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Abstract 

This work describes the application of a Min-Max predictive 
controller to a control laboratory plant. Min-max formulations 
of Model Based Predictive Control (MBPC) are one of the 
possible approaches in the literature to deal with the control 
of plants subject to bounded uncertainties. One of the 
drawbacks of Min-Max MBPC is the amount of calculation 
required to find a control sequence. The controller used in this 
paper is relatively efficient numerically: the control sequence 
is calculated solving a linear programming problem with a 
reasonable number of constraints. This allows the calculation 
time to be small enough to apply the controller to reasonably 
fast real systems. The Min-Max MBPC was tested on-line in 
a two-tank laboratory plant under different working situations 
to check the robustness, stability and general performance of 
the designed controller. The results are quite encouraging.  

1 Introduction 

MBPC is an advanced control strategy that has reached great 
acceptance both in industry and in academia. There are 
several reasons for this popularity: the basic ideas are easy to 
follow and these techniques have been successfully applied to 
rather different processes. Moreover, MIMO formulations and 
the inclusion of constraints on the variables of interest are 
straightforward.  

However, there is a drawback that appears many times in the 
literature: the need of stability and robustness results. Of 
course, there are interesting results  that have appear during 
the last years giving an answer to this requirement ([4], [6], 
[7], [8], [12]). 

One of the possible approaches followed to obtain the desired 
stability and robustness in predictive control is the Min-Max 
approach. A Min-Max formulation of MBPC involves the 
minimization of the maximum of the cost function that 
defines the error between the predicted output sequence and 
the reference trajectory with respect to the control sequence 

(or the rate of variation of the control sequence). Depending 
on how this is done, different Min-Max predictive controllers 
have been proposed. 

Min-Max MBPC is a robust predictive control strategy, the 
main drawback that can be pointed out is the computational 
burden and the difficulty of using closed-loop information to 
reduce conservativeness. Different authors ([1], [2], [3], [6], 
among others) have proposed ways to reduce to the Min-Max 
computational effort. 

Campo and Morari [6] pioneered a Min-Max predictive 
controller with an ∞-norm based criterion. They transformed 
the min-max problem into a linear program (LP). 
Unfortunately the number of constraints could be large. 
Allwright and Papavasillou [2] developed a different LP, with 
a smaller number of constraints, for solving the same min-
max problem. Kim and Kwon [9] gave an interesting solution 
to the Min-Max predictive control problem: the control law is 
explicitly obtained. From a computational point of view this 
is very fast, but there are no constraints on the input or output 
variables. 

The Min-Max Model Predictive Controller by Álamo et al. 
[1] calculates rather fast the control to be applied, but, again, 
no constraints are considered. The work by Ramírez and 
Camacho [13] is interesting in two ways: it is one of the few 
applications to a real process and the numerical approach is 
rather innovative. But as the authors remarked in the 
conclusions, further work should be done to include 
constraints.  

Megías et al. [12] implemented a quasi-infinite horizon 1-
norm GPC combined with a global uncertainty description 
and an uncertainty band-updating procedure such that only a 
LP problem is solved to compute the control law. 

The approach followed in this paper is an extension of the one 
presented by Allwright in [3]. The reasons to select this 
approach were: constraints are considered, a simple prediction 
model is used and the Min-Max problem is solved as a LP 
problem. Taking [3] as a starting point, some features have 
been made to obtain better results for a real plant. 
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It is clear conceptually that this type of min-max approach 
leads to very conservative control policies. Nevertheless we 
thought it important to see what actually happens when such 
policies are applied to laboratory equipment, as a starting 
point for robustness studies. 

The paper is structured as follows: section 2 gives an 
introduction to the Min-Max predictive control technique 
used, section 3 describes the two-tanks plant where the 
method has been applied, section 4 presents results from the 
implementation, and finally some conclusions are given and 
future work is discussed. 

2 Min-Max Model Predictive Control 

Model Based Predictive Control [5][11] is a control strategy 
based on the explicit use of a model to predict the process 
output over a period of time. At each sampling time the future 
control signals are calculated by minimization of a cost 
function, which is usually defined as a weighted combination 
of tracking errors and control variations. A receding control 
horizon technique is normally applied: the calculations are 
repeated every sampling time, to take into account the 
difference between the predicted value and the measured 
value. 

Many of the formulations of MBPC cannot guarantee a robust 
behaviour when there mismatches between the prediction 
model and the plant or under the presence of disturbances. 
Min-Max MBPC can deal with these problems. As has been 
pointed out above, the presented in this paper is based on the 
Min-Max MBPC of [3] with some changes to improve the 
performance and reduce the computational time when 
working on a real system.  

The prediction model from [3] has output at time k+l, where k 
denotes  the present time, given by 
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and the desired future output at time k+l is sk+l. 

The min max problem solved at each ‘present time’ k in order 
to implement the receding horizon control law is:  
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For the application described here, the above formulation has 
been modified in the following ways. 

1 The prediction and control horizons have been allowed to 
be different, instead of identical. This enables a reduction 
in the number of variables and the computation time and 
also allows less constrained responses to be accepted. 

2 The cost interval has changed from {1:M}:={1,2, …, M} 
to {N1,N2} so that it is possible to ignore the system 
response for times k+1, …, k+ N1-1 which is very useful 
when, for example, the system has an initial inverse 
response. 

3 In the algoritm of  [3] for solving the min max problem, 
an important step involves writing iHξ  as 
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4 Constraints on the rate of change 1−+++ −=∆ lklklk uuu  
and 

2112 2 −+−++−+++ +−=∆−∆=∆ lklklklklklk uuuuuu  of 
the input have been introduced. These two types of 
constraints allow to take into account the variations of the 
control signal. 

5 The desired future output s will be referred as reference 
trajectory and it can be calculated in different ways. The 
approach followed in this work is to determine it along 
the prediction horizon as a first order filter: sk+l=α sk+l-

1+(1-α)rk+l  and sk=yk. Where r is the desired future 
output or set-point, this value can be constant or variable 
along the prediction horizon. The range of α is 0<α≤1. 
The closer to 1, the faster the output response. The closer 
to 0, the slower the output response. 



 

6 Plant description 

The plant is located at the Department of Systems 
Engineering and Automatic Control of the University of 
Valladolid, Spain. As depicted in Figure 1, the process is 
composed of two tanks (height: 800 millimeters; internal 
diameter: 94 millimeters). The water is pumped 
independently to both of them. The control signals are the 
pumps flow rates Q1 and Q2. The liquid leaves the tanks by 
gravity from outlets near the bottom of the tanks with flow 
rates q1 and q2. There are additional outlets that connect the 
tanks via a short pipe. The liquid levels in the tanks are 
measured by capacitive sensors ABB KENT Taylor, model 
II80LS. The pumps are FLOJET 4405-343, 24V/2-4Amp. 
The data acquisition card is a Measurement Computing 
CIODAS16. Figure 2 is a photo of the real plant. 
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Figure 1: Plant scheme 

 

Figure 2: Two-tanks laboratory plant 

 
Different experiments were carried out to identify linear 
models at different operating points. The identification of the 
system gave very good results as it can be seen in Figure 3. 
This graph shows both the real and the model data 
corresponding to the level of the first tank.  
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Figure 3: Measured and simulated model output 

The variations in the steady state gain in the models over the 
range of operating points are: 
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The variations in the settling time (in seconds) are:  
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7 Experimental results 

The closed-loop experiments were carried out using a PC 
running at 600MHz and with 64 Mb of memory. Although the 
machine is not state-of-the-art, the speed of the calculations 
was acceptable.  

The system has a time constant of 30 seconds, approximately 
and the sampling time considered was 2.5 seconds, i.e., every 
2.5 seconds a new control signal was sent to the plant.  

Different experiments were carried out to check the 
robustness and conservativeness of the Min-Max controller at 
different operating points, with varying uncertainty sizes and 
tuning parameters. The causes of the uncertainty were the 
variations in the dynamic behaviour with the operating point 
and changes in the inlet flow of pH.  

To compare the effect of these variations the following set-
points changes were applied. The tank 1 set-point was set to 
55 centimeters and when t=400 seconds it was changed to 40 
cm. The set-point of the second tank remained constant for 
the duration of the experiment and equal to 60 cm. In both 
cases, the set-points were fixed far from the operating 
points.Figure 4, Figure 5 and Figure 6 show the experimental 
results.  



The order in which variables are shown is always the same: 
the first plot is the level in the first tank and its set-point, the 
second one represents the second tank and the last one is the 
evolution of the two input variables. 

The main tuning parameters are:  

� N1=2 

� N2=12 

� Nu=5 

� α=0.5 
The input constraints are selected to be:  

� umax = [100 100] 

� umin = [0 0] 

� ∆umax = [10 10] 

� ∆umin = [-10 -10] 

� ∆2umax = [5 5] 

� ∆2umin = [-5 -5].  

The output constraints are set between 10% and 90% of the 
maximum level. 

The aim of the experiment shown in Figure 5 was to illustrate 
that when working far from the nominal point, the control 
results are not good if only one model and no uncertainty 
were considered. The system is working fully coupled. The 
results show overshoots and great disturbances between 
loops. We can observe that the system response is rather fast 
and accurate regarding the steady state. Nevertheless, due to 
the coupling there is a rather strong disturbance in the second 
output every time there is a change in the set-point of the first 
tank. 

The tuning parameters and limits considered in the second 
experiment (¡Error! No se encuentra el origen de la 
referencia.) are the same as in the previous one. Now, there 
is only one model, but there is uncertainty: 

4.1 ,6.0 maxmin == ξξ . The graphs show a slower, but more 
robust system response. The control efforts are smaller. We 
can say that the overall response is better than in the first 
experiment. But, why does this happen?. The reason is that as 
uncertainty has been introduced in the model, the resulting 
controller is more robust, so the controlled signals are slower, 
but there are smaller disturbances.              
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Figure 4: One model, without uncertainty 
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Figure 5: One model with uncertainty 



 

The last experiment (Figure 6) shown consisted in 
considering two models and uncertainty in both of them. 
Maintaining the previous settings, the uncertainty of the 
second system is 2.1 ,8.0 maxmin == ξξ . The response is 
slower than in the second experiment, the changes of the 
control variables are even softener and the second level 
deviations from the set-point are very small. This is the most 
robust controller of the three presented in the paper. 

8 Conclusions 

This paper has presented the application of a Min-Max 
MBPC  that is related to the ground-breaking work of 
Campo and Morari [6] to a laboratory plant. Taking [3] as 
starting point, some modifications have been made in order 
to make the controller suitable for an on-line 
implementation. 

The experiments carried out showed that the controller 
improves the robustness of the controlled system and that is 
possible to apply this technique to real processes.   

Future work includes the use of different prediction models: 
step response or transfer function and comparisons with 
other robust controller for constrained plant, with particular 
emphasis on the conservativeness of the resulting control 
policies. 
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Figure 6: Two models with uncertainty 
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