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Abstract

The two main goals of this contribution are to demon-
strate the integration of hydraulic actuator systems with
PCH systems and to discuss a modification of the well
known input-output linearization in connection with
PCH systems. We will show that this approach is
closely related to the existence of so called Casimir
functions in the PCH context. Finally, industrial mea-
surements demonstrating the implemented control law
will be presented.

1 Introduction

By now, energy based modelling and control concepts
are known for their astonishing robustness properties.
Port Controlled Hamiltonian (PCH) systems are closely
related to that idea. They are restricted to plants with
special mathematical structure properties of the dy-
namic equations which describe the behavior of these
plants. Apart from that, many nonlinear control con-
cepts used in practical applications are based on well
established methods, namely the exact input-state or
input-output linearization (see, e.g., [3]). One disad-
vantage of these methods for industrial applications is
that one has to measure the whole state. Therefore, it is
of great interest from the control point of view, to inte-
grate the energy based description with the input-output
linearization under a restriction of the measurable state
variables.

This contribution is organized as follows. We will start
with a brief summary of the Hamiltonian and the PCH
framework, followed by the incorporation of hydraulic

systems. Towards this goal we have to deal with some
thermodynamics. Finally, we will show that the applica-
bility of a constrained version of the well known input-
output linearization to PCH systems coincides, to some
extent, with the existence of so called Casimir functions.

2 The PCH Framework

Here and further, we will denote by ∂q the partial deriva-
tive with respect to q, by ∂xf the gradient of f and by q̇
the total derivative of q with respect to time. A (gener-
alized) Hamiltonian system can be written in local coor-
dinates as

ẋ = J (x) ∂xH (x)T (1)

with x ∈ R
n, the Hamiltonian H (x) and the skew-

symmetric structure matrix J (x). If the Jacobi identity
is fulfilled and rank (J (x)) = 2m then a consequence
of Darboux’ theorem guarantees (see [5]) the existence
of canonical coordinates x = (q, p, z) , q, p ∈ R

m, z ∈
R

n−2m such that
 q̇

ṗ
ż


 =


 0 Im 0

−Im 0 0
0 0 0


 ∂xH (x)T (2)

with the m × m identity matrix Im, at least locally.
The quantities z = C (x) of (2) are called distinguished
(Casimir) functions and they fulfill

∂xC (x) (J (x)) = 0 .

Trivially, these functions are invariants independent of
the Hamiltonian H – they remain constant along the
solutions of (2) and of course of (1). These distin-
guished functions can be used to simplify the analysis
of (1) because they lead to a reduction in order of the
ODE(ordinary differential equation)-system.



The notion of a (generalized) Hamiltonian system can
be – with an increase of the range of included physi-
cal systems – extended to a so-called (generalized) Port
Controlled Hamiltonian (PCH) System with Dissipation
(see [8]). Let u ∈ R

l, y ∈ (
R

l
)∗

denote the the l-
dimensional input and output, then the structure of a
PCH system is given by

ẋ = (J (x) − R (x)) ∂xH (x)T + G (x) u

y = ∂xH (x) G (x) .
(3)

The distinguished (Casimir) functions C (x) are gener-
alized to solutions of ∂xC (x) (J (x) − R (x)) = 0. In
the case of a Hamiltonian equal to the internally stored
energy, the skew symmetric matrix J is related to the
lossless internal flow of energy, whereas one describes
the dissipative effects with the positive semi-definite
matrix R. 〈y, u〉 is the power supplied to the plant via its
ports. Therefore, the output y is often called the output
collocated to u. Besides the simple damping injection
there are more elaborate controller designs like IDA-
PBC, which leads to state feedback laws such that the
matrices R, J or the Hamiltonian H take desired val-
ues Rd, Jd, Hd. More challenging is, whether one can
solve the previous problem by help of the restricted con-
trol law u = u (ŷ), ŷ = ŷ (x) such that u depends on the
measurable quantity ŷ ∈ R

k, k < l only. It has turned
out that several controller design problems for hydraulic
systems belong to this class.

2.1 PCH Structure of Hydraulic Systems

As a descriptive example we will use an arrangement of
a single acting piston and a linear mass-spring-damper
system as load. Towards this end, we will have to deal
with systems which have an interchange of mass with
the environment.
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Figure 1: The hydraulic actuator system.

2.1.1 Thermodynamic Interlude

As already mentioned, PCH systems strongly depend
on an accurate treatment of the energy storage inside
and the power flows into and out of a plant. It is
not really astonishing that equilibrium thermodynamics
can contribute a lot to an energy based modelling ap-
proach, because its foundation is mainly based on the
energy balance principle. The authors want to point out
that even if equilibrium thermodynamics is a quite ax-
iomatic branch of physics there does exist a well de-
veloped mathematical calculus – namely the calculus of
Pfaffian forms – which handles the numerous relations
of differentials in a quite appealing systematic manner.
The complete description of a thermodynamic system is
given by its fundamental equation which relates the in-
ternal energy U with the other state variables. Usually,
the system is given in form of an equation of state, e.g.,
the ideal gas, the van der Waals gas or the isentropic
fluid. In the following, we will deal with open thermo-
dynamic systems and reversible processes. Let us use
(U, T, S, p, V, h,m) – the internal energy, the tempera-
ture, the entropy, the pressure, the volume, a function
h which has to be determined and the mass of the fluid
– as the thermodynamical coordinates. Therefore, the
first law of thermodynamics has to be written with the
independent variables S, V and m as

ω = dU − TdS + pdV − hdm .1 (4)

The additional term hdm can be considered as an ansatz
for the change of energy due to the in- and outward fluid
flows. The positive sign has been assigned to the inward
flow. We will confine ourselves to an isentropic process
without any external heat supply TdS. That is the rea-
son, why (4) reduces to

dU + pdV − hdm (5)

in only two independent variables. One often uses spe-
cific quantities in the field of isentropic fluid mechan-
ics, namely the set of coordinates (ρ,m, us (ρ) , p (ρ))
– with the independent coordinates ρ (the mass density
of the fluid) and m. The symbol us denotes the specific
internal energy. These quantities are given by the trans-
formation

(
U = usm,V = ρ−1m

)
. One obtains from

1One can simply set this and the following forms equal to zero
in order to obtain the common notation. The exterior forms are
understood as a generator of a contact ideal over a seven dimen-
sional contact bundle (E, π,B) with the projection π : E →
B, (S, V,m,U, T, p, h) �−→ (S, V,m), the base manifold B and
the total manifold E (see [1]). A valid section ψ : (S, V,m) �−→
(S, V, U, T, p, h) has to fulfill ψ∗ω = 0 in order to describe a ther-
modynamic system.



(5)
(

us +
p

ρ
− h

)
dm + m

(
∂us

∂ρ
− p

ρ2

)
dρ .

From this, one derives the relations (compare, e.g., with
[2])

h = us +
p

ρ
, p = ρ2 ∂us

∂ρ
. (6)

The first equation can be used as a definition of the
specific (free) enthalpy h of the fluid flow. The spe-
cific internal energy of the supplied fluid is therefore
equal to the specific internal energy of the portion of
fluid under consideration. The second one is a condi-
tion for the fundamental equation of the material. For
fluids one usually assumes that the – possibly implicit –
constitutive equation (the equation of state in the ther-
modynamic sense) f (p, ρ, T ) = 0 is independent of T .
Therefore, one can use the isothermal definition of the
bulk modulus E (see Merrit 1967)

∂p

∂ρ
=

E

ρ
(7)

as the equation of state. Further, hydraulic fluids meet
the assumption of a constant bulk modulus E quite well
as long as the pressure changes are reasonable small.
Equation (7) can now be integrated in closed form

p = ln
(

ρ

ρ0

)
E + p0 ,

where p0 is the reference pressure and ρ0 the density of
the fluid at the reference pressure. Because dU is a total
differential, its integral is path independent. Therefore,
one can integrate first along m = const and then along
ρ = const. That results finally in

∆U = U1 − U0 = −
∫ ρ1

ρ0

pd
(

m0

ρ

)
+

∫ m1

m0

h (ρ1) dm

=
m0

ρ1

(
E ln

ρ0

ρ1
+ (E + p0)

(
ρ1

ρ0
− 1

))
+

+
∫ m1

m0

hdm .

(8)

The symbol ∆ expresses the fact that only changes of
internal energy are considered. One rediscovers for
m1 = m0 the fundamental equation of a closed ther-
modynamic system. Obviously, one can proceed in the
same way if E is replaced by a function of the pressure
p and therefore of ρ, but possibly, the evaluation of the
integrals becomes more involved.

In hydraulic systems the fluid flow is characterized usu-
ally by the volume flow qv . Due to the balance of mass,
the total amount of fluid m inside the chamber fulfills
ṁ = ρqv and one obtains the ODE for the coordinate m
as

ṁ = ρqv =
m

V
qv . (9)

The integral in (8) results with dm = ṁdt in

∫ m1

m0

hdm =
∫ t1

t0

hρqvdt .

This is nothing else than the time integral of the power
of the fluid flow Ph = ṁh. In the following, we will
drop the index 1 for the reason of simplicity.

2.1.2 PCH Structure of the SAP

In order to study a practical example let us consider the
hydraulic actuator depicted in Fig. 1, with a single act-
ing piston connected to a spring-mass-damper system.
The surrounding pressure p2 is assumed to be constant
and for the sake of simplicity we neglect the leakage ef-
fects (Cl = 0). Additionally, the hydraulic servo valve
is assumed to be servo compensated such that the valve
flow qv acts as the one-dimensional input. This is no
principal restriction because the compensation of the
valve characteristic – a state dependent static nonlinear-
ity – is a straight forward task. It is worth mentioning
that the amount of fluid which is currently inside the
cylinder with geometric volume V = Vp + Axp (with
Vp the volume of the pipe and A the effective area of the
piston) is indicated by m. It has turned out to be conve-
nient to distinguish between two sets of state variables
namely canonical coordinates xT = [xp, pp,m] with the
momentum pp = mpvp and velocity vp = ẋp, and sen-
sor coordinates x̆T = [xp, vp, p1]. The naming of the
first set will become clear immediately and the naming
of the second is due to its (partially) simple availability
by the deployment of standard sensor equipment.

In order to derive the mathematical model for the sys-
tem under consideration, the first principle required ad-
ditionally is the balance of momentum

mpv̇p = −Fc − Fd + Ap1 (10)

with the piston and load mass mp, the forces Fc, Fd

caused by the spring and the damper and the pressure
in the cylinder head chamber p1. For the sake of sim-
plicity, we neglect the inertia of the oil in (10) as al-
ready stated. Finally, we choose the relations Fc =
c (xp − xp,0) and Fd = dv for the mass damper system
with the coefficients c, d and xp,0 = x̃p,0 − c−1Ap2.



Following the approach of the first section, we derive
the mathematical model with coordinates [xp, pp,m]T

in the form (3) from

GT =
[
0, 0,m (Vp + Axp)

−1
]

2H = 2∆H + mpv
2
p + c (xp − xp,0)

2

y = ∆H (Vp + Axp) + p1

(11)

and

J =


 0 1 0

−1 0 0
0 0 0


 , R =


 0 0 0

0 d 0
0 0 0


 , (12)

with the internal energy of a closed thermodynamic sys-
tem with Vp + Ax0 = m (ρ0)

−1

∆H = (Vp + Axp) E ln
(Vp + Axp)
(Vp + Ax0)

+

A (E + p0) (x0 − xp)

as well as from the relations (8, 9, 10). One can
easily discover the form of (2) in (12) and therefore
[xp, pp,m]T are already canonical coordinates. Further,
m is a distinguished variable and it remains obviously
constant along the trajectories of the system as long as
qv vanishes. This is clear from the point of view of an
engineer because as long as no fluid flow is supplied
to the hydraulic chamber the amount of fluid inside it-
self has to remain constant. This fact demonstrates how
physical knowledge can help to find canonical coordi-
nates. Apart from that, the Hamiltonian can be used as
an energy based Lyapunov function candidate in order
to investigate the stability of the uncontrolled plant.

3 Controller Design

It is clear that we have from now on the full realm of
systematic passivity or better PCH based control sys-
tem design techniques at ours disposal (see [6]). Nev-
ertheless, we will focus in this paper on the similarities
between the input-output linearization with constrained
measurements (with constraints) as introduced in [7] ap-
plied to a subclass of PCH systems and the energy based
controller design. As a central feature we are able to re-
strict the necessary measurements for the implementa-
tion of the designed control law on a set of easily avail-
able ones. E.g. we prohibit the occurrence of the gen-
eralized momenta p in the control law. Further, we can
even prevent certain parameters from appearing in the
input-output linearizing control law by an virtual exten-
sion of the state vector.

3.1 Input-Output Linearization with Constraints
for PCH Systems

Here we can only sketch an extension of the well known
input-output linearization method (see, e.g., [3]) pre-
sented in [7], where the multi-input case is treated too.
The key idea of this approach is to construct the deter-
mining equations of all feedback laws or, equivalently,
to find all output functions such that the input-output
map is linear and the feedback law depends on a fixed
set of measurable variables only. Towards this end, one
has to consider two sets of distributions – in the dif-
ferential geometric sense – ∆i and Λi and their involu-
tive closure ∆i + Λi. The ∆i’s give the relations for an
input-output linearizing output h and the Λi’s give the
restrictions for h in order that the undesired variables do
not appear in the control law.

We consider a single-input-single-output (SISO) PCH
system in canonical coordinates x = (q, p, z) with
G (x)T =

[
0, 0, gz̃

]
with regular gz̃ and dim (z) = 1.

The key assumption here is how the input u enters into
the system. Now, we are looking for outputs h for which
the input-output linearization results in a state feedback
law independent of the generalized momenta p. We in-
troduce the indices q̃ = 1, . . . , m, p̃ = m + 1, . . . , 2m,
z̃ = 2m+1, . . . , n and i = 1, . . . , n and e.g. span {∂q̃}
is used as an abbreviation for span {∂1, ∂2, . . . , ∂m}
where ∂j , j = 1, . . . ,m indicates the vectorfield in the
j-direction.

The application of the mentioned algorithm
(see [7]) results with the additional assumption
∂p̃

(
gz̃u − Rz̃i∂iH

)
= 0 and the extended vector field

fe = f i∂i + ∂t = ∂t +
(
J q̃p̃∂p̃H − Rq̃i∂iH

)
∂q̃ −(

J p̃q̃∂q̃H + Rp̃i∂iH
)
∂p̃ +

(
gz̃u − Rz̃i∂iH

)
∂z̃ , for

short fe = ∂t +λq̃∂q̃ −λp̃∂p̃ +λz̃∂z̃ , in the distribution
sets

∆1 = span {∂u} , ∆2 = span {∂u, ∂z̃}
and

Λ0 = span {∂t, ∂p̃} , Λ1 = span
{
∂t, ∂p̃, ∂p̃λ

q̃∂q̃

}
,

Λ2 = span
{
∂t, ∂p̃, ∂p̃λ

q̃∂q̃, ∂p̃λ
q̃∂q̃λ

q̃∂q̃, ∂p̃λ
q̃∂q̃λ

z̃∂z̃

}
.

If rank
(
∂p̃λ

q̃
)

= m then Λ1 = span {∂t, ∂p̃, ∂q̃}
and Λ2 = span

{
∂t, ∂p̃, ∂q̃, ∂p̃λ

q̃∂q̃λ
z̃∂z̃

}
. Clearly

dh
(
∆2 + Λ2

)
admits only constant outputs h. There-

fore, the maximal possible rank rmax = 1 and
∆1 + Λ1 = span {∂t, ∂u, ∂p̃, ∂q̃}, which gives ∂th = 0,
∂uh = 0 and

dh (span {∂p̃, ∂q̃}) = 0 . (13)



The first two conditions mean that h is independent
of the time and that its relative degree has to be at
least one. Condition (13) coincides with the defini-
tion of a distinguished function C – written in canon-
ical coordinates – as ∂xCJ (x) = 0, what demands
that C is a function in the invariants z only or again
dC (span {∂p̃, ∂q̃}) = 0. In other words the input-
output linearization with constrained measurements ap-
plied to PCH systems is closely related to the existence
of Casimir functions as long as the maximal possible
relative degree is one. In this case therefore, we can
give a clear physically motivated interpretation of the
output h. If rank

(
∂p̃λ

q̃
)

< m one has to investi-
gate the further distributions and a higher relative de-
gree than one becomes possible. In this case the con-
nection between constrained input-output linearization
and Casimir function is not longer obvious in the gen-
eral case.

3.2 Application to the Hydraulic Ram – Position
Control without Velocity Measurement

We directly obtain ∆1 + Λ1 =
span

{
∂t, ∂qv

, ∂pp
, ∂xp

}
and ∆2 + Λ2 =

span
{
∂t, ∂qv

, ∂pp
, ∂xp

, ∂m

}
for the SAP. Clearly

the maximal possible rank is rmax = 1. Therefore the
IO-linearizing output has to be of the form h = f (m).
Of course, this output has relative degree one and
the resulting system can be stabilized with standard
linear techniques. Or, one can perform an IDA-PBC
controller design with the desired Hamiltonian

Hd =
c (xp − xp,e)

2

2
+

p2
p

2mp
+ Γ

(
E ln

(
m

me

))2

+ EA

∫ xp−xp,e

0

ln
(

Vp + A (xp,e + x)
Vp + Axp,e

)
dx

with the prescribed equilibrium [xp,e, 0,me]
T and the

desired structure and dissipation matrices in the corre-
sponding coordinates

Jd =


 0 1 0

−1 0 β
0 −β 0


 , Rd =


 0 0 0

0 d −β

0 −β m2α
2E2Γ




with β = mA
4EΓ and Γ = 1m5N−1 which leads to the

control law (already in sensor coordinates)

qv = −α (Vp + Axp)
(

ln
(

Vp + Axp

Vp + Axp,e

)
+

1
E

(p1 − p1,e)
)

,

which stabilizes the closed loop asymptotically. The de-
sired Hamiltonian Hd is derived from the original H
mainly by the neglect of a cross term in xp and m. We
want to point out, that the same control law can be ob-
tained be the input-output linearization with constraints.
This connection to PCH systems gives an explanation
for the robustness of the control law.

Nevertheless, this control law first of all needs the mea-
surement of the pressure p1 and secondly the stiffness c
of the spring must be known. To overcome this partial
drawback, a closer look on the system unveils that the
system dynamics can be decomposed into the behavior
along a slow and a fast manifold. A further inspection
shows that p1 − p1,e does only appear as a small pertur-
bation term due to the smallness of αE−1. Again, this
term can be given a nice physical meaning. Namely,
it is nothing else than a laminar leakage flow towards
a chamber at constant pressure p1,e with a position de-
pendent leakage coefficient αE−1 (Vp + Axp). Never-
theless, the challenging question is if this term can be
neglected without destroying the excellent behavior of
the IDA-PBC controller. An answer concerning the sta-
bility has already been given in [4] where the reduced
version of the control law

qv = −α (Vp + Axp) ln
(

Vp + Axp

Vp + Axp,e

)
(14)

had been developed by pure differential geometric
methods and where a proof of stability for the reduced
control law can be found, too.

This control law has been already implemented many
times by our industrial partner in steel manufacturing
plants as the inner most position control loop. There,
two rolls have to be pressed one against the other in or-
der to achieve the desired strip thickness. Due to the
heuristic character of the so called roll force models,
which try to establish a relation between the roll force
and some other quantities (e.g., entry and exit thick-
nesses of the strip, stiffness of the strip, strip tensions,
etc.), the load model for the actuator is hardly available
in a simple manner. This load, which the hydraulic pis-
ton is acting on, can be modelled with sufficient accu-
racy by a linear spring and a constant force, because for
a high strip quality the quantities of the roll force model
have to be held approximately constant.

Some measurements taken from a steel rolling mill at a
plant of the Bethlehem Steel Corporation (Bethlehem,
Pennsylvania) can be seen in (fig 2). The working rolls
of the mill stand are in touch and rotate. One can see
one upward and one downward step in position with
different external loads. The position signals are nearly
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Figure 2: Step responses of the nonlinear controller at different loads.

equal for different loads, whereas the valve spool posi-
tion shows, that the nonlinearity is compensated well by
the control law. The noise due to quantization is about
1.1 µm.

Remark: If the hydraulic valve is not already servo
compensated, this has to be achieved by an extension
of the control law and for this task the measurement of
the pressure becomes unavoidable.

4 Conclusions

We have shown how hydraulic actuators fit into the lan-
guage of PCH systems. Even if that has been demon-
strated on quite a simple example, it should have be-
come clear how this has to be done for more general
hydraulic equipment. The connection of a refinement
of the well known input-output linearization with the
Casimir functions of the PCH perspective has been es-
tablished in this paper. This method has been used to
motivate a position control law for a single acting hy-
draulic ram. Finally we have been able to present some
measurements from a real plant – a steel rolling mill.
We do not want to withhold the fact, that the control
law has already become a quasi standard for the control
of hydraulic actuators for our industrial partner.

The field for future research is quite large. On the one
hand the possibilities of the structural properties do not
seem to be exploited by now. E.g., the structural proper-
ties of the achieved description can bee used for the sta-
bility analysis of the plant. Therefore, the mathematical
background, which has been only touched in this contri-
bution, is worth further reading. On the other hand the
presented treatment can be applied to hydraulic valves,
drives and so on.
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