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Abstract

This paper presents an active steering strategies for a railway
vehicle to improve performances on curves. By feeding for-
ward a desired angle of attach and the radius of curves, a feed-
forward control law is proposed and verified. In order to assess
its performance issue, parameter variations such as creep coef-
ficients and nonlinearities of the wheel conicity are considered.
The simulation results show a significant improvement. Al-
though the feedforward strategy depends on the knowledge of
the yaw stiffness of the system, no interference with the stabil-
ity make it preferable.

1 Introduction

A well-known conflict between stability and steering for rail-
way vehicles with coned/profiled wheels has been a chal-
lenge [1]. Though the kinematic instability of the solid-axle
wheelsets can be removed through a stiff yaw connection, it de-
teriorates curving performances [2]. There have been many in-
vestigations on the possible mechanical solutions such as cross-
bracing, body steering and primary yaw damping, by which the
trade-off can be improved [3]. However the contradiction be-
tween high-speed stability and effective curving still remains.
Active control can provide a solution for this problem, although
so far the practical applications are restricted to the secondary
suspension to improve ride quality. The incorporation of active
control offers a design flexibility which is not available in any
mechanical suspensions. With such a flexibility, a number of
publications illustrate the possibility of removing the trade-off.
In contrast to previous studies of active stability [4], active yaw
relaxation [2] and active the lateral position and/or the yaw mo-
ment of the wheelset control [5], this paper investigates a feed-
forward strategy, which offers a practical solution for improv-
ing curvature performance without compromising the stability.

The remainder of this paper is organized as follows. In addition
to a description of a railway vehicle, a brief introduction of an
active strategy toward vehicle stability is presented in Section
2. Focusing on a comparison between so-called radial and per-
fect steering, the feedforward strategies are detailed in Section
3 and assessed in Section 4. Finally, Section 5 gives the main
conclusions and some suggestions for future research.

2 Basic Principles

A plan view of a half-vehicle is depicted in Fig.1 (a), in which
two actuators are located between wheelsets and the bogie
frame. Appendices B and C present the necessary parameters
and their normal quantities, respectively. An introduction of
three reference coordinates provides a convenience of model-
ing the system, where the coordinate FL is attached to and
moving with the leading wheelset; the coordinate FT is rele-
vant to the trailing wheelset; and the coordinate FG applies to
the bogie frame and body. The three coordinates move with the
same velocity vs as the longitudinal dynamics are not modeled.
Each coordinate has its own yaw velocity of ! l = �vs=Rl,
!t = �vs=Rt and !g = �vs=R w.r.t. the track, but only one
of them is independent since the frames are inter-related by the
angles of �l = ly=Rl and �t = ly=Rt. In addition, the equiva-
lent yaw stiffness and damping of the primary suspensions are
employed to represent their effect on the yaw dynamics of the
wheelset and bogie. The equivalent yaw stiffness and damping
w.r.t. the wheelsets are Kpw = kpx l
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are w.r.t.
the bogie. The rail/wheel creep forces generally depend both
on creepages, being relative normalised velocities between the
rail and wheel, and the creep coefficients, depending on the ver-
tical loads at individual wheels. Accordingly, the lateral creep
forces of the wheelsets are given by
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The torques at the wheelsets due to the longitudinal creepages
are represented as follows.
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By introducing �l = 1=Rl, �t = 1=Rt, F11 = 2f11, and
F22 = 2f22, a state-space representation is expressed as

_x = A x+B u+P w (5)

where the states x, inputs u, and disturbancesw are given by,

x =
�
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Figure 1: A railway vehicle
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and the expression of matrices A, B and P are given in Ap-
pendix A. Generally speaking, the model developed so far,
being a linear representation of the system, is suitable for the
development of the control strategies, but it is not sufficient for
control assessment. A more complicated version [6], including
the model of the actuator, the sensor dynamics and the nonlin-
earities of the wheel conicity, will be applied for evaluating the
controllers.

Fig.1 (b) shows a very simple representation of the railway
vehicle, being treated as a single rigid body with a mass of
M = 2mw +mg +mb. In steady-state, only the creep forces
Fyl and Fyt are necessary to counteract the lateral unbalance
load (or cant deficiency forces Fc) for the vehicle on curves.
Thus, the unnecessary creep torques T crp

l
and T crp

t
can only

result from an inappropriate steering. It is clear that in the per-
fect steering conditions, the following must hold.

Fyl = Fyt = Fc=2 (6)
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in which Fc = M Cd and Cd � v2
s
=R � g �, where � is the

cant angle of the track on the curve. Suppose that y rl = 0 and
yrt = 0, the above requirements are equivalent to  l =  l =

 d and yl = yt = yd, in which  d is the desired angle of attack
for both wheelsets while yd the desired lateral displacement.
Referring back to Eqn.(1), (2), (3) and (4), it yields that.
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Obviously, if the angle of attack and lateral deflections of the
wheelsets can be readily measured, it would then be straight
forward to design a control for the active steering. Unfortu-
nately these signals are difficult to measure, either expensive
sensors are needed or complex estimators have to be used.
However, if  l � t = 0 and yl � yt = 0, the system can meet
requirements of the perfect steering. In steady-state,  l =  t
implies Fyl = Fyt, leading to T crp

l
+ T

crp

t
= 0. Likewise,

yl = yt implies T crp
l
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t
. Thus T crp

l
= T

crp

t
= 0 are the

only solution. Noting that ( l � g)� ( t � g) is equivalent
to  l �  t while (yl � yg) � (yt � yg) to yl � yt, it requires
only measuring the relative movements of the wheelsets and
the bogie.

Although a number of controllers may be developed, this paper
proposes a feedforward control law to implement the strategy.
The obvious advantage is that it does not interfere with the sta-
bility and therefore can be developed independently.

3 Feedforward Control Strategies

Radial steering, achieved by passively or actively operating the
wheelsets in line with the radius of curvature, generally cannot
result in perfect steering except for zero cant deficiency (i.e.
Cd = 0, the centrifugal force is exactly balanced by the gravity
force of the vehicle on the canted track). Thus a more sophis-
ticated strategy is necessary. The strategy studied in this paper
focuses on the quasi steady-state performance although how to
avoid the performance becoming worse during the transition is
also under consideration.

The feedforward control laws proposed for the perfect steering
are,
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pw

�
 d �

lx

Rc

�
(10)

Tt = Kc

pw

�
 d +

lx

Rc

�
(11)

in which  d is the desired angle of attack, being given by (8),
and Kc

pw
is the yaw stiffness and Rc is the radius of curvature

used in the control law. Perfect steering reduces to radial steer-
ing if  d = 0. Clearly, the control laws depend on the accuracy
of the yaw stiffness Kpw and the curvature R. Perfect steering
is only attained if the parameters are exact.

To prove that above control laws could result in the perfect
steering, two new variables are introduced, which are y� =

yl � yt and  � =  l �  t. Then, the steady-state version of
equations of the system becomes

F22 
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By introducing LX = [y�;  �;  g ]
T and LY = [0; L1; L2]

T ,
then
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It is true in this case that the singular values of LA all exist and
positive, thus

kLYk2

�(LA)
� kLXk2 �

kLYk2

�(LA)

The perfect feedforward control law (10) and (11) with precise
knowledge of yaw stiffness and curvature results in L2 = 0

and L3 = 0 (since 2 d =  l +  t ), therefore y� = 0,
 � = 0 and  g = 0 are unique solution of the system, im-
plying the perfect steering conditions of y l = yt = yd and
 l =  l =  d. Excluding  d from the control law leads to
L3 = �2Kpx d, which in turn results in y�,  � and  g be-
ing not equal to zero. This confirms that radial steering is not
perfect, and the distance from the ideal depends on the size of
 d since kLYk2 = 2Kpw d (finally on the magnitude of Cd).
On the other hand, the performance of the proposed control law
is affected by parameter variations such as the inaccuracies of
the curvature �R and the yaw stiffness �Kpw. The �R (i.e.
Rc = R+�R) leads to L2 = 2lx�R=R

2. Thus,

2lx�R

R2 �(LA)
� kLXk2 �

2lx�R

R2 �(LA)

it is clear that the system performance depends both on the
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Figure 2: Creep forces

curvature variation and the curvature itself. Moreover, the vari-
ations of yaw stiffness �Kpw (i.e. Kc

pw
= Kpw + �Kpw)

yields L2 = 2�Kpwlx=R and L3 = 2�Kpw d. Then, the in-
equation given below reveals how �Kpw affects the steering.
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p
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Equation (12) implies that only two of y�,  �, and  g are
independent, indicating the idea of y l = yt and  l =  t is suf-
ficient to achieve the perfect steering. The equal lateral forces
(i.e.  l =  t) alone however does not necessarily lead to zero
longitudinal creep as  � = 0 can also give y� = 2lx g .

4 Simulation and analysis
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Figure 3: Results for the nonlinearity

Computer simulations are used to compare the performance of
the different strategies, which are the stability control only, the
radial and the perfect steering.

Fig.2 shows that the perfect feedforward strategy yields equal
lateral and zero longitudinal creep forces in quasi steady-state
whereas the radial steering and the stability control only strat-
egy do not. If the lateral creepages of the leading (solid-line)
and trailing (dash-line) wheelset are unequal, the yaw creep
torques at leading and trailing wheelsets are essential to balance
the torque they generated. The stability control only strategy is
the worst. Clearly, none of them can reach perfect steering dur-



ing transients and it takes 2 sec or so for the system to settle
down.

One of the objectives of this paper is to assess the performance
of the control laws in different conditions including vehicle
speed change and system uncertainties. A number of indices,
are introduced for the assessment. Tl and Tt, which are root
mean square (r.m.s) of Tl and Tt respectively, are applied to
evaluate the magnitude of the control effort. Likewise, F yl and
Fyt are utilized as indicators for lateral creep forces of individ-
ual wheelset.

Fyl =
Tc

q
1
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R
Ts

0
[Fyl(t)�Fd(t)]

2
dt

Ts sup
t2[0;Ts]

jFd(t)j

where Ts is the duration of assessment, Tc the period on

Table 1: Uncertainties for assessment(vs = 50 m=s,)

Title Name Content
Nor Normal case � = 0:2,Cd = 1

Cef Creep coefficients f11,f22 decreases 20%
Y ws Yaw stiffness Increases 20%
Sts Steering link. stiffness Increases 80%
Non Conicity nonlinearity Includes
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Figure 4: Results for parameter uncertainties

curves, Fd is the desired creep force at individual wheelsets
which has the value of Fc=2. The expression for Fyt is the
same as that of Fyl except substituting Fyl by Fyt. The lon-
gitudinal forces are standardised as Fxl and Fxt, only the ex-

pression of Fxl being given.
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Furthermore,Wl and Wt are employed as wear indices of the
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Figure 5: Results for different cant deficiencies (� = 0:3)

wheelsets, being r.m.s of Wl and Wt [8].

W =

�
0:005� Crep � Fsum CrepFsum � 160

0:025� Crep � Fsum � 3:2 CrepFsum > 160

in which Crep and Fsum are magnitudes of total creepage and
creep force. T is used to evaluate the overall size of control
inputs, being give by.

T =

r
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t
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Similarly, Fy, Fx and W are for the overall lateral and longi-
tudinal forces, and wheelset wear.

The control design is based on the knowledge of parameters,
however the precise knowledge is not always possible. It is,
therefore, necessary to evaluate the sensitivities of the control
laws under the parameter variations and the nonlinearity of the
conicity. Table.4 lists all the cases to be assessed, and Fig.3
(a) presents the nonlinearity of the wheel conicity used in the
study.

A comparison of the results between linear and nonlinear
concities is given in Fig.3 (b) and (c), in which only the lat-
eral displacements and the yaw torques due to the longitudinal
creep forces are presented. The nonlinearity plays a key role
on the quasi steady-state lateral displacement, since on some
curves the conicity of the wheel at the contact point with rail
is much less than the magnitude of 0:2 used in norminal case.
As a consequence, it results in a larger displacement causing
a worse transient longitudinal forces as shown in figure (c).
Nevertheless, the nonlinearity does not affect the steady-state
steering of the vehicle. Fig.4 shows the results for the parame-
ter uncertainties of the creep coefficients and the yaw stiffness.
In either case, the perfect steering is not achieved as expected.
In particular, the performance due to the yaw stiffness variation
is much worse than that to the coefficient variation. Therefore
though the creep coefficients play a part, the yaw stiffness is
more critical for the perfect steering control law.

Figure 5(d) shows that the variation of the creep coefficients
contribute most to the wear of the wheelsets, however the vari-
ation of the yaw stiffness produce the most uneven wear among
the wheelsets. The indices given in 5 (b) and (c) discover the
relative distances of the creep forces from the their desire val-
ues, providing another way to evaluate the ’How bad or good’
of a steering. The relative distance of lateral forces from perfect
steering with 20% yaw stiffness uncertainty is about 10%. On
the contrary, there figures for the coefficient and nonlinearity
are around 3%, being very close to 2.5 percent for the normal
case. Moreover, the relative distance of the longitudinal forces
of yaw stiffness uncertainty is much worse. All the indices for
80% steering linkage steering increase are almost same with
those of the normal case, proving the system insensitivity to-
ward it. Not surprisingly, The control effort remains same for
the various parameter variations (as shown in Fig.5(a)). This
explains the control law has no react to parameter variations.

5 Conclusions

Unlike the radial and stability control only strategy, the pro-
posed feedforward strategy has the capability of achieving the
perfect performance without interference of the vehicle stabil-
ity. This strategy requires the knowledge of the designed angle
of attach depending on the cant deficiency, the mass of the ve-
hicle, the creep coefficients. In addition, the sensitivity to pa-
rameter variations are analysed and verified by the simulations.
Among the others, the yaw stiffness variation is most signif-
icant one. It is, therefore significant to improve the system

performance under the yaw stiffness variation. Incorporation
with some feedback strategies can overcome this problem but
request further investigation.

References

[1] Wickens, A.H.: Stability Criteria for Artculated Railway
Vehicles Possessing Perfecting Steering. Vehicle System
Dynamics 7 (1978), pp. 165–182.

[2] Shen, G., Goodall, R.M.: Active Yaw Relaxation for Im-
proved Bogie Performance. Vehicle System Dynamics 28
(1997), pp. 273–282.

[3] Illingworth, R. and Pollard, M.G.: The Use of Steering
Acitve Suspension to Reduce Wheel and Rail Wear in
Curves. Proc. Instn. Mech. Engrs 196 (1982), pp. 379–
385.

[4] Mei, T.X. and Goodall, R.M.: Modal Controllers for
Active Steering of Railway Vehicles with Solid Axle
wheelsets. Vehicle System Dynamics 34 (2000), pp. 24–
31.

[5] Perez, J., Busturia, J.M., Goodall, R.M.,: Control strate-
gies for active steering of bogie-based railway vehicles.
Control Engineering Pratice 10 (2002), pp. 1005–1012.

[6] Mei, T.X. and Goodall, R.M.: Robust Control of Indepen-
dently Rotating Wheelsets on a Railway Vehicle Using
Practical Sensors. IEEE Trans. on Control System Tech-
nology 9 (2001), pp. 599–607.

[7] Goodall, R.M., Li, H.: Solid Axle and Independenly-
Rotating Railway Wheelsets - A Control Engineering
Assessment of Stability. Vehicle System Dynamics 33
(2000), pp. 57–67.

[8] Mei, T.X. and Goodall, R.M.: A comparison of control
strategies for active steering of railway wheelsets. AVEC
2000, Ann Arbor, Michigan, 2000.

A MatricesA,B, and P

A =

h
O7�7 I7�7

A21 A22

i
B =

h
O7�2

B2

i
P =

h
O7�8

P2

i
in which, I represents the identical matrix while O corre-

sponds to the zero matrix.

A21 =

2
66666664

�kpy

mw
0

kpy

mw
0

F22
mw

0
kpylx

mw

0
�kpy

mw

kpy

mw
0 0

F22
mw

�kpylx

mw
kpy

mg

kpy

mg

�2kpy�ky

mg

ky

mg
0 0 0

0 0
ky

m
b

�ky

m
b

0 0 0
�lgF11�

r0Iw
0 0 0

�Kpw

Iw
0

Kpw

Iw

0
�lgF11�

r0Iw
0 0 0

�Kpw

Iw

Kpw

Iw

lxkpy

Ig

�lxkpy

Ig
0 0

Kpw

Ig

Kpw

Ig

�2Kpg

Ig

3
77777775

A22 =

2
666666666664

�F22
vs

�bpy

mw
0

bpy

mw
0 0 0

bpy lx

mw

0

�F22
vs

�bpy

mw

bpy

mw
0 0 0

�bpylx

mw
bpy

mg

bpy

mg

�2bpy�by
mg

by

mg
0 0 0

0 0
ky

m
b

ky

m
b

0 0 0

0 0 0 0

�F11l
2
g

vs
�Bpw

Iw
0

Bpw

Iw

0 0 0 0 0

�F11l
2
g

vs
�Bpw

Iw

Bpw

Iw
lxbpy

Ig

�lxbpy

Ig
0 0

Bpw

Ig

Bpw

Ig

�2Bpg
Ig

3
777777777775



B2 =

2
66666664

0 0

0 0

0 0

0 0

1

Iw
0

0
1

Iw
�1

Ig

�1

Ig

3
77777775

P2 =

2
66666664

�g 0 v
2
s

0 0 0 0 0

0 �g 0 v
2
s

0 0 0 0

�g

2
�g

2

v
2
s

2

v
2
s

2
0 0 0 0

�g

2
�g

2

v
2
s

2

v
2
s

2
0 0 0 0

0 0
F11l

2
g
+Kpwlx

Iw
0 vs +

Bpwlx

Iw
0

lgF11�

r0Iw
0

0 0 0
F11l

2
g
�Kpwlx

Iw
0 vs �

Bpwlx

Iw
0

lgF11�

r0Iw

0 0
�Kpwlx

Ig

Kpwlx

Ig

vs

2
�

Bpwlx

Ig

vs

2
+

Bpwlx

Ig
0 0

3
77777775

B Nomenclature
bpx; bpy : longitudinal, lateral damping per wheelset of primary suspensions

by : lateral damping per bogie of secondary suspensions
Bpw; Bpg : equivalent yaw damping of primary suspensions per wheelset, bogie

Cd : cant deficiency,
f11; f22 : longitudinal, lateral creep coefficient
Fyl; Fyt : lateral creep force at leading, trailing wheelset

g : gravity
Iw ; Ig : wheelset, bogie yaw inertia,

kpx; kpy : longitudinal, lateral stiffness per wheelset of primary suspensions
ky : lateral stiffness per bogie of secondary suspensions

Kpw; Kpg : equivalent yaw stiffness of primary suspensions per wheelset, bogie
ly : half spacing of longitudinal primary suspension,
lx : half longitudinal spacing of wheelsets,
lg : half gauge of wheelset

mw;mg;mb : wheelset, bogie, half body mass
r0 : wheel radius
R : radius of the curved track

Rl; Rt : radius of the curved track at leading, trailing wheelset
Tl; Tt : active control torque input at leading, trailing wheelset

T
crp

l
; T

crp

t
: creep torque at leading, trailing wheelset

vs : vehicle forward speed
yl; yt : lateral displacement of leading wheelset, w.r.t. frame FL

yt : lateral displacement of trailing wheelset, w.r.t. frame FT
yg ; yb : lateral displacement of the bogie, half body w.r.t. frame FG

yrl; yrt : track lateral irregularity of leading wheelset,
� : wheel conicity,
 l : yaw angle of leading wheelset, w.r.t. frame FL
 t : yaw angle of trailing wheelset, w.r.t. frame FT
 g : yaw angle of the bogie, w.r.t. frame FG
� : track cant angle

�l; �t : track cant angle on curves track at leading, trailing wheelset

C Nominal Parameters

bpx 1.2e4 Ns/m bpy 2.4e4 Ns/m
by 4.0e4 Ns/m f11 1e7 N
f22 1e7 N Iw 766 kg/m2

Ig 3200 kg/m2 kpx 1.9e6 N/m
kpy 9.4e6 N/m kpy 4.9e5 N/m
lx 1.225 m ly 1.0 m
lg 0.75 m mw 1376 kg
mg 3477 kg mb 17230 kg
r0 0.445 m vs 65 m/s
� 0.3 - � 0.1047 rad
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