
STATE FEEDBACK CONTROL OF A CLASS OF POSITIVE
SYSTEMS: APPLICATION TO GAS-LIFT STABILIZATION

Lars Imsland, Bjarne A. Foss∗ and Gisle Otto Eikrem

Dept. of Eng. Cybernetics, Norwegian Univ. of Science and Technology, 7491 Trondheim, Norway.
fax: (+47) 73 59 43 99

e-mail: {lars.imsland,bjarne.a.foss,gisle.eikrem}@itk.ntnu.no

Keywords: nonlinear control, set stabilization, positive sys-
tems, oil production

Abstract

A set-stabilizing constrained state feedback controller for a
class of nonlinear positive systems is presented. The con-
troller is applied to stabilization of a gas-lifted oil well,
and simulations using a rigorous multi-phase flow simulator
(OLGA R©2000) illustrates the use of the controller.

1 Introduction

Positive systems are dynamical systems that are described by
ODEs where the state variables are non-negative. Such sys-
tems have been studied for a long time, see for instance [14] for
an introduction. It appears linear positive systems has gained
most interest, see for instance [8] for a recent overview. How-
ever, physical systems subject to control will often be described
by nonlinear positive systems from first principles modeling.

Since mass is an inherently positive quantity, systems modeled
by mass balances [1] are perhaps the most natural example of
positive systems. Another example is the widely studied class
of compartmental systems [9, 12], used in biomedicine, phar-
macokinetics, ecology, etc. Compartmental systems, which are
often derived from mass balances, are (nonlinear or linear) sys-
tems where the dynamics are subject to strong structural con-
straints. Each state is a measure of some material in a compart-
ment, and the dynamics consists of the flow of material into
(inflow) or out of (outflow) each compartment. If these flows
fulfill certain criteria, the system is called compartmental.

Similar to compartmental systems, we will herein assume that
each state can be interpreted as the “mass” (or measure of mass;
concentration, level, pressure, etc.) of a compartment. How-
ever, we do not make the same strong assumptions on the struc-
ture on the flows between the compartments. Instead, we make
other (strong) assumptions related to the system being control-
lable according to the control objective under input saturations.

We assume that the compartments that constitute the state can
be divided into groups of compartments, which we will call
phases. Each phase will have a controlled inflow or outflow
associated with it. The control objective will be to steer the
mass of each phase (the sum of the compartment masses in that
phase) to a constant, prespecified value.

The developed state feedback controller is inspired by [2].
However, a larger class of systems is treated, especially since
the phase concept allows us to consider multiple input systems.
We also allow saturated inputs and more general flows. Simi-
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lar to [2], the inputs are positive. The controller in [2] can be
viewed as a special case of the controller herein.

A related controller for a similar class of systems is devel-
oped in [5]. Instead of controlling the system to a constant
mass, more general first integrals are considered. The con-
troller of [5] is different from the one considered herein, in
particular the input can take on negative values. However, the
stability properties of the closed loop are similar, in the sense
that they both achieve convergence to a certain set.

The paper is structured as follows: In Section 2 the system
class is presented, while the controller and a convergence result
from a general invariant domain of attraction are presented in
Section 3. An application to stabilization of gas-lifted oil wells
is presented in Section 4.

2 Model class

We consider input affine nonlinear positive systems

ẋ = f(x, u) = Φ(x) + Ψ(x) +B(x)u, (1)

that is, the state is positive (x ∈ R
n
+), and the input is positive

and upper bounded, u ∈ U := {u ∈ R
m
+ | 0 ≤ uj ≤ ūj}.

Each state can be interpreted as the “mass” (amount of mate-
rial, or some measure of amount) in a compartment. Loosely
speaking, Φ(x) represents “interconnection structure” between
compartments, Ψ(x) represents uncontrolled external inflows
to and outflows from compartments andB(x)u represents con-
trolled external inflows to and outflows from compartments.
Systems of this type often arise when developing mechanistic
models based on conservation laws, where the states are con-
served quantities like mass and energy.

We will assume that the state can be divided into m different
parts, which will be denoted phases. Phase j will consist of rj

states, and have the control uj associated with it, correspond-
ing to either controlled inflow or outflow to compartments of
that phase. The states in phase j will be denoted zj , such that
x = [(z1)>, (z2)>, . . . , (zm)>]>, and it follows that necessar-
ily,
∑m

j=1
rj = n. Corresponding to this structure, the vector

functions Φ(x), Ψ(x) and the matrix function B(x) are on the
form

Φ(x) =
[

φ1(x)>, φ2(x)>, . . . , φm(x)>
]>

Ψ(x) =
[

ψ1(x)>, ψ2(x)>, . . . , ψm(x)>
]>

B(x) = blockdiag
(

b1(x), b2(x), . . . , bm(x)
)

.

Note that element j is (in general) function of x, not (only) zj .
Also note that the partitioning into phases need not be unique.

We will state the assumptions on these functions on the setD ⊆
R

n
+. In the case of global results, D = R

n
+.



A1. (Interconnection structure) The function Φ : D → R
n

is locally Lipschitz, φj

i (x) ≥ 0 for zj

i = 0, and

rj
∑

i=1

φ
j

i (x) = 0, j = 1, . . . ,m.

A2. (Controlled external flows) The block diagonal matrix
function B(x) : D → R

n×m is locally Lipschitz and sat-
isfies:

a. Phase j has controlled inflow:

b
j

i (x) ≥ 0 for all x ∈ D

b
j

i (x) > 0 for all x ∈ D for at least one i

b. Phase j has controlled outflow:

b
j

i (x) ≤ 0 for all x ∈ D

if ∃x ∈ D such that zj

i = 0, then zj

i = 0⇒ b
j

i (x) = 0

b
j

i (x) < 0 for all x ∈ D with zj

i 6= 0, for at least one i

The uncontrolled external flows must satisfy some “controlla-
bility” assumption in relation to the controlled flows. Before
we define this, it is convenient to define the “mass” of each
phase, being the sum of the compartment masses of that phase:
Mj(x) :=

∑rj

i=1
z

j

i . Our control objective will be to control
Mj(x) to some prespecified desired mass of phase j, denoted
M∗

j , from initial conditions in D. For the control problem to
be meaningful, the intersection of the set where Mj(x) = M∗

j

and D should be nonempty.

A3. (Uncontrolled external flows) For given M ∗ =

[M∗
1 ,M

∗
2 , . . . ,M

∗
m]

>, Ψ(x) : D → R
n is locally Lip-

schitz and satisfies that ψj

i (x) ≥ 0 for zj

i = 0, and in
addition, if:

a. Phase j has controlled inflow:

1. For x ∈ {x ∈ D | Mj(x) > M∗

j },
∑rj

i=1
ψ

j

i (x) ≤ 0

and the set {x ∈ D |
∑rj

i=1
ψ

j

i (x) = 0 and Mj(x) >
M∗

j } does not contain an invariant set.

2. For x ∈ {x ∈ D | Mj(x) < M∗

j }, −
∑rj

i=1
ψ

j

i (x) <
∑rj

i=1
b
j

i (x)ūj .
b. Phase j has controlled outflow:

1. For x ∈ {x ∈ D | Mj(x) < M∗

j },
∑rj

i=1
ψ

j

i (x) ≥ 0

and the set {x ∈ D |
∑rj

i=1
ψ

j

i (x) = 0 and Mj(x) <
M∗

j } does not contain an invariant set.

2. For x ∈ {x ∈ D | Mj(x) > M∗

j },
∑rj

i=1
ψ

j

i (x) <

−
∑rj

i=1
b
j

i (x)ūj .

We briefly note that the upper saturations ūj can be state depen-
dent, without affecting the main results. The chosen notation
will not reflect this.

Proposition 1 (Positivity) For x(0) ∈ R
n
+, the state of the sys-

tem (1) fulfilling A1-A3 with D = R
n
+, satisfies x(t) ∈ R

n
+,

t > 0.

Proof. If suffices to notice that for xi = 0, ẋi ≥ 0.

3 State feedback total mass controller

In this section, the state feedback controller is defined, and a
general convergence result is given for a general invariant setD
that the assumptions hold on. The set D could then be consid-
ered a region of attraction. Corollaries of the main result speci-
fies different set D that could be chosen, for instance D = R

n
+.

3.1 The controller and a convergence result

As mentioned in the previous section, our control objective is
to control the total mass Mj(x) of each phase to a prespecified
value M∗

j .

To this end, the following constrained, positive state feedback
control is proposed:

uj(x) =







0 if ũj(x) < 0

ũj(x) if 0 ≤ ũj(x) ≤ ūj

ūj if ũj(x) > ūj

(2)

where

ũj(x)=
1

∑rj

i=1
b
j

i (x)

(

−

rj
∑

i=1

ψ
j

i (x)+λj(M
∗

j −Mj(x))

)

(3)

and λj is a positive constant. In the unconstrained case, the
controller linearizes the phase mass (Mj) dynamics.

The controller can be seen as a generalization of the controller
in [2] to systems with multiple inputs, to systems with con-
trolled outflow and to systems with upper constraints on the
input. Apparently, we can run into situations where the control
is not defined if phase j is outflow controlled, since the term
∑rj

i=1
b
j

i (x) then might be zero. However, the continuity of
the involved functions and the upper bound on the control en-
sures that the control in these cases unambiguously is defined
by uj(x) = ūj .

Define the set

Ω = {x ∈ R
n
+ |M1(x) =M∗

1 , . . . ,Mm(x) =M∗

m}. (4)

Assumption 1 There exists a set D that is invariant for the
dynamics (1) under the closed loop with control (2), and has a
nonempty intersection with Ω.

Assumption 2 For x ∈ Ω ∩D, 0 < ũj(x) < ūj .

Theorem 1 Under the given assumptions, the state of the sys-
tem (1), controlled with (2) and starting from some initial con-
dition x(0) ∈ D, stays bounded and converges to the positively
invariant set Ω ∩D.

Proof. The setD is by Assumption 1 invariant, hence Assump-
tions A1-A3 hold along closed loop trajectories.

Define the positive semidefinite function

V (x) :=
1

2

m
∑

j=1

(

Mj(x)−M
∗

j

)2
, (5)



with time derivative

V̇ (x) =

m
∑

j=1

[

Mj(x)−M
∗

j

]

(

rj
∑

i=1

ψi
j(x) +

rj
∑

i=1

bij(x)uj(x)

)

.

For Mj(x) 6=M∗

j , we have one of the following cases:

1. If 0 ≤ ũj ≤ ūj , summand j is

[

Mj(x)−M
∗

j

]

(

rj
∑

i=1

ψi
j(x) +

rj
∑

i=1

bij(x)uj(x)

)

= −λj

[

Mj(x)−M
∗

j

]2
< 0.

2. If ũj < 0, then uj(x) = 0 and summand j is

[

Mj(x)−M
∗

j

]

rj
∑

i=1

ψi
j(x).

Assumption A3.a.1 and A3.b.1 ensures that this is nega-
tive for both inflow and outflow controlled phases.

3. If ũj ≥ ūj , then uj(x) = ūj and summand j is

[

Mj(x)−M
∗

j

]

(

rj
∑

i=1

ψi
j(x) +

rj
∑

i=1

bij(x)ūj

)

.

Assumption A3.a.2 and A3.b.2 ensures that this is nega-
tive for both inflow and outflow controlled phases.

For the details of point 2 and 3, check [11]. We can conclude
that Ω ∩ D is invariant, since for x ∈ Ω ∩ D, V (x) = 0 and
by Assumption 2 and the above, V̇ (x) < 0 in the intersection
between a neighborhood of Ω ∩D and the invariant set D.

Moreover, since V̇ (x) ≤ 0, V (x(t)) ≤ V (x(t0)) along sys-
tem trajectories. From the construction of V (x) and invariance
of (D ⊆)Rn

+, it is rather easy [11] to see that for x ∈ R
n
+,

‖x‖ → ∞ if and only if V (x) → ∞, hence V (x(t)) bounded
implies that ‖x(t)‖ is bounded. This allows us to conclude
from LaSalle’s invariance principle that x(t) converges to the
largest invariant set contained in {x | V̇ (x) = 0} ∩ D. By
the above and Assumption A3.a.1 and A3.b.1, there is no other
invariant set for which V̇ (x) = 0 other than Ω ∩D.

Although this theorem merely shows convergence to the set Ω,
it is possible to prove that Ω is asymptotically stable [11].

To use this theorem, we need to find invariant sets D. In some
cases, the assumptions hold globally and we can use D = R

n
+.

In other cases, it is possible to choose sets of the shapeD = D1

or D = D2, where

D1 :={x∈R
n
+|M

∗

j −cj≤Mj(x)≤M
∗

j +cj , j = 1, . . . ,m}

and

D2 :={x∈R
n
+ | z

i
j≤z

i
j≤z

i
j , i = 1, . . . , rj and

M∗

j −cj≤Mj(x)≤M
∗

j +cj , j = 1, . . . ,m}.

For further details and examples, we refer to [11].

Theorem 1 shows that the state converges to the subset Ω,
which often (somewhat inaccurate) is referred to as set sta-
bility. In many applications, stability of equilibria is arguably
more interesting. It is thus interesting to note that the con-
troller (2) often (but not always, as the counterexample in [11]
reveals) leads to a stable equilibrium. A sufficient condition for
an asymptotically stable equilibrium can be found from the the-
ory of semidefinite Lyapunov functions, see e.g. [4]. Here, we
state the following Theorem which can be proved in a similar
way as Theorem 5 in [5]:

Theorem 2 Let the conditions of Theorem 1 hold. If the closed
loop (1) has a single equilibrium in the interior of Ω∩D that is
asymptotically stable with respect to initial conditions in Ω∩D
and attractive for all initial conditions in Ω ∩ D, the equilib-
rium is asymptotically stable for the closed loop with a region
attraction (of at least) D.

The proposed feedback scheme is independent of the intercon-
nection structure and hence robust1 to model uncertainties in
Φ(x) (as long as Assumption A1 holds). As mentioned in [2],
the interconnection terms are in practical examples often the
terms that are hardest to model. Moreover, the unconstrained
controller also has some robustness-properties with respect to
bounded uncertainties in Ψ(x) and B(x). For details on this,
we refer to [11], but briefly note that convergence holds to a set
containing Ω, where the parameters λj decides the size of the
set.

In the next section, the controller will be used for stabilizing a
gas-lifted oil well.

4 Stabilization of flow in gas-lifted oil wells

4.1 Gas-lifted oil wells

The use of hydrocarbons is essential in modern every-day
life. In nature, hydrocarbons are typically found in petroleum-
bearing geological formations (reservoirs) situated under the
earth’s crust, and hydrocarbons from these reservoirs are pro-
duced by means of an oil well.

An oil well is made by drilling a hole (wellbore) into the
ground. A metal pipe (casing) is placed in the wellbore to se-
cure the well, before “downhole well completion” is performed
by running the production pipe (tubing), packing and possi-
bly valves and sensors into the well and perforate the casing to
make the reservoir fluid flow into the well. Detailed informa-
tion on wells and well completion can e.g. be found in [10],
see also Figure 1.

If the reservoir pressure is high enough to overcome the back
pressure from the flowing fluid column in the well and the sur-
face (topside) facilites, the reservoir fluid can flow to the sur-
face. In some cases, the reservoir pressure is not high enough
to make the fluid flow freely, at least not at the desired rate.
A remedy is then to inject gas close to the bottom of the well,
which will mix with the reservoir fluid, see Figure 1. The gas
is transported from the topside through the gas-lift choke into
the annulus (the space between the casing and the tubing), and
enters the tubing through the injection valve close to the bot-
tom of the well. The gas will help to “lift” the oil out of the

1Robust in the sense that convergence to Ω still holds. Note that changes in
Φ(x) will typically move the equilibria on Ω.



tubing, through the production choke into the topside process
equipment (separator). This is the type of oil well we will con-

Oil out

Tubing

Gas lift

Reservoir

Injection
valve

choke
Gas in

Production
choke

Annulus

Figure 1: A gas-lifted oil well.

sider herein. A problem with these type of wells, is that they
can become (open loop) unstable, characterized by highly os-
cillatory well flow (casing heading). The flow regime of the
well (tubing) in this case is denoted slug flow. The two main
factors that induce casing heading, is high compressibility of
gas in the annulus, and gravity dominated pressure drop in the
two-phase flow in the tubing.

The oil production for a typical oscillating well can be seen in
Figure 2. This slug flow is undesirable since it creates oper-
ational problems for downstream processing equipment. Fur-
ther, stabilizing the slug flow in the well leads to increased pro-
duction, as illustrated in Figure 3. The casing heading prob-
lem is industrially important, as a considerable amount of such
wells exhibit slug flow. This (or similar) control problems are
considered in e.g. [13, 6].

For simplicity, we will assume that the reservoir contains only
oil, which is a good approximation if the fraction of gas and
water is low. However, the same procedure as taken herein can
be taken for wells with higher gas and water production, as-
suming the amounts are (approximately) known. We assume
realistic boundary conditions, that is, constant separator pres-
sure (downstream the production choke), constant gas injection
pressure (upstream the gas injection choke) and constant reser-
voir pressure (far from the well). The (vertical) well is 2km
deep and the high fidelity model is modelled in OLGA 2000
dividing both the tubing and the annulus into 25 volumes.

In the sequel we develop a simplified model for control de-
sign and analysis, and finally assess the controller on the high-
fidelity OLGA model.
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Figure 2: Comparison of open loop (gas-lift choke is 50%
open, production choke is 80% open) behavior between
simple model and the rigouros multiphase flow simulator
OLGA R©2000 [3, 15].
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Figure 3: Oil production as a function of gas injection rate. The
dotted line is based on steady state calculations, while the solid
line is based on dynamic simulations.

4.2 A model of a gas-lifted oil well

As discussed above, the mechanisms that makes the well pro-
duce in slugs, are related to the mass of gas in the annulus
(compressibility) and the mass of fluid in the tubing (gravity).
Consequently, it is reasonable to believe that an ODE based
on mass balances will give a good description of the dynamic
behavior of the well,

ẋ1 = −wgc(x) + wiv(x, u1) mass of gas, annulus

ẋ2 = wiv(x)− wpg(x, u2) mass of gas, tubing

ẋ3 = wr(x)− wpo(x, u2) mass of oil, tubing

where wgc is the flow of gas through the gas injection choke,
wiv is the flow of gas through the injection valve, wpg and wpo

are the flow of gas and oil through the production choke and
wr(x) is the inflow of oil from the reservoir. The challenge in
making such a model, is to find the relation between the system
masses (x) and the pressures in the system that determines the
flows (w). For reasons of space we do not go into this, but refer
to [11], and note that the three state model gives a reasonable
approximation to the OLGA model as shown in Figure 2.



4.3 State feedback control

The system written as above can fulfill (a slightly modified)
Assumption A2. However, as the expressions for the flows are
rather inaccurate (especially for the multiphase flow through
the production choke) we will assume that the flow of gas
through the gas-lift choke and the flow of oil through the pro-
duction choke are measured, and that fast control loops control
these measured variables. The setpoints for these loops will be
the new manipulated variables. This will, in addition to being
a more sensible engineering approach, simplify the equations.

The dynamic model with the manipulated flows as controls, is

ẋ1 = −wiv(x) + v1 (6a)

ẋ2 = wiv(x)− wpg(x, u2(x)) (6b)

ẋ3 = wr(x)− v2 (6c)

We choose as phases the sum of gas in the tubing and annu-
lus (x1 + x2, phase 1) and the oil in the tubing (x3, phase
2). The upper saturations on both v1 and v2 (the maximum
flows through the gas-lift choke and the production choke) de-
pend on the state (through the pressures). Noting that the maxi-
mum flows are always obtained when the chokes are maximally
open, Assumption A3 can be checked for these saturations. De-
note the maximum flows as v̄1(x) and v̄2(x), which are given
by inserting u1 = u2 = 1 into the expressions for wiv(x, u1)
and wpo(x, u2).

Then, for j ∈ {1, 2}, the controller is given by

vj(x) =







0 if ṽj(x) < 0

ṽj(x) if 0 ≤ ṽj(x) ≤ v̄j(x)

v̄j(x) if ṽj(x) > v̄j(x)

(7)

where

ṽ1(x) = wpg(x, u2(x)) + λ1(M
∗

g − x1 − x2) (8)

ṽ2(x) = wr(x)− λ2(M
∗

o − x3). (9)

4.4 Analysis

For a detailed analysis of stability and some notes on perfor-
mance, we refer to [11]. Here, we briefly note that for the sim-
ple mass balance model of the oil well, asymptotic stability of
an equilibrium follows from Theorem 1 and 2 for M ∗

g = 4400
kg and M∗

o = 4600 kg, and with the set D chosen as

3640 ≤ x1 ≤ 4240, 510 ≤ x2 ≤ 590, 4550 ≤ x3 ≤ 4650.

Simulations show that the real region of attraction is larger than
the one found above, but not global. For instance, if the sys-
tem is started in a “no production” state (tubing filled with oil –
x2 = 0), the system must be brought to a producing condition
before the controller is turned on. This is due to the saturation
of the chokes. If the tubing is filled with oil, the casing can
be filled with enough gas such that x1 + x2 = M∗

g , without
gas being inserted into the tubing. The “oil controller” tries to
decrease the amount of oil, but is unsuccessful since the well
cannot produce oil with no gas inserted. Increasing M ∗

g (tem-
porarily) might be a solution in this case.

4.5 OLGA simulations

Using the OSI2 link between OLGA and Matlab, the controller,
implemented in Matlab, was used on a well modeled in OLGA.
The simulation results are shown in Figure 5 and 4. Note
that these are state feedback simulation results, the masses and
flows were assumed measured.

In the simulations, the well is operated in open loop the two
first hours. In this period, the well is stabilized by using a
high opening of the gas-lift choke (u1 = 0.7) and a low open-
ing of the production choke (u2 = 0.4). Then, the controller
(with M∗

g = 3450 kg and M∗
o = 9400 kg) is switched on,

and remains on for three hours. We see that the controller sta-
bilizes the well at a higher production, and with a significantly
lower use of injection gas. The controller is switched off after 5
hours, keeping the inputs constant. It is seen that this operating
point is open loop unstable. In Figure 5, we see that the con-
troller does not quite reach the mass setpoints. This is due to
the fact that the OLGA simulator takes into account the flash-
ing phenomena, hence there is mass leaving the oil phase which
enters the gas phase, which the controller does not account for.
This can be interpreted as errors in the external flows, which
the controller is robust to as discussed in Section 3. The in-
fluence is more pronounced in the gas phase, since the external
flow in the oil phase is larger than in the gas phase. Simulations
indicate that larger λ’s (λ1 = λ2 = 0.001s−1 was used in the
simulations shown) reduces the steady state error. Choosing
too high λ’s leads to problems with saturations, and also nu-
merical problems may occur. However, increasing the λ’s by,
say, a decade do not introduce problems. Another remedy for
reducing this offset is by including an estimate of the flashing
in the equations.
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Figure 4: Desired oil production and gas injection calculated
by controller (- -) and the “real” values (-), OLGA simulation

4.6 Discussion of the gas-lift stabilization controller

Both analysis on the simple model and simulations on the mul-
tiphase flow simulator OLGA, confirm that the developed con-
troller stabilizes the flow in the gas-lifted well.

2OLGA Server Interface (OSI) toolbox, for use with Matlab, developed by
ABB Corporate Research.
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The controller calculates the desired inflow of gas to the annu-
lus, and the desired outflow of oil from the tubing. We choose
to use inner control loops to obtain these desired flows, which
means the total control structure can be seen as a cascaded de-
sign. Because of choke rate saturation (the choke stroke time in
the OLGA simulations was 7 min.), these inner control loops
cannot be infinitely fast, but simulations show that the delays
introduced by these rate saturations do not have significant in-
fluence on the closed loop behavior. The inner control loops
cannot both be integral controllers, since the steady state value
of the controlled variables are dependent.

Note that the developed state feedback controller is indepen-
dent of the flow through the injection valve, wiv(x), and hence
is robust to modeling errors in this flow. This is in contrast to
the fact that the system can be open loop stabilized (or desta-
bilized) by the characteristics of this valve. In some cases this
valve is designed to always be in a critical flow condition, ef-
fectively decoupling the annulus dynamics from the tubing dy-
namics. Even though this takes care of the instability problem,
operational degrees of freedom are lost compared to the ap-
proach herein since it implies a constant, given at the design
stage, gas injection into the tubing.

In the controller, the states (masses) and expressions for the
external flows are needed. For a real well, these are not easily
obtained by measurements. However, there is a development
towards more advanced instrumentation systems, which may
be used to design a nonlinear state observer based on the simple
nonlinear well model, for example an extended Kalman filter.
Initial results in this regard can be found in [7].

Much work remains on the connection between the mass set-
points (M∗

g and M∗
o ) and the performance of the well. In

the simulations shown, an unsatisfactorily “trial-and-error”-
method was used to find these values.

An approach where the oil and gas are treated as a single phase
can also be developed by the theory in this paper. In this case,
the production choke must be used to control the (total) outflow
of mass. Simulations (not included herein) show that this con-
trol strategy also stabilizes the well. Such a control strategy can
be advantageous, since there can be situations where the gas-
lift choke is not available for control, for example if the amount

of available lift gas topside is given by production constraints.
Other advantages are that the controller is independent (and
hence robust) to mass transfer between the oil and gas phase in
the tubing, and that tuning (in terms of total mass setpoint) is
significantly easier. The expected disadvantages are a smaller
region of attraction, and that the achievable performance of the
well (the oil production) is lower.

5 Concluding remarks

A controller for a class of positive systems is suggested, lead-
ing to closed loop stability of a set. The main restriction of
the system class is the assumptions (Assumption A3) that en-
sure that the “Lyapunov function” used in the proof of the main
result is decreasing when the input saturates.

The controller is successfully implemented on an oil well sim-
ulated in the multiphase flow simulator OLGA 2000.

Acknowledgment

The NTNU Natural Gas Research Center is acknowledged for
financial support.

References
[1] G. Bastin. Issues in modelling and control of mass balance sys-

tems. In D. Aeyels, F. Lamnabi-Lagarrigue, and A. van der
Schaft, editors, Stability and stabilization of Nonlinear Systems.
Springer, 1999.

[2] G. Bastin and L. Praly. Feedback stabilisation with positive con-
trol of a class of dissipative mass-balance systems. In Proc. 14th
IFAC World Congress, Beijing, China, 1999.

[3] K. H. Bendiksen, D. Malnes, R. Moe, and S. Nuland. The dy-
namic two-fluid model OLGA: Theory and application. SPE
Production Engineering, pages 171–180, 1991.

[4] R. Chabour and B. Kalitine. Semi-definite Lyapunov functions -
stability and stabilizability. IEEE Trans. Aut. Control, 2002. To
appear.

[5] P. De Leenheer and D. Aeyels. Stabilization of positive systems
with first integrals. Automatica, 38(9):1583–1589, 2002.

[6] G. O. Eikrem, B. A. Foss, L. Imsland, H. Bin, and M. Golan. Sta-
bilization of gaslifted wells. In Proc. 15th IFAC World Congress,
Barcelona, Spain, 2002.

[7] G. O. Eikrem, L. Imsland, and B. A. Foss. Stabilization of gas
lifted wells based on state estimation, 2003. Proc. Adchem 2003.

[8] L. Farina. Positive systems in the state space approach: Main
issues and recent results. In Proceedings of MTNS, 2002.

[9] K. Godfrey. Compartmental models and their application. Aca-
demic Press Inc. [Harcourt Brace Jovanovich Publishers], Lon-
don, 1983.

[10] M. Golan and C. H. Whitson. Well Performance. Prentice-Hall,
2nd edition, 1991.

[11] L. S. Imsland. Topics in Nonlinear Control - Output Feedback
Stabilization and Control of Positive Systems. PhD thesis, Dept.
of Eng. Cyb., NTNU, 2002.

[12] J. A. Jacquez and C. P. Simon. Qualitative theory of compart-
mental systems. SIAM Rev., 35(1):43–79, 1993.

[13] B. Jansen, M. Dalsmo, L. Nøkleberg, K. Havre, V. Kristiansen,
and P. Lemetayer. Automatic control of unstable gas lifted wells.
In SPE Annual Technical Conference and Exhibition, October
1999. Paper no.: SPE 56832.

[14] D. Luenberger. Introduction to dynamic systems. John Wiley &
Sons, 1979.

[15] Scandpower. OLGA 2000 user’s manual, 2000.


	Session Index
	Author Index



