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Abstract

Welding with laser beams is an innovative technique, which
leads to higher penetration depth and a narrower seam com-
pared to conventional welding techniques. One significant cri-
terion of the quality of a junction is the penetration depth.
Within this article a predictive control scheme is presented that
optimises the process’ input laser power by taking the future
welding speed into account. For modelling the non-linear pro-
cess an Artificial Neural Network (ANN) is applied. TheGPC-
algorithm with a linear model obtained by instantaneous lin-
earization of the network is used. For this reason, an extended
training of the ANN is introduced. First results of the applica-
tion on a real laser welding system are described.

1 Introduction

Welding with laser beams is characterized by high specific
power input into the workpiece by focussing the laser beam
in the vicinity of the workpiece surface. Thereby the material
is not only molten, but also vaporized forming a capillary with
plasma in it. The result is a narrow seam with a higher penetra-
tion depth compared to conventional welding techniques as the
laser beam can penetrate the material through the capillary eas-
ily. As a result, a minimum of thermal stress of the workpiece
can be maintained. From a control engineer’s point of view
laser beam welding is a complex multi-dimensional problem.
Besides process parameters (e.g. laser power, welding speed,
position of the focus, angle of incidence in 3D material pro-
cessing, inert gas) also geometry parameters of the joint (e.g.
material thickness, gap, surface properties) influence the seam
quality.

Simple models of the process can be obtained from energy bal-
ances and approximate the static behaviour of the process. A
detailed mathematical description of the process is extremely
difficult as it has to take into account the sub-processes ra-
diation absorption and multiple reflections, heat conduction,
melting, hydrodynamics, evaporation and optical emission of
plasma [14]. Analytical modelling of laser beam welding is a

field of intensive research, but so far no self-contained model
of the process covering all necessary details is found. As the
dominating system input variables are welding speed and laser
power, these are suited for controlling the penetration depth. In
3D laser beam welding the welding speed depends on the path
planning, the machine dynamics and perhaps a seam tracking
system and can therefore not be used for controlling purposes.
The laser power, however, is instantaneously alterable; there-
fore it can be used as the manipulated variable. Further input
variables mentioned above can be kept constant. As the future
welding speed is known from the path planning, the use of a
predictive controller which takes future variations of the weld-
ing speed into account seems appropriate.

As the penetration depth cannot be measured without destroy-
ing the workpiece, the intensity of the plasma emission is used
as the controlled variable instead. Temporally and spatially re-
solved observations of the keyhole are acquired with a CCD-
camera and interpreted using physical insight [7],[14]. The
camera is mounted directly on the welding head and its op-
tical path goes coaxial with the laser beam path through the
focussing optic. The design of the system allows an easy adap-
tion to both CO2 and Nd:YAG laser optics.

In this article, a predictive controller taking the welding speed
into account is described [1]. As the fast, complex, non-linear
process cannot be analytically described in a suitable way for
MPC, experimental system identification is carried out to ob-
tain a model for the controller.

2 Identification

The reduced data-driven model of the process has the two input
variables laser beam powerp and welding speedv. Its output
variable is the (measurable) intensity of the plasma emissionI.
As the specific energy applied to the process isp/v, the process
is expected to show non-linear behaviour. Identification of two
linearSISO-models fromp to I andv to I, respectively, will not
result in a suitable model for the controller. To cover the whole
operating range, a global non-linear model is needed. During
different experiments measurements of the laser beam power
p, the welding speedv and the filtered intensity of the plasma
emissionI were collected.
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Figure 1: Process behaviour

Figure (1) shows a composition of different measurements of
the dynamic process behaviour as deviations from an operating
point. Using a calibration curve, the measured intensity can be
mapped to the penetration depth to describe the quasi-steady
penetration depth with time-averaged measurements.

Because of their approximation capabilities Artificial Neu-
ral Networks are well suited for system identification when
a black-box model of a non-linear dynamic process is to
be derived from measured data. In 1990, Narenda and
Parathasarathy proposed the use of neural networks for system
identification and control [8]. Nowadays, neural networks are
established as approximators in many fields. A widely-used
type of network is the Multi-Layer Perceptron network (MLP)
consisting of one hidden layer of neurons with non-linear acti-
vation functions and one output layer with linear neurons. For
the hidden layer neurons with the hyperbolic tangent activa-
tion function are frequently used. Non-linear time discrete dy-
namic systems can often be represented by non-linear differ-
ence equations. Therefore a tapped delay line fornb by at least
d samples delayed system input variables andna by at least
one sample delayed output variables is used. These so-called
NARX-structures (Non-linear AutoRegressive, eXogenous in-
put) are intuitively deduced from linear system identification
[15], [9] and with neural networks often used to represent non-
linear dynamic systems besides more complex structures with
internal dynamics. The resulting neural network has the struc-
ture depicted in figure (2). Depending on which output signal is
fed back, one distinguishes between the serial-parallel (NARX)
and the parallel (NOE) structure. For predicting more than one
step ahead, the NARX-structure cannot be used, and so for use
in the controller the NOE-model is mainly applied. Neverthe-
less the NARX-structure can be used during the identification.

The mapping of the network at discrete timet can be described
by

Î(t) =
S1∑

j=1

w2
1j · tanh

(
na+2nb∑

i=1

w1
jiϕi(t) + b1

j

)
+ b2

1 (1)

where the network inputs for the prediction of time instantt+k
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Figure 2: MLP-network with external dynamics

are given as a regression vector

ϕ(t + k) = [ p(t + k − d) . . .
p(t + k − d− nb + 1)
v(t + k − d) . . .
v(t + k − d− nb + 1)
Ĩ(t + k − 1) . . .

Ĩ(t + k − na) ]T

(2)

in which the signals̃I are measurements for time arguments
negative with respect tot and predictions otherwise. The
weightwk

ij denotes the connection of theith neuron in thekth
layer to itsjth input.

Using neural networks in this framework means that two prob-
lems have to be dealt with: finding the right regression vector
for the mapping (which means determining the system order)
and finding a sufficient number of hidden neurons and deter-
mine optimal weights. The first problem is also known in lin-
ear system identification theory, the latter is a typical neural
network training task. Starting with a considerably higher sys-
tem order than the applied filter has, time series ofp, v andI
were arranged as regressors and presented to the network asN
training patterns. Using a Levenberg-Marquardt algorithm to
adjust the network parameters, the one-step-ahead-prediction
error is minimized (also referred to asPrediction Error Method
and corresponds to figure (2), NARX).

A number ofS1 = 8 neurons in the hidden layer gave good
results during the training. To obtain a parsimonious model
which does not tend to overfitting, the last delay terms were
successively pruned and the network was retrained until a re-
maining system order ofna = 2, nb = 3 andd = 1 for both
system inputs was left. Further pruning of network inputs de-
creased considerably the network performance. For further in-
formation about structure selection see e.g. [10] and [6]. If
the neural network model is to be used as a multi-step-ahead-
predictor, like in the case of a predictive controller, some addi-
tional properties of the model besides input- to output-mapping
might be interesting. If one e.g. can claim the process to be
identified to be stable, or physical insight allows to specify a
range for the ”local” gains of the process, also the model should
show these properties. In the following it is shown how this can
be taken into account during the training as a NARX-structure.

As for nonlinear systems properties like gain, damping and



even stability might vary with respect to the operating point,
a local linearization allows an interpretation of the model. By
Taylor series expansion at timeτ one obtains as a linear ap-
proximation of eq. (1)

Î(t) ≈ Î(τ) +
∂Î(t)
∂ϕ1(t)

∣∣∣∣∣
t=τ

(ϕ1(t)− ϕ1(τ))

+
∂Î(t)
∂ϕ2(t)

∣∣∣∣∣
t=τ

(ϕ2(t)− ϕ2(τ)) + . . . . (3)

Usingo1
j (t) to denote the outputs of the hidden layer, the partial

derivatives

∂Î(t)
∂ϕk(t)

=
S1∑

j=1

w2
1j ·

(
1− (

o1
j (t)

)2
)
· w1

jk (4)

are easily calculated from the non-linear prediction at time in-
stantt = τ and one obtains (cp. eq. (2))

bi =
∂Î(t)

∂p(t− d− i)
, i = 0 . . . nb− 1, (5)

ci =
∂Î(t)

∂v(t− d− i)
, i = 0 . . . nb− 1 (6)

and

ai = − ∂Î(t)
∂Ĩ(t− i)

, i = 1 . . . na (7)

as coefficients for a linear ARX model and thereby

Î(t) ≈ −
na∑

i=1

aiĨ(t− i) +
nb−1∑

i=0

bip(t− d− i)

+
nb−1∑

i=0

civ(t− d− i) + e(τ) (8)

approximates eq. (1) with

e(τ) = Î(τ) +
na∑

i=1

aiĨ(τ − i)−
nb−1∑

i=0

bip(τ − d− i)

−
nb−1∑

i=0

civ(τ − d− i) (9)

being the difference between non-linear and linearized model
at τ resulting from the bias values of the network.

Some properties like stability and damping can be read off
the coefficientsai, as they represent the denominator of the
z-transfer function.

The Levenberg-Marquardt-Algorithm is often used during the
identification to minimize the functional

V (θ) =
1

2N

N∑
t=1

ε(t, θ)2 (10)

which includes the network prediction errorsε(t, θ) = I(t) −
Î(t, θ) of the respective data sett depending on the actual net-
work weights and bias valuesθ.

To extend functional (10) and by this formulate further goals of
the training, some additional conditions are introduced. This is
illustrated by the demand for stable local models. For e.g. a
second-order system two conditions have to be fulfilled by the
denominator coefficients according to Schur-Cohn-Jury [5]

α : −1 < a2 < 1 (11)

β : −1− a2 < a1 < a2 + 1 . (12)

From conditionα one can derive a measureδα showing the
violation of the condition:

a2 > 1 : δα = a2 − 1 , (13)

a2 < −1 : δα = a2 + 1 . (14)

Analogous a measureδβ is found if the coefficients of the ac-
tual linearization violate conditionβ. Now the functional can
be written in an extended form

V +(θ) =
1

2N

N∑
t=1

ε(t, θ)2 + δα(t, θ)2 + δβ(t, θ)2 (15)

whereδα andδβ only contribute to the functional if a lineariza-
tion leads to a violation. The Levenberg-Marquardt-Algorithm
is a combination of Gauss-Newton-Algorithm and gradient de-
scent [10], where in eq. (15) the prediction error and any vio-
lation due to the actual choice of the parametersθi are used in
a linearized form(̃).

ε̃(t, θ) = ε(t, θi) +
[

dε(t, θ)
dθ

|θi

]T

(θ − θi)

= ε(t, θi)− ψT (t, θi)(θ − θi)

δ̃k(t, θ) = δk(t, θi) +
[

dδk(t, θ)
dθ

|θi

]T

(θ − θi)

= δk(t, θi)− ρT
k (t, θi)(θ − θi) (16)

For δα applies for instance

ρα(t, θi) = −dδα(t, θ)
dθ

|θi = −da2(t, θi)
dθ

(17)

with (in this case setk = 2)

∂ak

∂b2
= 0 , (18)

∂ak

∂w2
1,j

= w1
j,nb+k

[(
o1

j

)2 − 1
]

, (19)

∂ak

∂b1
j

= 2w2
1,jw

1
j,nb+ko1

j

(
1− (

o1
j

)2
)

, (20)

∂ak

∂w1
j,i

=
∂ak

∂b1
j

ϕi k 6= nb + i , (21)

∂ak

∂w1
j,i

= w2
1,j

[(
o1

j

)2 − 1
]

+
∂ak

∂b1
j

ϕi (22)

k = nb + i .



as contributions toρα. The respective argument(t, θi) indicat-
ing data sett in training iterationi has dropped for the sake of
simplicity.

By usingε̃, δ̃α andδ̃β according to eq.(16) now the functional
Ṽ + is used to approximate eq.(15). It can easily be differenti-
ated with respect toθ:

G(θi) =
dṼ +

dθ
|θi

= − 1
N

N∑
t=1

ψ(t, θi)ε(t, θi)

+ ρα(t, θi)δα(t, θi) + ρβ(t, θi)δβ(t, θi) (23)

H(θi) =
d2Ṽ +

dθ2
|θi

=
1
N

N∑
t=1

ψ(t, θi)ψ(t, θi)T + ρα(t, θi)ρα(t, θi)T

+ ρβ(t, θi)ρβ(t, θi)T . (24)

By this a modified gradientG(θi) and HessianH(θi) for the
Levenberg-Marquardt-algorithm are found, that allow by mini-
mizing eq.(15) to find a similar input-to-output-mapping taking
the desired properties into account. Clearly this method cannot
supersede e.g. a stability proof for the global NOE-structure in
the Lyapunov sense as it only consideres the linearized mod-
els of the training data, but it revealed to be a quite convenient
enhancement for the identification.

3 Predictive Control

Having an internal controller’s model capable of modelling
non-linear dynamic processes allows on one hand a wider op-
erating range of the controller, on the other hand a demand-
ing non-linear, perhaps constrained optimization problem has
to be solved at every time instant. In e.g. [16] non-linear
optimization is used with a neural network model applying a
quasi-Newton algorithm, in [2], also feedback linearization is
used to ease the optimization problem. In e.g. [17], neural net-
works were also applied to learn the optimal solution instead of
computing it analytically. As the computational burden is still
high for those approaches and the time behaviour might even
be non-deterministic, a quite intuitive way, described in [10] as
approximate predictive control (APC) is followed for this ap-
plication as short sample times of 2 ms are required due to the
fast process dynamics. The approximate predictive controller
uses a linear predictor. By instantaneous linearization at each
sample step the good approximation capabilities of the neural
network and the deterministic behaviour of a linear optimiza-
tion are then combined.

The static non-linear behaviour will be covered quite exactly by
the linearized model, while depending on the degree of nonlin-
earity transients will only be approximated. Therefore, care has
to be taken in trusting the ’optimal’ solution that can only be
valid for the linear model. Setting the weighting factorρ of fu-
ture control changes in eq. (33) to a relative high value ensures

a smoother control action that is not that strongly dependent on
the properties of a single linearized model during one sample
step.

The coefficients of the linearized model can be written in poly-
nomial form

A
(
q−1

)
=

[
1 + a1q

−1 . . . + anaq−na
]

(25)

B
(
q−1

)
=

[
b0 + b1q

−1 . . . + bnb−1q
−nb+1

]
(26)

C
(
q−1

)
=

[
c0 + c1q

−1 . . . + cnb−1q
−nb+1

]
(27)

in the time shift operatorq in order to use theGPC-algorithm
[3, 4]. TheGPC-algorithm exploits the linearity of the model
to separate the prediction of the controlled variable into two
parts. The first part, the so-called ”free” responseΦ, describes
the estimated behaviour of the controlled variable when the
manipulated variable remains constant. The second part rep-
resents the estimated future impact of a change in the manipu-
lated variable. The prediction of the controlled variable for the
time instantst + d . . . t + N2 can then be written as

Î = ΓP̃ + Φ(Ṽ ) , (28)

with

Î =
[
Î(t + d) Î(t + d + 1) . . . Î(t + N2)

]T

(29)

P̃ = [∆p(t)∆p(t + 1) . . . ∆p(t + Nu − 1)]T (30)

Ṽ = [∆v(t) ∆v(t + 1) . . . ∆v(t + N2 − d)]T (31)

Φ = [ϕ(t + d)ϕ(t + d + 1) . . . ϕ(t + N2)]
T (32)

For the presented case of laser beam welding the known future
velocity can be used in the calculation ofΦ as changing system
input, because only the manipulated variable remains constant
in Φ and is modelled byΓP̃ separately.

To determine the cost of the future manipulated variable, a
functional is set up which includes the estimated future con-
trol deviationr(t + i) − Î(t + i) as well as the control efforts
∆p(t + i),

J(t, P̃ , Ṽ , R) =
N2∑

i=N1

[r(t + i)− Î(t + i)]2

+ ρ

Nu∑

i=1

[∆p(t + i− 1)]2 . (33)

The weightingρ can be used to affect the speed of the con-
troller. Moderate settings lead to a smooth controller response
and by this compensate poorly fitting linearized models while
too high settings decrease the overall performance. Addition-
ally, low pass filtering of the coefficients of the linearized mod-
els can attenuate the effects of measurement noise. By combin-
ing the future reference into the vectorR and minimizing the
functional the optimal solution

P̃opt. =
[
ΓT

1 Γ1 + ρINu

]−1
ΓT

1 (R− Φ) (34)



for the manipulated variable laser power is found.

If constraints are present in the minimization of eq.(33), a
quadratic optimization problem has to be solved, and the so-
lution according to eq.(34) might not be feasible. For a stable
process like in the presented case, besides state-of-the-art QP-
solvers the one-degree-of-freedom algorithm (ONEDOF) [12]
can be applied to overcome this problem. It is outlined briefly
in the following. The main idea consist of a combination of
two control strategies: a guaranteed feasible, slowly converg-
ing one and a fast, unconstrained ”optimal” one. The latter is
represented in this case by eq.(34), while the first is chosen to
be an open loop control strategy based on an inverse static map-
ping. As the identified network was trained with a constraint on
the local laser power gain to be positive, a second, static ANN
can be trained afterwards which performs a mapping

Pstat. = ANN(Vactual, Ireference) . (35)

By using an MLP with an output neuron with saturation, the
feasibility of the constant solutionPstat. is guaranteed, and since
the process is stable, the controlled variable will tend towards
the reference, allowing a steady control deviation caused by
model offset and disturbances. Now the optimal control se-
quencePopt. in absolute values is given by

Popt. = (1 + q−1)P̃opt. (36)

and a violation of the constraintsPmin., Pmax. of dimension
Nu × 1 on the controller output can be avoided by choosing

Pfeas.= (1− α)Popt. + αPstat. 0 ≤ α ≤ 1 (37)

with a minimal value of the single degree of freedomα. By
introducing

V =
[

Pstat.− Popt.

−Pstat.+ Popt.

]
(38)

and

W =
[

Pmax.− Popt.

−Pmin. + Popt.

]
(39)

the problem is reformulated as

min(α) s.t. αV ≤ W (40)

which can easily be solved by initializingα = 0 and setting

α = max
(

α,
W (i)
V (i)

)
i = 1 . . . 2Nu (41)

which has to be evaluated only ifW (i) ≤ 0, i.e. a constraint
violation occurs. Clearly ifα < 1 – which can be achieved
with sensible settings for the controller – the integral action of
the original GPC is maintained and a steady control deviation
vanishes. Rate constraints and constraints on the controlled
variable can be included in a similar way. For further reading
see [12], [13].

With this approach for the predictive controller, the following
scheme results for the closed control loop. The motion plan-
ning provides reference trajectories for the welding speed and

the desired penetration depth. The latter is mapped to a de-
sired intensity. The motion control loop of the welding system
contains the drive dynamics and shows first order lagging be-
haviour. This is also considered by a prefilter toṼ in the MPC.
The MPC calculates the optimal laser power taking the future
welding speed into account and passespref. as the first element
of Pfeas. in eq.(37) as actual command value to the cascaded
laser power control loop.

Figure 3: Predictive control scheme

For practical application, a conservatively tunedPI-controller
is operated in parallel to the predictive controller and is
switched on if the process is leaving the domain covered by
the training data.

4 Application

The described predictive control scheme has been implemented
on an open OSACA-based control environment [11]. A CCD-
Camera [7] was used to observe the plasma. A PC-system
is processing the images from the camera and calculating the
intensity value corresponding to the actual penetration depth.
This intensity value, the welding speed and the desired pene-
tration depth is then used to perform the control task. Various
experiments have been conducted to investigate the predictive
controller’s performance. As one example the compensation of
a step-like change of the welding speed by 1.3 m/min is shown.
Figure (4) shows the change of the measured intensityI, the
welding speedv and the laser powerp without controller. The
longitudinal section of the weld shows the change in the pene-
tration depth. Figure (5) shows the measured intensity, welding
speed, laser power and a longitudinal section for an experiment
with controller. Note that the penetration depth is almost con-
stant. The fluctuations in the penetration depth and the mea-
surements can be compared with the fluctuations in figure (4).

5 Summary

Welding with laser beams is an innovative technique for joining
materials which experiences a strong increase in a wide variety
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Figure 4: Plasma intensity and penetration depth for an uncon-
trolled weld with constant laser power and change in welding
speed
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Figure 5: Plasma intensity and penetration depth for a con-
trolled weld with change in welding speed

of industrial applications (e.g. manufacturing car bodies) be-
cause of high welding speed and the good quality of the seam.
As it is in fact a complex process, means and ways for moni-
toring and closed loop control have to be applied. Within this
article, a predictive control scheme using a dynamic neural net-
work as process model is introduced. The laser power is used to
affect the process, taking the welding speed into consideration.
For monitoring purposes a CCD-camera is used, calculating the
penetration depth from the intensity of the spatially and tempo-
rally resolved emission of the plasma. A NARX-MLP-network
with external dynamics is used to identify the process and pro-
vide parameters for the linear predictor of the controller. Addi-
tional attention should be paid to the properties of the identified
model, and an approach to extend the training during the iden-
tification is introduced. Thereby a non-linear neural network
model and a well-known linear predictive control scheme are
combined and used to control a very fast, non-linear process.
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