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Abstract 
Two important monitoring and control topics in critical care 
are discussed. A multiple-model predictive control approach 
is used to regulate blood pressure and cardiac output by 
manipulating the infusion rate of two drugs. Depth of 
anesthesia is estimated by integrating the complexity, 
regularity, and spectral entropy information of EEG using an 
adaptive network based fuzzy inference system (ANFIS). 
Results based on animal experiments are presented. 

1. Background 
Anesthesiologists administer anesthetics and monitor the 
depth of anesthesia (DOA) during surgical procedures. In 
addition, they may be required to maintain or monitor certain 
other patient states, such as mean arterial pressure (MAP), by 
infusing cardiovascular drugs and/or altering the 
administration of anesthesia. It is known that hemodynamic 
states such as blood pressure and cardiac output are affected 
by the anesthetics administered and require close monitoring 
during surgical procedures. The current clinical practice is to 
use manual adjustment of anesthetics and drug infusion rates 
or with “open-loop” programmable pumps. It is desirable to 
have an automated “closed-loop” system for regulation of 
hemodynamics states and DOA. 

1.1 Hemodynamic Variable Control 
Initial research in hemodynamic control focused on single 
input-single output control of MAP, while more recent work 
considers the control of several hemodynamic variables by 
the infusion of multiple drugs. A detailed review of blood 
pressure control is provided by Isaka and Sebald (1993). 
Kwok et al. (1997) reported on clinical trials of automated 
blood pressure regulation during open-heart surgery. There 
has also been a significant research effort in the simultaneous 
control of MAP and cardiac output (CO) by manipulating the 
infusion rate of two drugs (usually sodium nitroprusside and 
dopamine; Voss et al. 1987, Yu et al. 1992). Our work in 
developing and implementing model-based control is 
summarized in section 2. 

1.2 Depth of Anesthesia 
Inadequate anesthetic levels during surgery can lead to 
patient awareness with undesirable psychological 
consequences (Moerman et al., 1993). A monitor capable of 
estimating depth of anesthesia (DOA) is desirable for 
assisting the anesthesiologist in minimizing such incidences. 
However, the significance of the traditional signs of DOA 
commonly used by the anesthesiologists, such as blood 
pressure, lacrimation, facial grimacing, movement or 
diaphoresis have diminished after the introduction of 
neuromuscular blocking agents as those clinical signs largely 
depend on the skeletal muscle activity. A more reliable 
technique independent of the muscular reflexes for 
measuring the DOA appears to be necessary. A 
commercially available monitor, the bispectral index (BIS), 
has been used in a number of monitoring and closed-loop 
studies. Results have been mixed, and Frenzel et al. (2002) 
recently recommended that the BIS not be used to infer 
sedation in a heterogeneous population of surgical care 
patients. Our work in developing a DOA measure is 
presented in section 3. 

2. Blood Pressure and Cardiac Output 
An important issue in the design of drug infusion systems is 
the need to impose bounds on dosages and infusion rates to 
avoid overdosing or drug toxicity. Alternatively, the 
physician may want to specify an operating range of the 
controlled variables instead of a specific setpoint. A critical 
challenge is the variability in drug responses, both from 
patient-to-patient, and during the course of treatment for a 
single patient. The multiple model predictive control 
(MMPC) approach that we developed handles constraints 
and adapts to the dynamic variations in drug responses. 
 
Model Predictive Control (MPC) is a class of control 
strategies that employ an identifiable model to predict the 
future behavior of the system over an extended prediction 
horizon; for a tutorial introduction, see Bequette (2003). An 
objective function, based on the setpoint tracking error over a 
prediction horizon, is minimized by adjusting a set of future 
manipulated variable moves subject to constraints on the 
manipulated inputs and controlled outputs. The optimization-



based framework of MPC allows computation of the optimal 
infusion rates subject to input and output constraints.  
 
Any model-based approach relies on the availability and 
accuracy of the prediction models and requires on-line 
adaptation to account for patient variability. Our MMPC-
based approach uses a bank of several models (first-order + 
deadtime) to characterize possible dynamic behavior of the 
patient (Rao et al., 2001). Based on the recent drug responses 
of the patient, relative weights are assigned to each of the 
models, to find the best combination of models that describes 
the behavior. The controller then uses the same weighting of 
models to predict the future behavior for a hypothetical set of 
future drug infusion rates. An optimizer finds the best set of 
future infusion rates, to closely match a desired output 
trajectory (blood pressure profile, for example). The 
advantage of our optimization-based approach is that 
constraints on the drug infusion rates are explicitly enforced. 
Although a nonlinear constrained optimization approach is 
used, the control calculations take less than 2 seconds, which 
is minimal for a system with a sample time of 30 seconds. 
 
The control strategy was first tested on a rigorous simulation 
of the circulatory system of a dog. The control strategy was 
then tested in thirteen canine experiments (see Figure 1 for 
the experimental set-up), involving the use of two 
anesthetics, isoflurane and halothane. High concentrations of 
halothane were used to induce conditions of a compromised 
heart, while isoflurane was used to verify the complexity 
analysis approach for measuring the depth of anesthesia. The 
closed-loop response specifications were achieved. Detailed 
results are presented in Rao et al. (2001, 2003). A review of 
multiple model-based control approaches, with simulation 
results, was presented in Schott and Bequette (1997). 
Aufderheide and Bequette (2003) discuss the many issues 
associated with a multiple model predictive control 
formulation. 

 

 
Figure 1.  Schematic Diagram of the Experimental Setup 
(Rao et al., 2001). 
 
Example Single-Output Results. A 19 kg female canine 
anesthetized with isoflurane was used to study SISO control 
of blood pressure by manipulating sodium nitroprusside 
(SNP). Blood pressure is artificially increased by using 

phenylepherine (PNP). Results using a single model-based 
controller are shown in Figure 2, while the multiple model-
based results are shown in Figure 3. The adaptation ability of 
the multiple model-based strategy clearly leads to improved 
performance (a more damped response to setpoint changes). 
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Figure 2. Case 1: SISO control of MAP using SNP in canine 
under isoflurane; a single model is used for control. PNP is 
used to induce hypertension. 
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Figure 3. Case 1: SISO control of MAP using SNP in canine 
under isoflurane; the multiple model approach is used for 
control. PNP is used to induce hypertension 
 
Example Multivariable Results (Figure 4). For this 20.5 kg 
female canine, the usual concentration of halothane caused a 
considerable depression of CO and MAP. The canine's 
hemodynamic conditions were initially mis-diagnosed and 
PNP infusion rates had to be raised to 4 µg/(kg dog-min) to 
induce even reasonable hypertension. When the controller 
was engaged, the MAP setpoint was lowered to 45 mm Hg 
and CO desired to be between 3.75 to 5.75 l/min. The high 
PNP infusion finally took effect around 15 minutes and 
controller suitably increased SNP infusion rates to lower the 
MAP. Due to concerns of running SNP at high rates for a 
long duration, the MAP setpoint was increased progressively 
during the control run so as to reduce the net SNP infused. 
The controller was able to maintain the CO in the specified 



setpoint band while also maintaining tight control of MAP 
setpoint.  Once again some oscillations in heart rate lead to 
oscillations in MAP. In this run, we misdiagnosed the canine 
as phenylephrine finally kicks in and increases baseline MAP 
too high causing elevated levels of SNP infusion. We raise 
the MAP set point to limit the total infusion amount of SNP 
allowing us to have a much longer duration for the 
experiment.  The experiment lasts almost 2.5 hours.  
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Figure 4.  Multivariable control for canine with depressed 
CO using halothane. Dopamine (DPM) and sodium 
nitroprusside (SNP) are controlled inputs. PNP is used to 
induce hypertension. 
 
Since the current state of the art is manual regulation, we 
compared the automated closed-loop performance with that 
of manual control. The multiple model predictive controller 
maintained MAP within + 5 mm Hg 88.9% of the time with 
a standard deviation of 3.9 mm Hg. The cardiac output was 
held within + 1 liter/min 96.1% of the time, with a standard 
deviation of 0.5 liters/min. The manual runs maintained 
MAP only 82.3% of the time with a standard deviation of 5 
mm Hg, and cardiac output 92.2% of the time with a 
standard deviation of 0.6 liters/min. It should be noted that 
the performance of manual control in practice is expected to 
be much lower than these experiments, since an 
anesthesiologist would be dividing her efforts among 
numerous activities; in these experiments we were devoted 
solely to regulating MAP and CO. In any event, the 
automated system performance is better than manual control, 
and frees up the anesthesiologist to monitor other difficult to 
measure variables.  

3. Anesthetic Depth 
Currently there is no reliable means of assessing the depth of 
anesthesia (DOA) of a patient during surgery. An 
anesthesiologist controls the level of anesthetic titration 
based on observable measurements of state variables such as 
hemodynamics, and other signs of DOA. The decision-
making process that ultimately leads to changes in the 
anesthetic titration level is a complex process that very much 
relies on the experience and knowledge of the 
anesthesiologist in interpreting those state variables. A fuzzy 
logic system can thus be substituted for the operation of 

anesthesia management where the anesthesiologist's 
knowledge is transcribed and modeled as fuzzy rules for the 
task of state variable transformation into estimation and 
controlling actions.  The flow of such fuzzy estimation and 
control process is illustrated in Figure 5. 
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Figure 5.  Basic architecture of a fuzzy logic controller based 
on some physician knowledge model. The DOA signs may 
be any of the “traditional observable inputs” such as 
hemodynamics, body temperature, patterns of spontaneous 
breathing, and other indications of awareness. The fuzzy rule 
base stores the empirical knowledge of the anesthesiologists 
relating anesthetic titration requirements to changes in DOA 
signs. 
 
The x's are the signs of DOA measured or secondarily 
computed, obtained via the sensors placed on the patient.  An 
input variable of the x's can be any of the current state 
(arterial blood pressure), state error (change in arterial blood 
pressure), state error derivative (rate of change in arterial 
blood pressure), and state error integral.  The output of the 
fuzzy controller changes the current level of anesthetic 
titration as necessary based on the fuzzy inference process 
relating the x's to that of the anesthetic needs.  This process 
emulates the thought processes of an anesthesiologist in 
determining the need for changing the titration level based 
on a collection of observable parameters. 
 
This fuzzy logic model is based on the states and the changes 
of various indirect indicators of the DOA, which are variant 
in a nonlinear system and constantly influenced by 
unpredictable external events Infusions of vasoactive and 
inotropic drugs diminish the correlations between anesthetic 
dosage and hemodynamic variability.  Furthermore, surgical 
events and external disturbances reduce the significances of 
other indirect indicators of the DOA such as breathing 
patterns and bodily temperatures. We have examined the 
electroencephalogram (EEG) to see if it may be an effective 
sign of the DOA associated with an increasing concentration 
of anesthetics (Jang, 1993).   

Neuro-Fuzzy Modeling 
Adaptive network based fuzzy inference system (ANFIS), as 
a neuro-fuzzy method, combines fuzzy logic and neural-nets 
into a five-layer adaptive network architecture. Details about 
the structure and learning procedure of ANFIS are in Jang 
(1993).   
 



To build a derived fuzzy knowledge model based on ANFIS 
for estimating DOA, two types of tuning (i.e. model structure 
tuning and parameter tuning) are required. Structure tuning 
concerns the structure of the rules: input and output variables 
selection, variable universe of discourse partition, linguistic 
labels determination, and type of logical operation to 
compose each rule. Parameter tuning mainly concerns the 
fine adjustment of the position of all membership functions 
together with their shape controlled by premise parameters 
and the Takagi-Sugeno type (Sugeno and Kang, 1988) if-
then rules to be extracted controlled by the consequent 
parameters.   
 
ANFIS employs an efficient hybrid learning procedure that 
combines gradient descent method and the least squares 
estimation to tune the parameters both of the membership 
functions and the Takagi-Sugeno type rules. Each epoch of 
the learning procedure is composed of a forward pass and a 
backward pass. In the forward pass, the input data and 
functional signals go forward to calculate each node output 
while the premise parameters are fixed, and the consequent 
parameters are optimized via least-squares estimation. After 
the optimum consequent parameters are found, the functional 
signals keep going forward until the output of the network is 
calculated and the error measure is estimated. Then the 
backward pass starts. In this stage, the output error 
propagates from the output end toward the input end while 
consequent parameters are fixed, and the premise parameters 
are optimally updated by the gradient method via a standard 
back-propagation algorithm. Not only can this hybrid 
learning procedure decrease the dimension of the search 
space in the gradient method, but, in general, it will also cut 
down substantially the convergence time. The least-squares 
method is, actually, the major driving force that leads to fast 
training. As a result, ANFIS can usually generate satisfactory 
results right after the first epoch of training, that is, after the 
first application of the least-squares method. Since the least-
squares method is computationally efficient, it can be used 
for on-line application. 
 
Before training, the consequent parameters of the ANFIS are 
all set to zero. As a conventional way of setting parameters 
in a fuzzy system, the premise parameters are set in a way 
that the membership function can cover the universe of 
discourse completely, with sufficient overlapping.  

Neuro-Fuzzy Based CI Model for EEG 
The nonlinear nature of brain neuronal activity contributes to 
the formation of the EEG with very complex dynamics 
(Koch and Laurent, 1999; Micheloyannis et al., 1998). 
Moreover, the EEG may not be simply generated by a purely 
deterministic or stochastic process, but rather by some 
combination of both. The EEG does not change in a linear or 
monotonic fashion with changes in DOA, and different EEG-
derived parameters are not equally useful in estimating 
DOA. The derived parameters should be used in combination 
and each method weighted differently as the EEG changes 
nonlinearly with various levels of stimulation and from light 
to deep anesthesia. The emerging computational intelligence, 
neuro-fuzzy method, can act as a promising modeling 
candidate. By nonlinear quantitative analysis two EEG-

derived parameters, complexity measure C(n) (Kaspar, F. 
and Schuster, 1987) and approximate entropy ApEn (Pincus 
et al., 1991), are extracted from the raw EEG signals and 
merged together with the spectral entropy SE (Rezek and 
Roberts, 1998) for estimating DOA. C(n) and ApEn quantify 
the complexity and regularity of the EEG dynamic patterns 
in a manner consistent with our intuition, as well as being 
model-independent statistics.  

Complexity Analysis 
Complexity is a common characteristic of many phenomena, 
especially for biological systems, with the brain often 
described as the most complex biological system (Koch and 
Laurent, 1999). Its electrical activity (EEG) exhibits 
significant complex behavior, which is generated by 
numerous neuroelectrical events within the brain’s structure. 
The complexity measure C(n), proposed by Lempel and Ziv 
(1976), is extremely well suited for characterizing different 
spatiotemporal patterns with chaotic temporal components 
and their development in high-dimensionality nonlinear 
systems. Compared with other types of complexity measures, 
the computation of C(n) is simpler, faster, and more suited to 
real-time EEG analysis (Zhang and Roy, 1999). Complexity 
measures the number of distinct patterns that must be copied 
to reproduce a given string. The only computer operations 
considered in constructing a string are copying old patterns 
and inserting new ones. Briefly described, a string 
S=s1s2…sn is scanned from left to right, and a complexity 
counter c(n) is increased by one unit every time a new sub-
string of consecutive characters is encountered in the 
scanning process. After normalization, the complexity 
measure C(n) reflects the rate of new patterns arising with 
the increase of string length n. Detailed algorithms for C(n) 
can be found in Kaspar and Schuster (1987) and Lempel and 
Ziv (1976). 

Regularity Analysis 

Approximate Entropy (ApEn) is developed to quantify the 
amount of regularity in the data without any a priori 
knowledge about the system generating them (Pincus et al., 
1991). It is a nonnegative number that will distinguish 
among data sets, with larger numbers indicating more 
irregularity, unpredictability, and randomness. ApEn is 
nearly unaffected by low level noise, is robust to occasional 
very large or small artifacts, gives meaningful information 
with a reasonable number of data points, and is finite for 
both stochastic and deterministic processes. These features 
are useful for quantitatively characterizing changes in the 
evolving regularity of the EEG. While applying ApEn to the 
EEG, a particular model form is not being sought, such as 
deterministic chaos, but the intent is to distinguish among the 
EEG data sets collected under different anesthesia conditions 
on the basis of regularity. Such regularity can be seen in both 
deterministic and/or random (stochastic) processes, similar to 
brain activity. Detailed algorithms for ApEn can be found in 
(Pincus et al., 1991). 
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Spectral entropy (SE) (Rezek and Roberts, 1998) is selected 
as the third derived parameter. This measure quantifies the 
spectral complexity of the EEG signal. The power spectral 
density (PSD) can be obtained from the EEG signal 
by a fast Fourier transformation (FFT). The normalization of 

, with respect to the total spectral power, will yield a 
normalized density function. Application of Shannon’s 
channel entropy gives an estimation of the spectral entropy 
(SE) of the underlying EEG process, where entropy is given 
as  

)(ˆ fP

ˆ P ( f )

Figure 6. The system diagram for estimating DOA during 
anesthesia by integrating the complexity, regularity, and 
spectral entropy information of EEG via ANFIS: dashed 
flow line for off-line training ANFIS and solid flow line for 
on-line estimating DOA. ∆t denotes that every certain period 
(∆t) the ANFIS are retrained using the updated Specific Raw 
EEG Database. The "derived" fuzzy knowledge model is 
encircled by the dotted rectangle.  

)/1ln( ff f ppH ∑=    (1) 

pf  is the normalized density function value at frequency f. 
Heuristically, the entropy has been interpreted as a measure 
of uncertainty about the event at f. 

ANFIS - “Derived” Fuzzy Knowledge Model ANFIS System: Experiment Results 
By using the ANFIS method, fuzzy if-then rules are obtained 
to express the complex relationship between the three 
derived parameters and anesthesia states. These rules are 
then used to construct a derived fuzzy knowledge model for 
providing a single variable to represent the DOA. The 
meaning of the word “derived” is triple-fold: (1) the input 
parameters are derived from the EEG by signal processing, 
not like the hemodynamic parameters, heart rate and blood 
pressure. (2) the fuzzy knowledge is derived with the help of 
ANFIS, not directly from experts. (3) the final model and the 
DOA index are derived, not from published data or 
experience. 

Thirty experiments using 15 dogs undergoing anesthesia 
with three different anesthetic regimens (propofol, 
isoflurane, and halothane) were performed and a database 
was obtained. The database consists of EEG recordings and 
the associated, clinically derived anesthesia states. Totally, 
134 EEG recordings were obtained from the propofol 
experiments, 109 recordings from isoflurane experiments, 
and 64 recordings from halothane experiments. To verify and 
justify the performance of the model in discriminating awake 
and asleep states and test the applicability for practical use of 
the model under different anesthetic regimens, the EEG data 
sets collected under a specific regimen were used to train and 
test the model. The test results are listed in Table 1.  

System Design Based on ANFIS for EEG  
Table 1. Test results by the derived fuzzy knowledge model 
using the “leave-one-out” procedure for three kinds of 
regimens, respectively (i.e. training and test data sets from 
the same kind of regimen).  

The designed DOA estimation system (Figure 6) consists of 
two paths: a dashed line path for off-line training of the 
ANFIS before the system put into operation and a solid one 
for on-line DOA estimation. These two parts contain similar 
function blocks: EEG collection, Parameters Extraction, and 
ANFIS. Before the system goes into operation, a Specific 
Raw EEG Database must be first built for off-line training of 
the ANFIS. The complexity C(n), regularity ApEn, and 
spectral entropy SE are extracted from the raw EEG and 
form an input feature vector for training the ANFIS. After 
training, the derived fuzzy if-then rules can be used for on-
line DOA estimation. During the on-line application, the 
recorded EEG is also stored in the Specific Raw EEG 
Database for updating. Thus, every certain period (∆t) the 
ANFIS is retrained using the newly updated Specific Raw 
EEG Database and then the new premise and consequent 
parameters are sent to the Trained ANFIS for updating its 
fuzzy if-then rules. In so doing, the system is dynamic not 
static, and can be continuously refreshed. In addition, a 
Specific Raw EEG Database for different anesthetic 
regimens can be constructed. Thus, regimen-specific or 
general-purpose DOA estimation systems can be easily built. 

 
Anesthetic 
Regimen 

State Sensitiviy 
(%) 

Specificity
(%) 

Accuracy 
(%) 

Awake 92.3 88.4 90.3 Propofol 
Asleep 88.4 92.3 90.3 
Awake 89.6 95.1 92.7 Isoflurane
Asleep 95.1 89.6 92.7 

Halothane Awake 82.1 94.4 89.1 
 Asleep 94.4 82.1 89.1 

 
The ANFIS is a useful tool in eliciting knowledge from the 
training input-output data pairs for building the DOA model. 
The derived numerical quantitative features from EEG by 
signal processing, such as C(n), ApEn, and SE, contain the 
relevant information about the DOA, but the 
anesthesiologists have no direct knowledge and expertise 
using them for assessing DOA. After training ANFIS, the 
information derived as fuzzy rules are used here as a 
framework for knowledge representation. The final output of 
the model is just one single DOA number between 0.0 and 

 



1.0. The number 0.0 represents full awake and 1.0 denotes a 
flat line of EEG, or complete EEG suppression.  

Discussion 
Table 1 shows that the neuro-fuzzy based model has an 
accuracy in the range of 90% for detecting awake and asleep 
states under different specific anesthetic regimen. This also 
demonstrates the capability of the DOA index in 
quantitatively characterizing the level of anesthesia is 
clinically acceptable. The DOA number correlates well with 
the level of anesthesia.  Moreover, the DOA number is 
subject independent (i.e. not sensitive to the large intra- and 
inter-individual variability), therefore, calibration will not be 
necessary for any specific individual to be monitored. The 
output of the proposed model offers all the desirable features 
for a DOA monitoring index, therefore, this makes the 
proposed fuzzy knowledge model a promising candidate as 
an effective tool for continuous assessment of the depth of 
anesthesia.  
 

4. Summary and Future Work 
Mean arterial pressure and cardiac output are regulated using 
a multiple-model predictive control approach. This strategy 
adapts to handle varying inter- and intra-patient dynamics 
using a Bayesian weighting function. Constraints on 
manipulated and controlled inputs are handled using the 
optimization-based technique. Depth of anesthesia is 
estimated by integrating the complexity, regularity, and 
spectral entropy information of EEG using an adaptive 
network based fuzzy inference system (ANFIS). Results are 
verified in animal experiments. 
 
Future work includes integrating hemodynamic variable 
control with the direct control of DOA by manipulating the 
anesthetic delivery rate. While a multiple-model predictive 
control strategy readily handles many of the challenges 
imposed drug and anesthesia delivery, practical 
implementation in an operating room environment requires 
the development of a user-friendly interface that does not 
require knowledge of control theory.  For example, to vary 
the speed of response it would be desirable to use simple 
faster/slower buttons.  
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