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Abstract

This paper reports on the design of several model predictive
controllers for dissolved oxygen (DO) in an activated sludge
wastewater treatment plant (WWTP). The paper explores seve-
ral possibilities for obtaining appropiate models for prediction
using subspace identification methods. The paper also illus-
trates the use of a number of possibilities for rearranging the
models to include actuator limitations. Finally, three model
predictive controllers (MPCs) are designed, tested and the re-
sults are compared with a PI controller. A well established
simulation benchmark is used as a test bench for this study.

1 Introduction

The efficiency and economics of wastewater treatment have be-
come an important issue for water companies in the UK and in
the rest of Europe due to new, more stringent EU directives for
environmental protection. The most common wastewater treat-
ment process is the Activated Sludge technology. The costs of
wastewater treatment using this technology include chemicals,
energy, and human resources for the process and its operation.
In order to minimise these costs, the wastewater industry has
been led into the development and use of sophisticated strate-
gies for process control. For example the use of intermittent
aeration to minimise energy consumption has been reported in
several publications [6, 10, 12], strategies to increase hydraulic
capacity to cope with rain or storm events as reported in [9],
or improved optimisation by efficient handling of information
collected by the control system as reported in [15].

A recent study of four treatment plants in Scotland, Denmark,
Germany, and Poland reported in [2], concluded that dissolved
oxygen control loops contained P or PI controllers, which were
usually mis-tuned and performed poorly. Some side effects of
poor tuning are instability and limit cycles, which in turn lead
to blower and valve saturation, and wear and tear.

This paper reports on the design of several predictive con-
trollers for dissolved oxygen. The problem of finding suitable
models for prediction and estimation of dissolved oxygen is
solved by using subspace identification [14, 13]. Furthermore,
the data for the identification is collected on-line and in closed-
loop in order to minimise changes in the working system.

The paper is organised in the following way: the first part is
an introduction into the activated sludge process and the sim-
ulation benchmark employed in this study. Following the in-
troduction the identification and validation of models is dis-
cussed. This section also presents the rearrangements made to
the models to include disturbance models as well as the meth-
ods used to extract (estimate) the states necessary for the pre-
diction. Section 4 presents the design of the model predictive
controllers (MPC). Comparative results for dynamic behaviour
and long-term behaviour are presented in section 5, and finally
conclusions are drawn at the end of the paper.

2 Activated sludge wastewater treatment plants
and models

Activated sludge wastewater treatment processes are complex
biological systems that are difficult to describe mathematically.
A first mathematical model was formally introduced in [4], and
is known as the Activated Sludge Model No.1 (ASM1). The
ASM1 model describes the degradation of carbonaceous mate-
rial as well as nutrient removal. Mathematically, the model is
composed of a set of 13 non-linear differential equations. In
particular, one of them describes the dissolved-oxygen dynam-
ics. The WWTP simulation benchmark employed in this work
uses ASM1 to represent the biological treatment.

The WWTP simulation benchmark was developed by the
COST action 624 & 682 research group [1]. The benchmark is
composed of five cascade biological reactors and a non-reactive
settling tank. The first two reactors are anoxic, while the last
three are aerobic. The model also has a recirculation flow and
a return sludge flow. In this configuration, it has been assumed
that only the last aerobic reactor has dissolved oxygen control
(PI controller), while the other two reactors have fixed aeration.

The dissolved oxygen sensor utilised in the simulations has a 1-
minute time delay and 1 minute sampling time. Actuators have
been modelled as physical limitations in the air supply equiva-
lent to a maximum oxygen transfer (kLa) of 360

[

day−1]. The
simulation benchmark also provides three files of dynamic in-
fluent data for dry, rain and storm conditions, and a file of con-
stant influent data used to stabilise the plant. The plant layout
is presented in Figure (1).

The purpose of the controllers designed and tested in this paper
is to improve the system performance for setpoint manoeuvring
and compensate for external disturbances like load changes due
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Figure 1: COST Simulation Benchmark - Plant Layout.
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Figure 2: Predictive control scheme.

to daily variations in influent composition or weather changes
as rain events. In this context, the proposed controller structure
would have a hierarchical architecture as the one presented in
Figure (2).

3 Identification and validation of models for
dissolved oxygen

3.1 Identification

In this paper subspace identification has been adopted as the
method to generate models for prediction and estimation for
dissolved oxygen control. In general terms, these algorithms
allow the identification of multivariable systems, however for
the purpose of this paper a single input - single output case is
considered. The identification algorithms are not described in
this paper, but the reader is encouraged to review the referenced
publications [13, 14].

As explained in section 2, only the last reactor allows mani-
pulation of the air compressor. Figure (3) shows a diagram of
the control structure in the last aeration tank. In order to ob-
tain a representative model of the dynamics, it is necessary to
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Figure 3: Low-level dissolved oxygen control loop.

No. Model Order Algorithm Notes
1 open loop 2 [13] 1st algorithm
2 closed-loop 3 [14] SV
3 closed-loop 3 [14] CVA

Table 1: Identified Models

have data of a persistently excited system. An option to gene-
rate data sets with such characteristics is to externally excite the
system, as in [7, pp.156], by employing a pseudo random bi-
nary signal (PRBS). For this study, the last reactor was excited
with a PRBS signal of 1 [mg/l] amplitude around an operating
point of 2 [mg/l] during 1 day.

Initially three models were identified using the algorithms in
[13, 14, pp.131]. The first model is an open-loop model (from
u(k) to y(k)) identified from closed-loop data using the first
algorithm presented in [13]. The following two models are
closed-loop models, identified from r(k) to y(k) using the SV
and the CVA options of the combined deterministic-stochastic
robust identification algorithm presented in [14]. Table (1)
presents a summary of the three identified models. An inter-
esting observation of the data in the table is that the maximum
order is of the third degree.

3.2 Actuator and disturbance models

None of the previously identified models include the actuator
output signals. In order to include the physical limitations of
the aeration system it is necessary to somehow include them
into the model. Additionally, to compensate for the plant-
model mismatch and un-modelled disturbances given by the
changing influent load (daily variations and weather effects), it
is necessary to introduce a disturbance model. The section will
begin by including the actuator (controller) dynamics into ac-
count and therefore formulating three new models which will
be denoted as composite for the open-loop case and augmented
for the closed-loop cases.

3.2.1 Composite and augmented models

Let the loop-controller be described by equation (1) and the
plant model No.1 by equation (2). The loop-controller is a PID
type controller represented in state-space.

xc(k +1) = Acxc(k)+Bce(k) (1)
u(k) = Ccxc(k)+Dce(k)

xo(k +1) = Aoxo(k)+Bou(k) (2)
y(k) = Coxo(k)+Dou(k)

where e(k) is the error between the oxygen measurement y(k)
and the reference signal r(k). Closing the loop and rearranging
the matrices the following composite system is found:

X(k +1) = A ·X(k +1)+B · r(k) (3)
Y (k) = C ·X(k)+D · r(k)



where:

X(k) =

[

xo(k)
xc(k)

]

(4)

Y (k) =

[

y(k)
u(k)

]

(5)

A =

[

Ao −BoMDoCo BoMCo
BcDoMDcCo −BcCo Ac −BcDoMCc

]

(6)

B =

[

BoMDc
Bc −BcDoMDc

]

(7)

C =

[

Co −DoMDcCo DoMCc
−MDcCo MCc

]

(8)

D =

[

DoMDc
MDc

]

(9)

M = (I +DcDo)
−1 (10)

For the case of the closed-loop models No.2 and 3, the con-
troller dynamics and therefore the actuators limits are included
in a different way. Considering the same loop-controller state-
space representation and the closed-loop model of Equation
(11), and using the error definition it is possible to define an
augmented model described by Equations (12-18).

xcl(k +1) = Aclxcl(k)+Bclr(k) (11)
y(k) = Cclxcl(k)+Dclr(k)

X(k +1) = A ·X(k)+B · r(k) (12)
Y (k) = C ·X(k)+D · r(k)

X(k) =

[

xcl(k)
xc(k)

]

(13)

Y (k) =

[

y(k)
u(k)

]

(14)

A =

[

Acl 0
−BcCcl Ac

]

(15)

B =

[

Bcl
Bc (I−Dcl)

]

(16)

C =

[

Ccl 0
−DcCcl Cc

]

(17)

D =

[

Dcl
Dc (I−Dcl)

]

(18)

Validation of these models is performed by measuring the per-
centage variance accounted for (vaf) between the measured
and predicted signals (19). The The vaf coefficient is only a
measure of the degree of similarity between the two signals
and does not measure biases. Table (2) presents a summary of
the obtained vaf coefficients for the oxygen concentration and
actuator output predictions. Figures (4) and (5) show the sig-
nals of the three models validated against the DO measurement
from the plant.

va f % =

(

1−
var (y− ŷ)

var (y)

)

∗100 (19)

Model y vaf (%) u vaf (%)
composite 96.809 81.9695

augmented 1 99.95716 86.55406
augmented 2 99.95720 86.55406

Table 2: VAF coefficients for composite and augmented models

3.2.2 Disturbance model

There are two important reasons to include a disturbance model
in the DO dynamics description. The most obvious one is for
compensation of changing load conditions due to influent con-
centrations and flow variations during the day and in meteo-
rological events as rain or storm. There is however a second
reason. The models which are being used have been recovered
from an identification procedure. Therefore, they are just an ap-
proximation to the real plant dynamics. Due to this plant-model
mismatch, the augmented and the composite models will give
significant errors in the prediction of the actuator (controller)
output, Figures (4-5).

In general terms, disturbance models have to be chosen accord-
ingly to the expected load. It could be argued that in the case of
WWTPs, the most common disturbance will have a cyclic daily
fluctuation. However, the prediction horizon of a variable like
dissolved oxygen is in the range of fractions of an hour. There-
fore it is more realistic to assume either a constant disturbance
or a slowly decaying model like in [7]. This paper assumes a
constant disturbance model.

To introduce the disturbance effect into the composite and the
augmented model formulations it is only necessary to redefine
the state and output equation as in Equations (20-25).

ξ (k +1) = Adξ (k)+Bdr(k) (20)
Y (k) = Cdξ (k)+Ddr(k)
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Figure 4: Composite model prediction



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5
Augmented Model Validation

D
is

so
lv

ed
 O

xy
ge

n 
(m

g/
l)

Measurement    
Prediction No.1
Prediction No.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

A
ir 

flo
w

 x
10

 (%
)

Time (days)

Measurement    
Prediction No.1
Prediction No.2

Figure 5: Augmented models predictions

where

ξ (k) =

[

X(k)
d(k)

]

(21)

Ad =

[

A 0
0 I

]

(22)

Bd =

[

B
0

]

(23)

Cd =
[

C I
]

(24)
Dd = D (25)

Notice however, that this approach can only be implemented
in conjunction with a state-observer which provides the initial
plant-model mismatch with which it is possible to calculate the
predictions. Therefore in order to evaluate these models it is
necessary to implement them through state observers or esti-
mators.

3.3 State observers and estimation

A fundamental part of the design of a MPC structure has to
do with the state extraction or estimation. In the case of de-
terministic systems the most common approach is to design a
state observer if the system is observable. If the system is of
stochastic nature, the optimal solution would be a Kalman fil-
ter. However, in this process as in many industrial processes
the noise characteristics are not known. Due the lack of this
information it might be time consuming and difficult to cali-
brate a Kalman filter compared to a state observer. Therefore
this paper will not address the advantages or disadvantages of
using Kalman filtering. Instead state observers designed using
pole placement are employed.

4 Control Design

Several subspace predictive control methods have been devel-
oped within the last few years. The technique itself is consid-
ered to be fairly new and it has been just recently that some pos-
sibilities of implementing model predictive controllers (MPCs)
directly from a subspace framework are being explored as for
example in [3, 5, 11]. This paper, however, does not approach
the implementation of the MPC controllers in this way, but uses
a state space formulation as described later in the paper.

In this section, three predictive controllers are designed. The
predictor is formulated for the composite, composite with dis-
turbance model and augmented with disturbance model. For
the augmented model, only the CVA case is considered since
results are very similar to the SV algorithm.

4.1 Cost function and prediction

Considering any of the proposed models (12, 3, 20), the predic-
tions over an output horizon Hp with control horizon Hu can be
described by equation (26).

Y (k) = Ψx̂(k)+(ϒ+Ω)r(k−1)+ (26)
(Θ+Φ)∆R(k)

where:

Ψ = C̃ ·
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ϒ = C̃ ·
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Θ = C̃ ·
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(30)



Model Hp Hu R Q

composite 50 10 1x102 diag[15 1x10−5]
comp. & dist. 50 10 1x103 diag[15 1x10−5]
aug. & dist. 50 7 30 diag[15 1x10−5]

comp. & dist.: composite model with disturbance estimation
aug. & dist.: augmented model with disturbance estimation

Table 3: Controller parameters.

Ω =







D
...
D






(31)

C̃ =







C · · · 0
...

. . .
...

0 · · · C






(32)

The increment of the control inputs over the prediction horizon
are calculated by minimising the following cost function:

J(k) = ‖Y (k)−S(k)‖2
Q

+‖∆R(k)‖2
R

(33)

Define then the following expression:

E (k) = S(k)−Ψx̂(k)− (ϒ+Ω)r(k−1) (34)

By substituting (26) and (34) into (33), the cost function can be
written as:

J(k) = ‖(Θ+Φ)∆R(k)−E (k)‖2
Q

+‖∆R(k)‖2
R

(35)

If Q and R are factored as Q = SQST
Q

and R = SRST
R

, then
∆R(k) can be calculated as the least-squares solution to:

[

SQ(Θ+Φ)
SR

]

∆R(k) =

[

SQE (k)
0

]

(36)

Table (3) summarises the values for the prediction horizon
(Hp), control horizon (Hu) and weightings Q and R that pro-
duced the best results.

4.2 Constraints

The inclusion of constraints is fundamental in this problem. It
is in this way that the physical limitations arising from the ac-
tuators (air compressors) are included when solving the optimi-
sation. Constraints also allow the inclusion of operation condi-
tions that are necessary for the process to work. For example,
in many WWTPs it is necessary to keep a minimum aeration
regardless of the oxygen concentration, just to keep the reac-
tors fully mixed. It is also evident that constraints allow limits
to be imposed over variables which in practice cannot go under
or over certain limits, as for example the oxygen concentration
cannot be less than zero. To implement such restrictions, all the
variables must be written as a function of the optimisation vari-
able, that is in this case ∆R(k). A good discussion of how to do

this can be found in [8, pp.43-45,81-82]. For the optmisation
problem, inequality constraints have the form of equation (37).
For this study, the physical limits are tabulated in Table (4).

W∆R(k) ≤ w (37)

Limit/variable DO (mg/l) Q (%) r (mg/l)
Lower limit 0 1 0
Upper limit 8 100 10

Table 4: Physical Limits

5 Results

Simulations for a PI controller, and the three proposed MPC
are presented in this section.The simulation scenarios include
constant influent, dry weather influent, rain influent, and storm
influent as defined in [1]. Within the simulations, the constant
influent is utilised to assess the transient response to changes
in setpoint and disturbance rejection, while the dynamic influ-
ent files are used to provide a statistical evaluation of the per-
formance in the long term. Tables (5-6) show the results for
setpoint tracking and disturbance rejection, while Tables (7-9)
show the statistics for dynamic performance under the specified
weather conditions.

Results show that even though the performance of the compos-
ite model with disturbance estimation is acceptable in the tran-
sient analysis, its performance is significant better when the
simulation is run for dynamic influent. These results show the
benefit of including a second level of control over the common
PI loop.

Case Overshoot
(%)

Settling
Time (min)

composite 0 >360
composite w. disturbance 2.11 55
augmented w. disturbance 1.277 27

PI 0.99 74

Table 5: Dynamic performance

Case
Peak
(%)

Rejection
Time (min)

composite -43.78 >360
composite w. disturbance -34.72 55
augmented w. disturbance -35.58 44

PI -37.92 98

Table 6: Disturbance rejection

6 Conclusions

This paper reports on the identification of models for dissolved
oxygen using subspace identification, and the design of three
predictive controllers for oxygen control in an activated sludge



Case Max Min Mean Var St.Dev.
composite 2.71 1.37 2.00 0.087 0.295

comp. & dist. 2.04 1.91 1.99 3.2x10−4 0.018
aug. & dist. 2.24 1.67 1.99 0.007 0.086

PI 2.49 1.40 1.99 0.030 0.174
comp. & dist.: composite model with disturbance estimation
aug. & dist.: augmented model with disturbance estimation

Table 7: Dry weather statistics

Case Max Min Mean Var St.Dev.
composite 2.70 1.38 2.02 0.070 0.265

comp. & dist. 2.04 1.89 1.99 2.4x10−4 0.015
aug. & dist. 2.24 1.68 1.99 0.006 0.075

PI 2.49 1.42 2.00 0.024 0.153
comp. & dist.: composite model with disturbance estimation
aug. & dist.: augmented model with disturbance estimation

Table 8: Rainy weather statistics

wastewater treatment plant. The COST Simulation Benchmark
is used as a testing plant. The paper contains transient and sta-
tistical evaluation of the controllers for constant, dry, rainy and
storm weather conditions. The paper also includes an analy-
sis into three identification algorithms, and provides an insight
into which approach is more suitable for this application. Sim-
ulation results also indicate that models for dissolved-oxygen
can be valid even under changing weather conditions.

Results show that all the controllers perform very well and im-
prove performance compared to a single PI loop. The con-
trol structure also facilitates implementation due to only minor
modifications to the plant computer system.

Acknowledgements

The authors express their gratitude to the European Commis-
sion under whose contract EVK1-CT-2000-00056 the SMAC
project and this work has been performed. Thanks are also due
to Scottish Water.

References
[1] J. Copp, editor. COST Action 624 - The COST Simulation

Benchmark: Description and Simulation Manual. Eu-
ropean Comission - European cooperation in the field of
scientific and technical research, 2002.

[2] K. Duzinkiewicz, editor. Deliverable 6: Algorithms for
System Monitoring. SMAC - Smart Control of Wastewa-
ter Treatment Systems, 2002. http://www.smac.dk.

[3] W. Favoreel and B. De Moor. SPC : Subspace predic-
tive control. Technical Report 98-49, Departement Eleck-
trotechniek - Katholieke Universiteit Leuven, 1998.

[4] M. Henze, C.P.L. Grady, W. Gujer, G.v.R. Marais, and

Case Max Min Mean Var St.Dev.
composite 2.70 1.38 1.99 0.080 0.282

comp. & dist. 2.05 1.91 1.99 3.0x10−4 0.017
aug. & dist. 2.24 1.67 1.99 0.007 0.086

PI 2.49 1.41 1.99 0.027 0.165
comp. & dist.: composite model with disturbance estimation
aug. & dist.: augmented model with disturbance estimation

Table 9: Storm weather statistics

T. Matsuo. Activated sludge model no.1. Technical re-
port, IAWQ Scientific and Technical Report No.1, 1987.

[5] R. Kadali, B. Huang, and A. Rossiter. A data driven ap-
proach to predictive controller design. Control Engineer-
ing Practice, 11(3):261–278, 2003.

[6] H. Kim, T.J. McAvoy, J.S. Anderson, and O.J. Hao. Con-
trol of an alternating aerobic-anoxic activated sludge sys-
tem. part 2: Optimisation using a linearized model. Con-
trol Engineering Practice, 8:279–289, 2000.

[7] C.F. Lindberg. Control and Estimation Strategies Applied
to the Activated Sludge Process. PhD thesis, Uppsala Uni-
versity, 1997.

[8] J.M. Maciejowski. Predictive Control with Constraints.
Prentice Hall, England, 2001.

[9] M.K. Nielsen, H. Bechmann, and M. Henze. Modelling
and test of aeration tank settling (ATS). Wat.Sci.Tech.,
41(9):179–184, 2000.

[10] H. Puta, G. Reichl, and R. Franke. Model based optimisa-
tion of a wastewater treatment plant. In Proc. of the ECC,
Karlsruhe, September 1999.

[11] D.D. Ruscio. Model predictive control and identification:
A linear state-space approach. In Proc. of the 36th Con-
ference on Decision and Control, pages 3202–3209, San
Diego, CA, 1997.

[12] A. Sánchez, M.R. Katebi, and M.A. Johnson. Optimal
control of an alternating aerobic-anoxic wastwater treat-
ment plant. In Proc. of the 15th IFAC World Congress,
Barcelona, Spain, June 2002.

[13] P. van Overschee and B. De Moor. Closed-loop subspace
system identification. Technical Report ESAT-SISTA/TR
1996-521, Departement Elecktrotechniek - Katholieke
Universiteit Leuven, 1996.

[14] P. van Overschee and B. De Moor. Subspace Identifica-
tion for Linear Systems. Kluwer Academic Publishers,
USA, 1996.

[15] Z. Yuan, J. Keller, and P. Lant. ICA, optimization and
control of nitrogen removal in activated sludge processes:
A review of recent developments. Technical Report Part
No.2, IWA, 2001.


	Session Index
	Author Index



