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Abstract

This paper is concerned with the regulation problem of open-
channel hydraulic systems. More predsely the water flow and
level within the read are cntrolled trough the opening rates
of two gates locdized at ead side of the reach. The
hydrodynamics of such a system is governed by the non linear
Saint-Venant partial differential equations. In the first part of
the paper a reduction method which leads to a linea finite
dimensional approximation model is siown to be convenient
for control purpases. Then an original solution is proposed for
the optimal regulation problem. This lution is designed to
be robust to the gpproximation error. Finally, the existence of
two very different time-scaes in the problem is used to
deauple the regulation of the read and the regulations of the
gates. The method is applied to a full non linea partia
differential equations model.

1 Introduction

Regulation of irrigation channels has receved an increasing
interest over the last two or three decales. In Europe and in
North-America, alot of interconneded irrigation networks are
arealy observed and controlled by a distant human operator
via mmmunicaion systems. However, water is becoming a
rare and more expensive resource This has generated the
nedl for fully automatized regulation systems which would be
able to minimize the water consumption and supply a time-
varying demand “online”.

Generally, anirrigation network is a made of a primary open-
air canal which deserve secondary canals and/or pressurized
network of water distribution which are mnneded to the
primary canal. Canals themselves are made of severa long
readies (most of the times, they are several kilometres long)
separated by engineaing works (like diding gates for
instance). This open-channel hydraulic part is the most
complex one. Its dynamicd behaviour is charaderized by
important time lags (due to water transport), wave
superposition effects and strong ronlineaity (mainly around
the works).

In this paper we will focus on the regulation of asingle reach

of such an open-channel hydraulic system. Usually the readh
dynamicsis modelled by a set of non linea hyperbadlic partia
differential equations : the so-cdled Saint-Venant equations.
These aquations are derived from the mass and kinetic
momentum balances in an infinitesimal length of the read.
Assuming a one-dimensional laminar flow of an
incompressible and homogeneous fluid (the water) these
balances may be written (see[1]) :
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where x denotes the read length coordinate, t the time
variable, S(x,t) the wetted cross gdion, Q the water flow, g
the gravity acceeration, h the water level, | the canal slope
and J a friction term depending on the water flow and of the
wet perimeter (seefigure 1). The water cross ®dion depends
on the water level (for instance, S=Bh in the cae of the
redangular cross ®ction in figure 1). Usually the friction
dopeisgiven by the Manning-Strickler formulae:
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J(Q,9) = F 2

with D = KYSP)?® where P is the wetted perimeter
(P = B+2h in the cae of the redangular cross sedion in
figure 1) and K is the Manning-Strickler coefficient which
reflects the roughness of the walls and the viscosity of the

fluid.
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Figure 1 : parameters and variables for the state equations
of a single reach in an open-channel networks.

Usualy, controlled inputs are in the boundary conditions at
the two ends of ead reach. For instance, with two gates
boundary conditions may be written (see[1]) :



Q(x=0,t) = Cay,/2g(hy, (t) ~h(x = 0,1))

Q(x=L,t) = Ca4/2g(h(x = L,t) = hyoun ()
where L is the reach length, C a coefficient depending on the
gate characteristics, a; the opening rate of the gate i (see
figure 2), hy, is the upstream water level and hyown the
downstream one. With such boundary condition, the natural
controlled inputs are the two opening rates q;..
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Figure 2 : classical control of an open-channel reach
with the opening rates a; of two dliding gates.

These two opening rates are usually realised via an endless
screw and an electric engine for which the dynamics is far
faster than the dynamics of the water in the reach. Hence
these dynamics of the gates are frequently neglected and the
controlled inputs may be directly chosen as the values of the
flow and/or the water level at each end of the reach. In this
paper we will consider that the two controlled variables are :

h =L,t)=
.(X L,1) =uy(t) )
Q(x=0,t) =u,(t)

where the time derivatives are introduced in order to reject
constant perturbations. The boundary control problem (1)-(4)
has been the objed of a wide range of control studies. Some
of them wused classicd finite dimensional tedniques
(LQ/LQG, GPC, pole placemnent, PI, etc.) but applied on
simplified and at least spatially discretised models. Other
works applied to the PDE model (semigroup approach [2]-[3],
generalised Lyapunov approach [4] or infinite-dimensional
optimisation approadc [5]). In this paper, the control law is
designed to be robust to the reduction error, that is the
additive model error between the PDE model and the
discretized finite-dimensional model which is used to design
the optimal regulator.

In sedion two, the lineaization of the PDE model, its
transformation to an adimensional form and its reduction to a
finite dimension state-space redizaion are performed. In
sedion three the reduction error on the transfer matrix is
computed and robustness constraints are derived from the
singular values of this error matrix. In sedion four a
frequency-shaped LQ control approac is applied to compute
an optimal regulator which satisfies the robustness
congtraints. Finally, in sedion five, this control solution is
coupled with a Kalman filter used to estimate the state from
the measured upstream water level and downstream water
flow. The whole @ntrol structure is applied to operate the full
nonlinea partial differential equations model.

2 Finite-dimensional linear approximation using
orthogonal collocation

In this sction, a finite-dimensional linea approximation of
the boundary control problem (1)-(4) is derived. Let us first
consider the lineaizaion of the Saint-Venant equations.
Equations (1) show that there exists a uniform steady-state
solution

X) =
EQe((X)): o @
e e
if and only if the condition J(Qe,he) = | holds. In this paper,
we will consider that purpose of the control problem is to
read a water flow Q. with the uniform water level profile he

such that this last condition holds. With the dimensionless
state variables
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the lineaized Saint-Venant equations may be written
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As it has been shown in [6] this lineaized pertial differential
equations model is sufficiently acarate & least for control
purposes, even if the water flow and level profiles are far
from the steady-states ones. The main nonlineaities are
locdised around the aoss-structure but the read dynamics
itself isessentially linear.

An implicit finite difference scheme cdled the Preismann
scheme (see [7]) is usualy applied by the hydraulics
spedalists to perform the numerical integration the Saint-
Venant equations. We will use this unconditionally stable
agorithm to compute our “reference solution” but the control
law will be derived in the sequel from a reduced model
obtained from the orthogonal collocaion method (see [8]).
The am of this last method is to get an approximation of the
PDE solution redized as the solution of a system of ordinary
differential equations via a discretization of the space
variables only. It has arealy been successfully applied to the
nonlinea mode (1) (see[9]) and will be used heredter to get
a linea finite-dimensional approximation of the reach
dynamics.

Let us consider N collocaion points x; aong the reador
length chosen to be zeos of a N™ order orthogonal
polynomials defined on [O,L]. The orthogonal collocaion
method consists in searching an approximated solution by a
separation of variables principle in the form of a space



interpolation at the collocation points x with time-varying
coefficients, that is:

N N (8)
Q=3 QIOL; (9 5 ha(x0) = 3 hy(HL;(9)
= =
where
X=X
L, ()= [ 9

kr-J

are the (N-1)™ order Lagrange interpolation polynomials'.
Replacing the water flow and level in equations (6) by their
approximation defined in (8) gives rise to a linear finite
dimensiona system of the form :

X(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
where the state vector

X(t) = (g (), 1y (0),-.en By (£, QD) Qo (1), Qu (1) (12)

is now made of the values of the water level and flow at the
collocation points. The boundary conditions (4) define
directly the B matrix since

) Eh(x Lt)% d Chy ()0 ()L
A x=00g d RO H.0F

and the measured output of the system are chosen to be the
complementary variables:

(10)

(12)

Ohy (t E
y= hy (t) (13)
o OF
This collocation method has been applied to integrate the
model of an experimental micro-canal in which the following
values for the coefficients has beenused : L =8 [m], B=0.1
[m], | = 20073, Q.= 4.110° [m’s"], he= 0.9010™ [m], K = 100.
In figure 3, asimulation run is performed for the three models
: the non-linear Saint-Venant equations, the linearized PDEs
and areduced linear collocation model with N = 5 points. The
initial water level and flow profile are chosen to be uniform
with values Q(0,x) = 1.800° [m’s?], h(0,x) = 0.4010° [m] for
al xin [O,L]. As an illustration, the water flow at the three
interior collocation points computed with the three models are
plotted and shown to be very similar. Thisis also the case for
water levels and flows at any point taken along the reactor
length.
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L If the interpolation points x, are zeos of a N™ order
orthogonal poynomials defined on [OL], the the
corresponding Lagrange interpolation polynomias are
orthogonal themselves.

Figure 3: the water flow at the three interior collocation
points computed with the orthogonal collocation method
(continuous line), the Preismann scheme applied to the non-
linear Saint-Venant equations (dashed lined) and the
Preismann scheme applied to the linearized model (dash-
dotted line).

3 Reduction error and robustness constraints

Usually, classicd control approaches a agplied to finite-
dimensional approximations of PDEs models without any
concern to the numerical errors occurring in the reduction
step. However, in this case we point out that the transfer
matrix of the lineaized Saint-Venant model may be
computed as the solution o the following ordinary
differential boundary value problem :

s$hixg = - 9%

ox
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sh(L,s) = Gy(5):5Q(0,5) = Giy(9);

%1(s) = h(0,s); ¥,(s) = Q(L.9)
where s denotes the Laplace variables and the “hat” over a
function denotes its Laplace transform. The solution of
operational equations (14) may be explicitly computed and
written in the form:
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It is then passhble to compute the reduction error between the
lineaized PDEs model and the finite dimensiona linear
model obtained by the wllocation method expressed in term
of frequency resporse, that is:

G(je) = (1 +A(j0)G(jw) (18)
G(jw) = (1 + i iW) " G(jw)
where
G(s)=C(sl - A'B (19

is the transfer matrix of the reduced model computed with the
collocaion method (see @uations 10) ; w denotes the
pulsation ; Agjw) and Ai(jw) are the output reduction error
written respedively in dired and inverse multipli caive forms.
It seems then ratural to look for a dosed loop finite-
dimensiona controller K, designed on the finite-dimensional
model G(s) which is robust to the model errors A¢(jw) and
Aig(jw). Defining the sensibili ty maps

S=(1+GK)™?, T:=(1 +GK)™GK (20



it may be found (see [10], [11]) that robustness conditions in
stability and performances may be written in the form

o . 1
g’ 0= ZaGan

. 1
S i)

where @ denotes the maximum singular value of a given
matrix. Hence the actua problem isto find out a controller K
which makes the sensitivity matrices S and T as small as
possible in order to guarantee stability and performance in
spite of the reduction error. In order to do so, we will use a
classical loop shaping approach (see [12]). The main idea is
to minimize the sensibility matrix Sin low frequencies since
the system is globally low-pass and to minimize the sensility
matrix T in high frequencies since the model reduction error
is high essentially in a high frequencies domain (see figure 4
hereafter). Considering the following approximations
o(T(jw) Do(GK(jw)) Uw > oy
o(S(jw)) Oa(GK(jw)
where  and , denotes respectively low and high
pulsations/frequencies domain boundaries, this leads to the
following inequalities
E(Asl(jw))'mw>% and T((je) < oK (), To<y (22)
Let us point out that if these last conditions hold thereis still a
frequency range corresponding to the pulsations [w),wy]
where robustness conditions in stability or performance are
note satisfied. However, the robustness constraints in stability
and performance are now expressed in terms of the singular
values of the open loop transfer GK ,.and are therefore far
easier to handle than the constraints on the sensibility
matrices. Practically the range [w,w,] will be made as small
as possible and eventually reduced to a single point.

ODwOIR (21)
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4 Design of an optimal controller

In order to solve our optimal control problem (stabilisation
around a uniform water flow and level profiles) with the
robustness constraints (23), we have used an approach based
on the linear quadratic optimisation problem with frequency
dependant weights on the quadratic cost functional (see [13],
[14]). Frequency depending weights are equivalent to the
definition of a filter R(s) on the inputs and another filter P(s)
on the outputs. These two filters are defined as
- TR . _ 1+Tps
RO=1% rRslz’ P =ke 1+10rps
where |, is the real 2x2 identity matrix. This choice is such
that the weight R(s) allows a fast decreasing of the transfer
singular values at high frequencies (in order to improve
robustness to the error and better noise filtering) and such that
the weight P(s) increases the transfer singular values at low
frequencies (allowing a better performance at these low
frequencies).

(24)

P

It is now possible to find out an optimal regulator K which
realize the optimal inputs as a solution of a Riccatti equation
where the weights are frequency dependant. These weights
are redlized as the two filters R and P chosen such that the

robustness constraints (23) are satisfied. In figure 4 hereafter
are plotted the maximum and minimum singular values of the
open loop transfer matrix GK obtained in such a way. They
are compared to singular values of the two model
multiplicative errors and to the singular values of the two
sensibility matrices in order to check that the robustness
constraints (23) are indeed satisfied.

150

dB
o (GK)
100
g (GK) _
g (Ais)
50 \ T
o(T,) a(4,)
a 1
o (S,) log(|w)
-50

-2 0 2 4

10 10 10 10 10

Figure 4 : robustness constraints express in terms of
singular values of the open loop transfer matrix GK,
are satisfied. Chosen filters parameters values are
kR: 1, Tr=50, kp: 300, 1p=.01.
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Figure 5 : the controller computed with the proposed
approach is applied to the three different models : the
collocation linear model (continuous line), the
linearized PDEs model (dash-dot line) and the Saint-
Venant nonlinear equations (dashed line). The water
flow at the three interior collocation points are
plotted.

This controller has been applied to the finite-dimensional
model for which it is optimal. Obviously stabilization around
the prescribed steady-state uniform water flow and level
occurs. The same controller has been applied to the linearized
partia differential equations model in order to check that it is
indeed robust to reduction errors. Finaly, it has to be pointed
out that the controller stabilizes also the non linear Saint-
Venant models. This is not so surprising since the computed
controller has to be robust to a range of perturbations and not
only to perturbations due to the reduction step. Results from
the application of the state feedback to the three different
models are plotted in figure 5.

Finally it has to be noticed that the state of the reduced model



are the water flow and level at the diff erent coll ocation points.
Usudly only the water flow and level around the aoss
structure ae adually measured. In our case the measured
outputs are the water level at the entrance of the reach and the
water flow at the bottom of the read. Hence to apply the
computed static state feadback, the water levels and flows at
the llocaion points have to be estimated. The gproach
proposed in [15] has been applied to design an observer
which take into acount the robustness constraints. Figure 6
shows the convergence of the estimator and the stabilisation
of the water flow around the stealy-state value in the cae of
a dosed loopregulator based on the estimated state.

5 Concluding remarks

In this paper a method has been propcsed to design classical
finite-dimensional controllers to achieve optimal control of
linear distributed parameters g/stems (governed by partial
differential state eguations). The main ideais to approximate
the partia differential equations by a set of ordinary
differential equations (reduction of the model) using a
pseudo-spedral method (here the orthogonal collocation
method) and then to design a mntroller which is robust to the
reduction error. A classicd loop-shaping approach may be
used to achieve the robustness constraints. It results in the
design of two simple first order filters which have to be added
to the optimal controller structure.

The method has been applied to the problem of controlling
the water flow in an open channel read modelled by the
partial differential Saint-Venant equations. It has been shown
to be very efficient even in the presence of a state estimator
and non-linea perturbations (due to the lineaizdion step).
Generally speaking, authors are cnvinced that once the
reduction procedure has been performed in order to keep the
dynamics properties of the origina distributed parameters
model, and if the controller is designed to be robust to
reduction errors, the resulting controller is easier to compute
and more dficient than controllers based on an infinite-
dimensional approadh.

x10°° Qlin—Qobs

1

0.5 B

—os| 4

-1.5

o 20 a0 60 80 100 120 140 160
Time,

Figure 6 : estimation errors on the water flows at the
three interior collocation pants. Both "real” and
estimated states are nverging to the prescribed
uniform steady-state \alue.
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