this paper, a simplified dynamic model of a power system,
namely, a single machine to infinite bus (SMIB) power system
is considered [6,13]. This model consists of a single
synchronous generator connected through a parallel
transmission line to a very large network approximated by an
infinite bus. The model is shown in figure 1.

In recent years, most of the nonlinear excitation controllers
have been developed based on the classical third order dynamic
generator model and the simulation results presented them
showed that such a simplification has very little effects on the
performances of the designed controllers in the system
presented in more details [6].

The classic third order single-axis dynamic model of the SMIB
power system Fig.1 can be written as follows [4,6,13,18]:

2.1 Mechanical equations

5(t) = o(t) -, ey

a')(t)=—%(w(t)—wo)—;)—10{(1’e(t)—1’m) 2

The mechanical input power P, is treated as a constant in the
excitation controller design, i.e., it is assumed that the governor
action is slow enough not to have any significant impact on the
machine dynamics.



2.2 Generator electrical dynamics
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More details about power system modeling are in [6]. The
definition of the above parameters is as follows:

o(t) Power angle of the generator, radians

@(t)  Rotor speed of the generator, radian/s

a, Synchronous machine speed, radian/s

Pm Mechanical power, p.u.

P, ()  Active electrical power delivered by the generator, p.u.

E ‘; (t ) Transient EMF in the quadratic axis of the generator, p.u.

E g (f) EMF in the quadratic axis of the generator, p.u.

E r (t ) Equivalent EMF in the excitation coil, p.u.

v, (f)  Generator terminal voltage, p.u.
Uy (t) Input of the SCR amplifier of the generator, p.u.
VS Infinite bus voltage,

p.u.xds :xd +xT +.xL
't
Xgs = Xgq +xT +xL

xs :xT +.xL
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Fig. 1: A single machine infinite bus power system.

The fault considered in this paper is a symmetrical three-phase
short circuit fault, which occurs on the middle of one of the
transmission lines. When the fault on the transmission lines is
removed, the breakers of the lines are opened.

3 Design of Optimal Nonlinear Feedback Controller Based
on Approximate Solution of the HJ/B Equation

Optimal control is the determination of control signals in order
to minimize or maximize a definite cost function while
fulfilling some constraints. Using dynamic programming and
optimality principle, results in a nonlinear partial differential
equation known as the HJB equation. This equation has the
following form [12,15,14]:

Assume a system with the following differential equation:

3 = a(x(8),u(?),1) (12)
where X is the state variables vector and # is the system input

vector. The problem of optimal control design is to control the
above system such that the following cost function is
minimized:

J = h(x(ty)ty)+ ] g(x(2),u,7)dr (13)
where g,/ are definite functions and ¢, , ¢ + are constants. So,
according the HJB equation:

T 0,0+ Ha(Ou (60, 7.0.0 =0 (14)

where J " is the minimum of cost function and " is the input
vector that minimize H , and H is Hamilton function that is
defined as follows:

H(x(6),u” (x(0), ] 1), 1) = g(x(0), u(1), 1)

#3100 [a(x(0).u(0), )]
As it can be seen the HJB equation is a partial differential

(15)

equation, and finding exact analytical solution for.J "is too
difficult. However, there are methods to find approximate

solution forJ . One of these possible solutions is using
Taylor’s Series Expansion of desired order. According to (14)

u"is a function of J :, so expressing J : in the form of
Taylor expansion of order 7 leads to a controller of order (n-
1). In order to obtain J : in the form of Taylor expansion of

order 7, we will use the method proposed in [17].

Considering the introduction presented above, we will follow
the design of optimal nonlinear control for power systems. For
simplicity, the design of a first order controller will be

considered, that is equal to estimate of J : up to order 2. For
this case the deviation of variables 6, @ and E ('1 from their

steady state initial values are selected as control variables. A
similar procedure can be used to design of higher order
controllers. In fact the first order controller is the LQOR
controller that can be obtained directly by solving Riccati
equation.

3.1 Nonlinear Feedback Transient Controller Design

In order to design an optimal controller, first, a cost function
should be considered. For this system, because of the
significance of the variation of power angle, rotor relative
speed, and control signal, the following cost function is
considered.

w1 1 1
J=1 (5q1<5—50>2+5 70" +5ru2> (16)



where r,q, and g, are positive constants. For this work we
will use the following values for them:
q, =100,q, =50,r =1

Control variables are deviation of power angle, rotor relative
speed and generator transient EMF from their steady state
initial values:

u=[x x, x]=[Ad o AE,] (17)
In order to obtain a first order controller for the system, the
Taylor’s Series expansion of J " of order 2 is needed. For this,

we will use the procedure discussed before. So the first order
presentation of power system (1)-(3) is:

dx,
—L_x,
dt
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t
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The definition of the variables X, ,X,,,X;, and also the

constants c,,...,cs are as follows:
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So, the Hamilton function is:
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To find »" that minimize H , we should obtain derivative of
H at u and get it zero:
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(20)

Driving (19) by u , obtain the minimum value of H .

Expressing of J ", that is second ordered polynomial of control
variables, cab be as follows:

¥ =kyxi +hyxy +hyxs +kyx X, +ksx x; +kgxyx 5 (21)
In (21) the coefficient of k,...,k, are unknown. In this case

* .
J_ is:

J;l =2k x| +kyxy +ksxs

J;Z = 2k2X2 +k4x1 +k6X3 (22)
J;} = 2k3X3 +k5x1 +k6x2
So,
=250 kg +kgx, + k) 23)
r

By substituting u and J ; from (23) and (22) in (19) and

sorting the coefficients, after setting equivalent to zero all
terms, we will have the following nonlinear equations:

k) .
—q+ %cﬁ — 2k c08(x;, ) + 2kycssin(xy, ) = 0
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keks

—ky + 27062 —kgcq —kecy —2kycysin(x;,) =0
r

As it is seen, equations (24) are nonlinear equations of
unknown parameters k,...,ks; that can be solved using

symbolic software like MAPLE or MATHEMATICA. In this
work we have used MAPLE.5 for that.

3.2 Nonlinear Feedback Voltage Controller Design

To design a voltage controller we define new control variables
as follows:

X = Vt - Vto’xZ =0—0,,X3 = Ec; _Ec,]o
Using (11) we can rewrite the system equations (1)-(3) as
follows:
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We will design the voltage controller with the same procedure
that the transient controller designed. In here the cost function
is:

w1 1 1
J=E Gl V) +5 @o’ <o) 27
For this case we consider the following parameters:

q, =100,g, =50,r =1

4 Global Control of Power Systems

As stated in the introduction, our global control objective is to
achieve good control performance over of the wide range for
the anticipated operating region. Specifically, we have the
following control task:

Global Control Problem: design a smooth nonlinear feedback
control law for the excitation system (1)-(3) such that the
closed-loop power system is transiently stable when subjected




to a fault, and restores the steady prefault voltage value after
the disturbance.

We used the following trapezoid-shaped like membership
functions which are able to indicate different operating stages

[4]:

1
Hs = 120G —08) 28)
py =1-p; (29)

where
z=a,0% +a,(AV,)’ 30)

Where a;, a, are positive design constants providing
appropriate scaling which can be chosen according to the
different sensitivity requirement of power frequency and
voltage.

Membership function (28) is plotted in Fig. 2. It can be seen
that s5(z) gets its dominant value when Zz is far away from
the origin, which corresponds to the transient period: on the
other hand, x,(z) does so when z is close to the origin,
which indicates the post-transient period. Since the
membership function values are determined by the directly
measurable variables, @ and AV, , the fault sequence need not
to be known beforehand.

Therefore, the whole operating region is partitioned into the
following two subspaces by the membership functions, where
S, indicates the transient period and S, indicates the post
transient period.

Sy =AW, AV \uty < pis)
Sy ={w, AV s < py}
The characteristic function of each subspace S§;(/=12)
defined by:
1
- {0

Note that t, +1, =1.

31

zeS,
. (32)
otherwise

It should be pointed out that wand AV, are chosen as the

index variables in (30) since they sufficiently represent
operating status for the problem transient stability and voltage
regulation. If the problem under consideration is voltage
stability, reactive power could be included in the index.
Similarly the proposed method can be extended to other power
system control issues. The chosen membership functions have
a trapezoid-shaped like which is well known in fuzzy control to
separate operating conditions. The system performance is not
sensitive to different parameters a; and a,.
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Fig. 2: Membership function, £¢5”

The global control law is the average of the individual control
laws, weighted by the operating region membership functions,

i.e., the input u f takes the form:

where u, is the transient controller and u ., is the voltage

controller.

The global control (33) has the following interpretation: in the
transient period system states are far away from the
equilibrium, the primary control is to regulate them to inter a
neighborhood of the equilibrium without large oscillations;
then in the post-transient period around the equilibrium the
voltage need to be tuned to reach the prefault level. The
membership function plays the role of appropriate weighting
and smooth interpolation of the two controllers. One of the
appealing abilities of the method is that the operating status is
automatically distinguished by the membership functions that
are functions of directly measurable variables. The form of the
control law (33) is such that a smooth transfer between the
local controllers is automatically achieved.

5 Simulation Results

The prefault conditions of the system are:

x, =1.863 X, =0.257 xp =0.127
x, =04853  x,=1712 H=4
D=5 w,=314159 k, =1
X4 =223265  x =0.62665 x, =0.36965
T}, =69
5, =342° P, =8 v, =1
¢, =31.4159 ¢y =—-0.625

c3 =—44.05994393 c, =—0.5163527708

c5 =0.2611444928 ce =0.1449275362

The fault is a symmetrical three-phase short circuit fault with
its sequences described as:
Case 1. A permanent fault occurs:

Stage 1: The system is in the prefault steady states;

Stage 2: A fault occursat £ =1 ;

Stage 3: The fault is removed at =7, +7,;

Stage 4: The system is in the post fault state;
Case 2. A permanent fault occurs and the mechanical input
power increases:

Stage 1: The system is in the prefault steady states;

Stage 2: A fault occurs at £ =7 ;

Stage 3: The fault is removed at =7, +7,;

Stage 4: The mechanical input power of the generator
has a 20% step increase at £ ={;

Stage 5: The system is in the post fault state;
Case 3. A temporary fault and a permanent fault occur:
Stage 1: The system is in the prefault steady states;

Stage 2: A fault occurs at £ =1 ;
Stage 3: The fault is removed at ¢ =7, +1,;



Stage 4: The system conditions restore to the pefault
conditions at £ = ¢, ;

Stage 5: Another fault occurs on the same situation at
=1y,

Stage 6: The fault is removed at ¢ = £, + Lrs

Stage 7: The system is in the post fault state;

We choose the following parameters in the simulation:
t, =0.1s,¢ =1s,¢, = 85,3 =1.25
we will chose for 7 different values.

In this section we consider the fault of Case 1 with
t,= 0.1sec. In Fig. 3 the power system responses using

transient controllers are shown. As it can be seen all of the
controllers can stabilize the system, but in the post-transient
period the level of the generator terminal voltage is not its
prefault value and is higher than it. So, we should design a
controller due to regulate the generator terminal voltage in
addition to stabilize the system. In order to further investigating
the performance of each controller, we use the energy of
vibrations as a criterion to evaluate the quality of control
action. The energy of power angle vibration can be defined as
follows:

Es(0)=],(8(0)=5,) dr (34)
With the above criterion we can compare the ability of
controllers to damp the vibrations. This comparison is shown in
Fig. 4. It can be seen that among these controllers the third

order controller has the best performance in controlling the
energy of the vibrations.
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Fig. 3: Power system response for the fault of Case 1.
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In order to investigate the effect of the nonlinear feedback
controllers to the system response, consider the fault of Case 2
that mechanical input power increases after a determined time.
In Fig. 5 the closed loop response with the second and third
order controllers are shown. As it can be seen in this case the
system with the second order controller is unstable (dotted
line), but the third order controller can stabilize the system
(solid line). For further investigation consider a fault of Case 3

on the infinite bus with ¢, =0.Isec. The power system

response for this case using different order controllers is shown
in Fig. 6 We can see that the first order controller can not
stabilize the system (dotted line), but the system with the
second order controller is stable (solid line).

100 : 2

@
]
iy
- in

=
n

;
;

o B

o

H :

5 e

o

= . s

= S

=

=40

5

o

, electrical power(p )

[}
[=]

=}

n

[m]

I timers)d

0 1 2 3 irmage) 0 1 2
Fig. 5: Power system response for the fault of Case 2 with
t, = 0.1secusing the second order “------ and the third
order ” controllers.
70 . 2
B0 | il
T % 1
= 205
2t 1 i
5 Che
=0 1 0s
o . L
u] 2 4 time(s) B o 2 4 time(s) b

Fig. 6: Power system response for the fault of Case 3 with
t , = 0.1sec using the first order “------ and the third order

113

> controllers.

Is this section we will use the global control law obtained
before. In Fig. 7 the closed-loop system response using the first
order global control law for the fault of Case 1 is shown. It is
seen that the closed-loop system is stable and the post-fault
generator terminal voltage regulated to its prefault value. In
Fig. 8 the power system response for the fault of Case 2 with
the third order global controller is shown, in this case using the
first order controller or the second order one can not stabilize
the system. As it can be seen the closed-loop system with this
control action has good transient and post-fault performance. In
Fig. 9 the power system response for the fault of Case 3 with
the second order global control law is shown, in the previous
section it has been shown that using the first order controller
can not stabilize the closed-loop system. We can see that, this
controller can stabilize the system and regulate the voltage to
the prefault value of that in this situation.
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6 Conclusion

In this paper the design of global nonlinear feedback controller
for power systems based on the approximate solution of the
HJB equation was presented. First a transient controller
designed by solving the HJB equation of the system to enhance
the system’s stability. We formed the HIB equation to obtain
the optimal input that minimized the cost function. The
corresponding index was defined as the sum of weighted
squares of power angle, rotor relative speed and transient EMF.
The HJB equation is a partial differential equation for which an
analytical solution is difficult to be found. So, we used an
approximate method using Taylor’s Series expansion. The
procedure of obtaining the first order approximation of the
solution was presented with details.

Although, using designed transient controller could
stabilize the system, the final generator terminal voltage was
increased, which is not desirable for power systems. So, we

designed the voltage controllers with the same procedure. In
this case the cost function was defined as the sum of weighted
squares of terminal voltage, rotor relative speed and transient
EMEF. To achieve the global control action that guarantee both
transient stability and voltage regulation we used a membership
function that was a function of measurable parameters of the
system (rotor relative speed and generator terminal voltage).
Then the global control law was formed as a weighted
summation of both transient controller and voltage controller
with respect to their membership functions. In this way in the
transient period the transient controller is more effective, and in
the post-transient period the voltage controller is the dominant
controller. So, we could design the global control law for
power systems using approximate solution of the HJB
equation. Simulations results showed the effectiveness of the
proposed approach.
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