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Keywords: Neural networks, Predictive control, System iderfield of intensive research, but so far no self-contained model

tification, Linearization, Laser beam welding of the process covering all necessary details is found. As the
dominating system input variables are welding speed and laser
Abstract power, these are suited for controlling the penetration depth. In

3D laser beam welding the welding speed depends on the path
Welding with laser beams is an innovative technique, whighanning, the machine dynamics and perhaps a seam tracking
leads to higher penetration depth and a narrower seam c@ystem and can therefore not be used for controlling purposes.
pared to conventional welding techniques. One significant cfihe laser power, however, is instantaneously alterable; there-
terion of the quality of a junction is the penetration deptfiore it can be used as the manipulated variable. Further input
Within this article a predictive control scheme is presented theariables mentioned above can be kept constant. As the future
optimises the process’ input laser power by taking the futuneelding speed is known from the path planning, the use of a
welding speed into account. For modelling the non-linear prpredictive controller which takes future variations of the weld-
cess an Artificial Neural Networkd\N) is applied. TheZPC- ing speed into account seems appropriate.

alggrlthm with a linear mpdel obtained .by Instantaneous l"l(s the penetration depth cannot be measured without destroy-
eaT'Z_a“O” of the ”e‘_W‘?”‘ is used. Fpr this reason, an ex@”‘?ﬁ& the workpiece, the intensity of the plasma emission is used
t_ralnlng of the ANN is m_troduced. First reSUIt_S of the apphcaés the controlled variable instead. Temporally and spatially re-
tion on a real laser welding system are described. solved observations of the keyhole are acquired with a CCD-
camera and interpreted using physical insight [7],[14]. The
1 Introduction camera is mounted directly on the welding head and its op-

tical path goes coaxial with the laser beam path through the

Welding with laser beams is characterized by high specifige,ssing optic. The design of the system allows an easy adap-
power input into the workpiece by focussing the laser beaggn to both CQ and Nd:YAG laser optics.
in the vicinity of the workpiece surface. Thereby the material

is not only molten, but also vaporized forming a capillary with this article, a predictive controller taking the welding speed
plasma in it. The result is a narrow seam with a higher penettato account is described [1]. As the fast, complex, non-linear
tion depth compared to conventional welding techniques as ff&cess cannot be analytically described in a suitable way for
laser beam can penetrate the material through the capillary 845C. experimental system identification is carried out to ob-
ily. As a result, a minimum of thermal stress of the workpied@in & model for the controller.
can be maintained. From a control engineer’s point of view
laser beam welding is a complex multi-dimensional problerp. |dentification
Besides process parameters (e.g. laser power, welding speed,
position of the focus, angle of incidence in 3D material proFhe reduced data-driven model of the process has the two input
cessing, inert gas) also geometry parameters of the joint (e/gfiables laser beam powgrand welding speed. Its output
material thickness, gap, surface properties) influence the sed@fiable is the (measurable) intensity of the plasma emisgsion
quality. As the specific energy applied to the procegs/is, the process

) . is expected to show non-linear behaviour. Identification of two
Simple models of the process can be obtained from energy hialz » 51somodels fronp to I andw to I, respectively, will not

ances and approm_mate the .Stat'c behaviour of th? Process, éult in a suitable model for the controller. To cover the whole
detailed mathematical description of the process is eXtrengerating range, a global non-linear model is needed. During

difficult as it has to take into account the sub-processes

diati b . d multile reflecti h qucti erent experiments measurements of the laser beam power
lation absorption and multiple reflections, heat con UCI'OE,' the welding speed and the filtered intensity of the plasma

melting, hydrodynamics, evaporation and optical emission Qf iccionr were collected
plasma [14]. Analytical modelling of laser beam welding is a '
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Figure 1: Process behaviour
are given as a regression vector

e(t+k) = [ p(t+k—d)
Figure (1) shows a composition of different measurements of p(t+k—d—nb+1)
the dynamic process behaviour as deviations from an operating u(t+k—d) e )
point. Using a calibration curve, the measured intensity can be v(t+k—d—nb+1)
mapped to the penetration depth to describe the quasi-steady {(t +hk-1) e
penetration depth with time-averaged measurements. I(t +k — na) J*

Because of their approximation capabilities Artificial Neu which the signalg are measurements for time arguments
ral Networks are well suited for system identification whenegative with respect t¢ and predictions otherwise. The
a black-box model of a non-linear dynamic process is meightwfg denotes the connection of thi neuron in the:ith

be derived from measured data. In 1990, Narenda akager to itsjth input.

Parathasarathy proposed the use of neural networks for sys
identification and control [8]. Nowadays, neural networks al
established as approximators in many fields. A widely-us
type of network is the Multi-Layer Perceptron netwoML(P)

E%ﬂ]g neural networks in this framework means that two prob-
[&ms have to be dealt with: finding the right regression vector
the mapping (which means determining the system order)

o . : . and finding a sufficient number of hidden neurons and deter-
consisting of one hidden layer of neurons with non-linear acfline optimal weights. The first problem is also known in lin-

;ﬁm? dfcljmctllons and one OUtE[)ﬁtt:?yir W|thbl|r|1.eatr neurcins.t!:ggr system identification theory, the latter is a typical neural
€ hidden 1ayer neurons wi € nyperbolic tangent activga o training task. Starting with a considerably higher sys-

tion function are frequently used. Non-linear time discrete dYém order than the applied filter has, time serieg,of and I
namic systems can often be represented t_)y non-linear d'ﬁ\?fére arranged as regressors and presented to the netwdrk as
ence equations. Therefore a tapped delay linebdsy at least

J les delaved tem inout variabl v at least training patterns. Using a Levenberg-Marquardt algorithm to
sampies delayed system input vanables andoy at 1east oy ot the network parameters, the one-step-ahead-prediction
one sample delayed output variables is used. These so-caﬂﬁlgl

. . ris minimized (also referred to Bsediction Error Method
NARXstrgctgr_eS (Non-linear AutoRegreSSNe, e)_(oge_n_ous_ Do corresponds to figure (2), NARX).
put) are intuitively deduced from linear system identification
[15], [9] and with neural networks often used to represent noA-number ofS; = 8 neurons in the hidden layer gave good
linear dynamic systems besides more complex structures wigisults during the training. To obtain a parsimonious model
internal dynamics. The resulting neural network has the strighich does not tend to overfitting, the last delay terms were
ture depicted in figure (2). Depending on which output signaldsiccessively pruned and the network was retrained until a re-
fed back, one distinguishes between the serial-pardleR)y maining system order ota = 2, nb = 3 andd = 1 for both
and the parallelNOBE) structure. For predicting more than onsystem inputs was left. Further pruning of network inputs de-
step ahead, the NARX-structure cannot be used, and so for argased considerably the network performance. For further in-
in the controller the NOE-model is mainly applied. Neverthdormation about structure selection see e.g. [10] and [6]. If
less the NARX-structure can be used during the identificatiothe neural network model is to be used as a multi-step-ahead-
predictor, like in the case of a predictive controller, some addi-
d. : o :
tional properties of the model besides input- to output-mapping
by might be interesting. If one e.g. can claim the process to be
natond identified to be stable, or physical insight allows to specify a

Sl ” ” H
I(t)= Z“’%j ~tanh ( Z w}i%(t) + b}) L) range for the "local” gains of the process, also the model should
j=1

The mapping of the network at discrete titmean be describe

show these properties. In the following it is shown how this can
be taken into account during the training as a NARX-structure.

i=1

where the network inputs for the prediction of time instapt:  As for nonlinear systems properties like gain, damping and



even stability might vary with respect to the operating pointyhich includes the network prediction errar@, 0) = 1(t) —
a local linearization allows an interpretation of the model. BJ(¢, 9) of the respective data setlepending on the actual net-
Taylor series expansion at timeone obtains as a linear ap-work weights and bias valués

proximation of eq. (1) To extend functional (10) and by this formulate further goals of

the training, some additional conditions are introduced. This is

It) ~ I(r)+ aal(t (p1(t) —1(7)) illustrated by the demand for stable local models. For e.g. a
pi(t) =1 second-order system two conditions have to be fulfilled by the
al(t) denominator coefficients according to Schur-Cohn-Jury [5]
+ t)—par)+... . (3)
aoa(t)|, (P20~ o i —l<ap<l (11)
. 1 . . 6 : —1l—ay<a; <azx+1 . (12)
Usingo; (t) to denote the outputs of the hidden layer, the partial
derivatives From conditiona one can derive a measudg showing the
. s violation of the condition:
oI(t) _ - 2 1 2 1
don () = Z;wlj : (1 - <0j (t)) ) T Wik (4) as>1 b =a3—1 (13)
7= a, < —1 ba=as+1 . (14)

are easily calculated from the non-linear prediction at time i

stantt — r and one obtains (cp. eq. (2)) Anhalogous a measu®; is found if the coefficients of the ac-

tual linearization violate conditio. Now the functional can

dI(t) . be written in an extended form
bi = ————, i=0...nb—1, (5) N
8f(t) . 2N — I al\ls /3 5
¢ = ——————, t=0...nb—-1 (6) t=1
Ov(t—d—1)

whereé,, anddg only contribute to the functional if a lineariza-
and tion leads to a violation. The Levenberg-Marquardt-Algorithm
. is a combination of Gauss-Newton-Algorithm and gradient de-
-~ o1(t) i=1.. na @) scent [10], where in eq. (15) the prediction error and any vio-
oI(t —i)’ o lation due to the actual choice of the parametérare used in

a linearized formy).

a;

as coefficients for a linear ARX model and thereby

T
) ~ =Y ad(t—iy+ Y biplt —d—1) | o 4
i=1 i=0 = (t,0") — T (t,0")(0 — 6Y)
nb—1 T
. - i dog(t, 6 i
b el d=i) e ® G = aee) s | 2g] 0-0)
= 6,(t,0") — pF(t,0")(0 — 6 16
approximates eq. (1) with £(6,69) = o (1, 0°)( ) (16)
- For ., applies for instance
e(r) = I(r)+ all(r—i)— bip(t —d—1 . dé.(t,0 das(t, 6
) = I+l =)= 3 bl ) .y = S0 da0)
- ”il colr —d—1i) (@ With (inthis case set = 2)
i=0 % = 0 , (18)
being the difference between non-linear and linearized model 9
at7 resulting from the bias values of the network. 6%? = Wik [(0})2 — 1} , (19)
Some properties like stability and damping can be read off 8a’] )
the coefficientsu;, as they represent the denominator of the 8717]16 = 2w} ;W] 4 10) (1 — (0}) ) . (20)
z-transfer function. 5 J 5
Qg a .
The Levenberg-Marquardt-Algorithm is often used during the &Uif = be% k#nb+i (21)
identification to minimize the functional 5 Gk J 5
ak 2 ay,
v o = @) -1 Gre @
V() = - S e(t,0)? (10) Ouwj; %
_2Nt:1 ’ k=nb+i



as contributions te,,. The respective argume(tt ¢°) indicat- a smoother control action that is not that strongly dependent on
ing data set in training iteration; has dropped for the sake ofthe properties of a single linearized model during one sample
simplicity. step.

By usingé, 0, and(fg according to eq.(16) now the functionalThe coefficients of the linearized model can be written in poly-
V+ is used to approximate eg.(15). It can easily be differenttomial form
ated with respect t6:

. AgY) = [T+aiq ...+ anag ™ (25)
. dv _ _ n
GO) = —g o B(g") = [bo+big o +buag ™ (26)
| N . ‘ Cg") = [eoteaqg .. +emworg ™ (27)
= ——= ) Y(t,0")e(t, 0
N ; (8,6)e(t, 6 in the time shift operatog in order to use thé& PC-algorithm
o (£, 096, (£,07) + pa(t, 0116 4(t, 0 23 [3, 4]. TheG PC-algorithm exploits the linearity of the model
* p2(~+ J0a(t:6) + p5(t,67)95(2, 67) (23) to separate the prediction of the controlled variable into two
H() = dv lo: parts. The first part, the so-called "free” respodselescribes
do? the estimated behaviour of the controlled variable when the
; T ; ;.0 manipulated variable remains constant. The second part rep-
- N Z (E,0°) (8, 0°)" + palt, 0%)palt, 0") resents the estimated future impact of a change in the manipu-
=1 - lated variable. The prediction of the controlled variable for the
+ pp(t,0)ps(t,0")" . (24) time instants + d. ..t + N, can then be written as
By this a modified gradient/(¢*) and Hessiarf (6%) for the [=TP+ (V) (28)

Levenberg-Marquardt-algorithm are found, that allow by mini-
mizing eq.(15) to find a similar input-to-output-mapping taking,iin,
the desired properties into account. Clearly this method cannot
supersede e.g. a stability proof for the global NOE-structure in
the Lyapunov sense as it only consideres the linearized mod-
els of the training data, but it revealed to be a quite convenient p — [Ap(t) Ap(t+1)...Ap(t + N, — 1)
enhancement for the identification.

~>
Il

It+d)I(t+d+1).. f(t+N2)}T (29)

)" (30)
[Av(t) Av(t+1) ... Av(t + Ny —d)]T (31)
= [pt+d)p(t+d+1)...0(t+N)]"  (32)

o <h
|

3 Predictive Control

or the presented case of laser beam welding the known future
locity can be used in the calculation®fis changing system
ut, because only the manipulated variable remains constant

Having an internal controller's model capable of modeIImE
non-linear dynamic processes allows on one hand a wider d
erating range of the controller, on the other hand a demarioP
ing non-linear, perhaps constrained optimization problem h'g ® and is modelled by P> separately.

to be solved at every time instant. In e.g. [16] non-linedlo determine the cost of the future manipulated variable, a
optimization is used with a neural network model applying fanctional is set up which includes the estimated future con-
quasi-Newton algorithm, in [2], also feedback linearization igol deviationr(t + i) — I(¢ + i) as well as the control efforts
used to ease the optimization problem. In e.g. [17], neural ngtp(t + 1),

works were also applied to learn the optimal solution instead of

computing it analytically. As the computational burden is still o N2 .

high for those approaches and the time behaviour might even ~ J(t, PV, R) = > [r(t+i) — I(t+ )]

be non-deterministic, a quite intuitive way, described in [10] as =Ny

approximate predictive controAPC) is followed for this ap- Nu

plication as short sample times of 2 ms are required due to the + p) [Ap(t+i-1 . (33)
fast process dynamics. The approximate predictive controller i=1

weightingp can be used to affect the speed of the con-

YWlller. Moderate settings lead to a smooth controller response
network and the deterministic behaviour of a linear optimiz

tion are then combined.

uses a linear predictor. By instantaneous Ilneanzatlon at eﬁb

And by this compensate poorly fitting linearized models while
too high settings decrease the overall performance. Addition-
The static non-linear behaviour will be covered quite exactly @y, low pass filtering of the coefficients of the linearized mod-
the linearized model, while depending on the degree of nonligls can attenuate the effects of measurement noise. By combin-
earity transients will only be approximated. Therefore, care hiatg the future reference into the vectBrand minimizing the

to be taken in trusting the "optimal’ solution that can only b#inctional the optimal solution

valid for the linear model. Setting the weighting factoof fu- L

ture control changes in eq. (33) to a relative high value ensures Pop. = [[1T1 + pIy,] TT(R-®) (34)



for the manipulated variable laser power is found. the desired penetration depth. The latter is mapped to a de-

. . S sired intensity. The motion control loop of the welding system
If constraints are present in the minimization of eq.(33), a _, . . . ) )
uadratic optimization problem has to be solved, and the cg_n_talns th_e Qr|ve dynamllcs and shows f|rst~o_rder lagging be-
q ' aviour. This is also considered by a prefiltefton the MPC.

lution acgord_mg to eq.(34) might not be. feasible. For a sta MPC calculates the optimal laser power taking the future
process like in the presented case, besides state-of-the-art QF-. . :
elding speed into account and pasggs as the first element

solvers the pne-degree-of-free_dom algorltlmNEDO_F) [12]. f Preas. in €0.(37) as actual command value to the cascaded
can be applied to overcome this problem. It is outlined brief Fylser power control loop

in the following. The main idea consist of a combination o

two control strategies: a guaranteed feasible, slowly converg- Disturbances

ing one and a fast, unconstrained "optimal” one. The latter is Motion control v 43 Penctration depth

represented in this case by eq.(34), while the first is chosen to Welding Process Intensity of radiation

be an open loop control strategy based on an inverse static map-| >

ping. As the identified network was trained with a constraint on Power control t)am,zcmf

the local laser power gain to be positive, a second, static ANN O] i e

can be trained afterwards which performs a mapping Intensity I 5] of intensity
Pytar. = ANN (Vactuala I referencé . (35) st T Motion-

lanning /

By using an MLP with an output neuron with saturation, the Pref. M| atibrason 4 o e

feasibility of the constant solutioRs4; is guaranteed, and since g reh future

the process is stable, the controlled variable will tend towards I et

the reference, allowing a steady control deviation caused by

model offset and disturbances. Now the optimal control se- Figure 3: Predictive control scheme

quencePyp. in absolute values is given by
_ -1\ P
Popt. = (1+q7) Popt (36) For practical application, a conservatively tun@d-controller
is operated in parallel to the predictive controller and is
switched on if the process is leaving the domain covered by
the training data.

and a violation of the constraintByin, Pmnax. Of dimension
N, x 1 on the controller output can be avoided by choosing

Preas. = (1 - Oé)Popt. + aPsar 0<a <1 (37)

with a minimal value of the single degree of freedoem By 4 Application

introducing The described predictive control scheme has been implemented

V= [ Pstat. — Fopt. } (38) on an open OSACA-based control environment [11]. A CCD-
—Pstat. + Fopt. Camera [7] was used to observe the plasma. A PC-system
and is processing the images from the camera and calculating the
W — { Prax. — Popt. ] (39) intensity value corresponding to the actual penetration depth.
— Prin. + Popt. This intensity value, the welding speed and the desired pene-

the problem is reformulated as tration depth is then used to perform the control task. Various
experiments have been conducted to investigate the predictive

min(a) st oV <W (40) controller’s performance. As one example the compensation of

a step-like change of the welding speed by 1.3 m/min is shown.

which can easily be solved by initializing= 0 and setting  Figure (4) shows the change of the measured intersithe
W (i) welding speed and the laser power without controller. The

- ) i =1...2N, (41) longitudinal section of the weld shows the change in the pene-
V() tration depth. Figure (5) shows the measured intensity, welding
which has to be evaluated onlyi¥ (i) < 0, i.e. a constraint speed, laser power and a longitudinal section for an experiment
violation occurs. Clearly itv < 1 — which can be achieved With controller. Note that the penetration depth is almost con-
with sensible settings for the controller — the integral action §ant. The fluctuations in the penetration depth and the mea-
the original GPC is maintained and a steady control deviati§Hrements can be compared with the fluctuations in figure (4).
vanishes. Rate constraints and constraints on the controlled
variable can be included in a similar way. For further reading

see [12], [13]. 5 Summary

With this approach for the predictive controller, the fOIIOWir‘E‘Welding with laser beams is an innovative technique for joining

SFheme rgsults for the closed cqntrol loop. Thg motion plal%'aterials which experiences a strong increase in a wide variety
ning provides reference trajectories for the welding speed and

a = max (a,
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Figure 5: Plasma intensity and penetration depth for a con- )
[11] J. Ortmann, S. Kaierle, E.W. Kreutz, R. Poprawe, A. Kah-

trolled weld with change in welding speed

[7]

(8]

9]

(10]

of industrial applications (e.g. manufacturing car bodies) b, 2]
cause of high welding speed and the good quality of the seam.
As it is in fact a complex process, means and ways for moni-
toring and closed loop control have to be applied. Within this
article, a predictive control scheme using a dynamic neural nEl3]
work as process model is introduced. The laser power is used to
affect the process, taking the welding speed into consideration.
For monitoring purposes a CCD-camera is used, calculating ['iﬁ]
penetration depth from the intensity of the spatially and tempo-
rally resolved emission of the plasma. A NARX-MLP-network
with external dynamics is used to identify the process and pro-
vide parameters for the linear predictor of the controller. Addi-
tional attention should be paid to the properties of the identifiétpl
model, and an approach to extend the training during the iden-
tification is introduced. Thereby a non-linear neural network
model and a well-known linear predictive control scheme are
combined and used to control a very fast, non-linear proces$s ]
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