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Abstract

This paper presents the development of a new method for
parameter estimation in linear state space model. The pro-
posed method is based on a Rao-Blackwellised particle filter.
The simulation results with a railway vehicle dynamic model
are provided which demonstrate the effectiveness of the pro-
posed method in comparison with the conventional EKF-based
method.

1 Introduction

The faults in the suspension elements of a railway vehicle will
leads to the changes in the parameter values of the vehicle dy-
namic model, which in turn may lead to the deterioration of
ride quality and increase of wheel-rail wear; in some cases, it
may even cause a safety problem. Thus, an appropriate method
is required to perform parameter estimation so that the vehicle
condition monitoring system is able to detect and isolate incip-
ient faults. The problem of parameter estimation in dynamic
systems has been intensively studied and the basic estimation
techniques are well established, but, because of the complex
nature of railway vehicle dynamics, the application of the tech-
niques to this particular problem is not straightforward.

The dynamic behaviour of the railway vehicle is usually de-
scribed by a linear stochastic state space model. Convention-
ally, parameter estimation in such a system is performed with
the extended Kalman filter (EKF) based approach. Although
the EKF approach to joint parameter and state estimation prob-
lem for linear systems with unknown parameters is well known
and widely spread, it has been shown that in general the esti-
mates may be biased or divergent (seee.g. [11] and references
therein). In this paper, a new parameter estimation method for
linear stochastic state space model is developed and applied for
estimation of the parameters in the railway vehicle dynamic
model. The new method is based on the newly-developed
Rao-Blackwellised particle filter. The effectiveness of the new
method is demonstrated through the simulation with the rail-
way vehicle dynamic model and its performance is compared
with the conventional EKF approach.

The rest of the paper is organised as follows. In Section 2, the

modelling of plan view dynamics of a half railway vehicle is
presented followed by a brief review of the EKF approach to
parameter estimation for linear state space model in Section 3.
Section 4 gives a brief introduction to the Rao-Blackwellised
particle filter (RBPF) and presents the development of the new
parameter estimation method based on RBPF. In Section 5, the
new method is applied to the plan view dynamic model de-
rived in Section 2 and the results of parameter estimation are
compared with the EKF approach. Conclusions are drawn in
Section 6.

2 Modelling of railway vehicle dynamics

Failure modes effects and criticality analysis (FMECA) from
railway vehicle manufacturers has highlighted that the sec-
ondary lateral and anti-yaw dampers in a railway vehicle sus-
pension system have a lower reliability record than most other
suspension elements and are difficult to test in situ. The former
causes degraded ride quality, whereas the latter affects running
stability. The other key area is concerned with the wheel pro-
file: progressive wear can profoundly influence the contact me-
chanics and may cause unstable running at speed.

In this section, a plan view dynamic model of a half body vehi-
cle is developed with the intention to detect the faults in these
two dampers. Figure 1 gives the plan view of half of a con-
ventional bogie vehicle and the configuration of the sensors.
The plan view equations of motion of the vehicle travelling on
straight track are derived as follows:

mw1ÿw1 + 2f22
v ẏw1 + Ky(yw1 − yb)− 2f22Ψw1

−KyaΨb = 0
Iw1Ψ̈w1 + 2f11l2

v Ψ̇w1 + Kxl2(Ψw1 −Ψb)
+ 2f11λl

r0
yw1 = 2f11λl

r0
yt1

mw2ÿw2 + 2f22
v ẏw2 + Ky(yw2 − yb)− 2f22Ψw2

+KyaΨb = 0
Iw2Ψ̈w2 + 2f11l2

v Ψ̇w2 + Kxl2(Ψw2 −Ψb)
+ 2f11λl

r0
yw2 = 2f11λl

r0
yt2

mbÿb + Ky(yb − yw1) + Ky(yb − yw2) + Ksy(yb − ybd)
+Ksry(yb − ysr) = 0
IbΨ̈b + Csayl2bwΨ̇b + (2a2Ky + 2Kxl2)Ψb −Kxl2Ψw1

−aKyyw1 −Kxl2Ψw2 + aKyyw2 = 0
Csy(ẏsr − ẏbd) = Ksry(yb − ysr)
mbdÿbd − Csy(ẏsr − ẏbd) + Ksy(ybd − yb) = 0

(1)
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Figure 1: Plan view of half bogie vehicle and sensor configuration

The meaning of variables and parameter values in the equation
are given in the Appendix. Defining the relative lateral def
lections between wheel and track asd1 = yw1 − yt1 andd2 =
yw2 − yt2, the above equations can be rearranged as follows:

ÿw1 = − 2f22
mw1v ẏw1 − Ky

mw1
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mw1
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mw1
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+ aKy

mw1
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ÿbd = Ksy+Ksry

mbd
yb − Ksy

mbd
ybd − Ksry

mbd
ysr
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ḋ1 = ẏw1 − ẏt1

ḋ2 = ẏw2 − ẏt2

(2)
It can been seen that the dynamic behaviour of a railway vehicle
is very complex and highly interactive. For the development of

a model-based filter, such as an EKF, a state-space form of
system model can be derived from (2) as:

ẋ = Ax + Gβ (3)

where

x =
[

ẏw1 yw1 Ψ̇w1 Ψw1 ẏw2 yw2 Ψ̇w2 Ψw2 ẏb yb

Ψ̇b Ψb ẏbd ybd ysr d1 d2

]T

β =
[

ẏt1 ẏt2

]T

matricesA andG can be readily derived from the equations
(2) andβ can be approximated as white Gaussian noise vector
[9].

The vehicle is equipped with five sensors (a gyro and four ac-
celerometers) as shown in Figure 1 which can measure the lat-
eral accelerations of the two wheelsets (ÿw1 andÿw2), the lat-
eral acceleration and yaw velocity of the bogie (ÿb andΨ̇b) and
the lateral acceleration of the vehicle body (ÿbd). The measure-
ment equation is given as follows:

y = Hx + v (4)

where,y =
[

ÿw1 ÿw2 ÿb Ψ̇b ÿbd

]T
, v represents the

measurement noise vector and the measurement matrixH is



obtained readily from the system matrixA:

H =




A(1, :)
A(5, :)
A(9, :)
A(12, :)
A(13, :)




(5)

Faults in the secondary lateral and anti-yaw dampers are ref
lected by the changes in the damping coefficientsCsy andCsay

in equations (2), which in turn will change the matrixA of the
above dynamic model (3). Therefore, the faults can be detected
and isolated by monitoring the changes in these two parame-
ters. To facilitate presentation, the above dynamic model (3)
and (4) is rewritten as follows to include explicitly the parame-
ters associated with the faults to be detected and isolated:

ẋ = A(θ)x + Gβ (6)

y = Hx + v (7)

where,θ collects all the parameters to be monitored which
will determine matricesA (in the present case,θ =[

Csy Csay

]T
, the extension to include the wheel profile-

related parameters such as conicityλ will be discussed in an-
other paper). Note thatH is independent ofθ.

3 Parameter estimation using EKF

One way to deal with the parameter estimation problem in the
system described by (6) and (7) is to view the parameters as
additional states, or more precisely, to augment the state vector
x with the parameter vectorθ asξ = [xT θT ]T and re-write
the state space model in terms ofξ, we then have the following
set of equations:

ξ̇ =
[

ẋ
θ̇

]
= f(ξ) + G′β′

=
[

A(θ)x
0

]
+

[
G 0
0 I

] [
β
n

]
(8)

y = Hx + v (9)

For most practical applications, the measurements are usually
sampled-data (i.e. discrete) resulting from the digital imple-
mentation and the discrete version of above model is given as
follows (seee.g. [11],[12]):

ξk+1 =
[
xk+1

θk+1

]
= g(ξk) +

[
Γ(θk) 0

0 I

] [
wk

nk

]

=
[

Φ(θk)xk

θk

]
+

[
Γ(θk) 0

0 I

] [
wk

nk

]
(10)

yk = Hxk + vk (11)

where,Φ(θk) = eA(θk)T , Γ(θk) =
∫ T

0
eA(θk)τGdτ andwk,

nk are white Gaussian noises of appropriate strength. To obtain
the parameter estimation recursively, we shall consequently
faced with a general nonlinear filtering problem.

If the sampling timeT is short compared with the system time
constants, the system can be treated as linear time-invariant
over the sampling intervalT . Therefore the above nonlinear
filtering problem for estimating augmented stateξ so as to de-
termine the parametersθ is attacked by the sampled-data EKF
as follows [11],[12],[2]:

• Measurement Update at the sampling time instantk

Kk = Pk|k−1ΨT R−1
k (12)

Rk = ΨPk|k−1ΨT + Qv (13)

ξ̂k = ξ̂k|k−1 + Kk(yk −Hx̂k|k−1) (14)

Pk = Pk|k−1 −KkΨPk|k−1 (15)

where,

Ψ =
[

∂
∂x (Hx) ∂

∂θ (Hx)
]

=
[

H 0
]

• Time Propagation over the sampling interval (i.e between
measurements)

ξ̂k+1|k =
[
Φ(θ̂k) 0

0 I

]
ξ̂k (16)

Pk+1|k = FkPkFT
k+

[
Γ 0
0 I

][
Qw 0
0 Qn

][
ΓT 0
0 I

]
(17)

where,Φ(θ̂k) ≈ I + A(θ̂k)T , Γ ≈ IGT and

Fk =
∂

∂ξ
g(ξ)

∣∣∣ξ=ξ̂k

=
[

∂
∂x (Φ(θ)x) ∂

∂θ (Φ(θ)x)
0 I

]
x = x̂k

θ = θ̂k

=
[

Φ(θ) T ∂
∂θ (A(θ)x)

0 I

]
x = x̂k

θ = θ̂k

(18)

As indicated in [1],“Although this extended Kalman filter
approach appears perfectly straightforward, experience has
shown that with the usual state-space model, it does not work
well in practice”.

4 Parameter estimation using RBPF

4.1 Background

Starting from the seminal paper of Gordon, Salmond and Smith
[7], the particle filter (PF) (also known as Monte Carlo filter), a
simulation-based method for nonlinear non-Gaussian state es-
timation, has gone through a dynamic and rapid development.
In the mid 1990s, several particle filter algorithms were pro-
posed independently under the different names, see [4] for a
summary of the state-of-the-art.

The PF is developed in the framework of recursive Bayesian
estimation which attempt to approximate the complete prob-
ability density function (pdf) of the state to be estimated as



opposed to just estimating the first few central moments of it
such as in EKF. The major innovation of the PF is to approxi-
mate the required, usually complicated, pdf by a swarm of in-
teracting points called “particles” which can be considered as
the realizations or samples from the required pdf, rather than
by a function over the state space. As such, the method is not
restricted by considerations of analytic tractability. The PF will
propagate and update these particles and their mean and covari-
ance matrix are approximations to the Bayesian estimates.

The use of PF for simultaneously estimating the states and pa-
rameters has been proposed in [8] which extends the idea used
in Section 3 to the general nonlinear non-Gaussian state space
model, where a random walk model,θk = θk−1 + w′

k, with
w′

k a zero mean Gaussian white noise is used for parameter
evolution to allow the exploration of the parameter space and
reduce sample degeneracy in particle filtering. A similar idea
was used in [7], where an additional independent random dis-
turbance or “roughening jitter” was introduced to the sampled
state particles in an attempt to deal with sample degeneracy.
Extending this idea to the present case for parameter estima-
tion, the standard deviationσ of the Gaussian roughening jitter
corresponding to a particular component of the parameter vec-
tor θ is given byσ = KEN− 1

d as suggested in [7], whereE is
the interval between the maximum and the minimum samples
of this component,d is the dimension of the parameter vectorθ
(i.e. the number of the parameters to be estimated),K is a con-
stant tuning parameter andN is the number of particles used
in PF. More recently, Liu and West [10] suggested an approach
to improve the precision of the parameter estimation by using
kernel smoothing with shrinkage for parameter evolution. In
their approach, the unwanted information loss effect or over-
dispersion of the samples for the fixed parameter caused by the
independent random shockw′

k is corrected by the introduction
of negative correlations betweenθk−1 and the random shock
w′

k.

One of the major drawbacks of the particle filter for param-
eter estimation as described above is that sampling in high-
dimensional space can be inefficient because a large number
of samples is needed to represent the required pdf. A standard
technique to increase the efficiency of sampling techniques is
to reduce the size of the augmented state space by marginal-
izing out some of the variables analytically; this is an exam-
ple of the techniques called Rao-Blackwellisation. Combin-
ing this technique with the above particle filter results in Rao-
Blackwellised particle filter (RBPF) (seee.g. [3] [5]). RBPF
has been applied for state estimation of the jump Markov lin-
ear systems in [6] and a hybrid filter is obtained where a part of
the calculations is realized analytically and the other part using
Monte Carlo methods. In the following, we extend this idea
to solve the problem of estimating the unknown parameters in
linear state space models.

4.2 System description

Suppose the observations are generated by the model specified
as follows:

θk ∼ p(θk|θk−1) (19)

xk = Φ(θk)xk−1 + Γ(θk)wk (20)

yk = Hxk + vk (21)

wherep(·|θk−1) denotes the pdf conditional onθk−1, the equa-
tions (20) and (21) are the discrete version of equations (6) and
(7) with Φ(θk) = eA(θ)T |θ=θk

, Γ(θk) =
∫ T

0
eA(θk)τGdτ ,

wk andvk are zero mean white Gaussian with diagonal covari-
ance matricesQw andQv. A PF can be designed based on the
above model with the aim to determine the unknown parame-
tersθ by estimating the augmented statesξk = [xT

k ,θT
k ]T .

4.3 Algorithm for parameter estimation

As mentioned previously, the use of Rao-Blackwellisation
techniques can increase the efficiency of sampling in PF by
reducing the size of the state space to be sampled through
marginalization, which results in RBPF. In our present ap-
plication, the dimension of the augmented state vectorξk is
17 + 2 = 19, but the model (19) and (20) has a tractable sub-
structure which can be analytically marginalized out. In fact,
for each realization (or sample) ofθk, we have a single linear
Gaussian state space model. As such, the marginalization can
be carried out exactly using the Kalman filter algorithm. The
resulting RBPF is similar to PF but we only need to sample the
parameter vectorθk (in present case, the dimension ofθk is 2,
thus the size of the space to be sampled is drastically reduced).
Then for each sample ofθk, the mean and covariance of state
xk are updated using Kalman filter.

Let Zk denote the set of measurements up to timek, i.e.
Zk = {y1,y2, · · · ,yk}. The proposed RBPF-based parame-
ter estimation algorithm is summarized as follows.

Initialization: for i = 1, · · · , N , draw samplesθ0(i) from the
initial pdf p(θ0) = p(θ|Z0) and set̂x0(i) = x̂0, P0(i) = P0,
where,x̂0 is the initial state estimate andP0 is the initial state
estimation covariance matrix.

Fork = 1, 2, · · · , repeat the following steps:

• For i = 1, 2, · · · , N , draw sample θ̃k(i) from
p(θk|θk−1(i)).

• For i = 1, 2, · · · , N , propagate the mean̂xk−1(i) and co-
variancePk−1(i) of the statexk−1 as follows:

x̃k|k−1(i) = Φ(θ̃k(i))x̂k−1(i)

P̃k|k−1(i) = Φ(θ̃k(i))Pk−1(i)ΦT (θ̃k(i)) +

Γ(θ̃k(i))QwΓT (θ̃k(i))

• For i = 1, 2, · · · , N , evaluate and normalize the impor-
tance weights:

α̃k(i) = p(yk|Zk−1, θ̃k(i)) ∼ N (ỹk|k−1(i), R̃k(i))



αk(i) =
α̃k(i)∑N

j=1 α̃k(j)
(22)

where,

ỹk|k−1(i) = Hx̃k|k−1(i)

R̃k(i) = HP̃k|k−1(i)HT + Qv

• Parameter estimate is calculated as follows:

θ̂k =
N∑

i=1

αk(i)θ̃k(i) (23)

• Resampling particles{x̃k|k−1(i), P̃k|k−1(i), θ̃k(i) : i =
1, 2, · · · , N} with sampling probabilities proportional to
αk(i) to obtainN particles{x̂k|k−1(i),Pk|k−1(i),θk(i) :
i = 1, 2, · · · , N}.

• For i = 1, 2, · · · , N , performing measurement
update for state vectorx using Kalman recur-
sion to obtain particle {x̂k(i),Pk(i), θk(i)} given
{x̂k|k−1(i),Pk|k−1(i), θk(i)}, where

x̂k(i) = x̂k|k−1(i) + Kk(i)(yk −Hx̂k|k−1(i))
Pk(i) = (I−Kk(i)H)Pk|k−1(i)

Kk(i) = Pk|k−1(i)HT R−1
k (i)

Rk(i) = HPk|k−1(i)HT + Qv

5 Simulation experiments

In this section, the RBPF-based parameter estimation method
proposed in this paper is applied for estimating the parameters

θ =
[

Csy Csay

]T
in the plan view dynamic model (6)

derived in Section 2. The parameter evolution density takes the
following form as suggested in [10]:

p(θk|θk−1) ∼ N (θk|aθk−1 + (1− a)θ̄k−1, h
2Vk−1) (24)

where h2 = 1 − a2 and a = (3δ − 1)/2δ, δ is a dis-
count factor typically around0.95 ∼ 0.99. θ̄k−1 andVk−1

are the mean and variance of the Monte Carlo approximation
{θ̃k−1(i), αk−1(i)} to p(θ|Zk−1) respectively.δ = 0.99 and
particle numberN = 1000 are chosen for the following sim-
ulation. The measurement sampling frequency is1kHz, i.e.
T = 1mS. The results of parameter estimation are shown in
Figure 2 and Figure 3. For comparison, the EKF approach de-
scribed in Section 3 is also applied and the results are shown as
in Figure 4 and Figure 5. It can been seen, from these figures,
the parameter estimates from RBPF-based method converge to
the true values, whereas the EKF approach is not able to esti-
mate the parameters correctly. In Figure 4, the EKF estimate
of Csy rises and falls severely in the initial period of estima-
tion, and then tends to settle down at a negative value which is
physically not meaningful. The EKF estimate ofCsay does not
converge and drifts away from its true value as shown in Figure
5 (in all the figures, the dashed line represents the true value of
the parameter and solid line represents the estimated value of
the parameter).
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Figure 2: Estimation ofCsy using RBPF with1000 particles
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Figure 3: Estimation ofCsay using RBPF with1000 particles

6 Conclusions

A RBPF-based parameter estimation method is proposed in
this paper. The method is used to solve the parameter esti-
mation problem of the railway vehicle dynamic model where
the conventional EKF approach fails. This example clearly
demonstrates the inadequacy of the EKF-based approach and
the RBPF-based method proposed in this paper offers much
promise. Further work is being carried out to address the ro-
bustness issue for the proposed method.

References

[1] B.D.O. Anderson and J.B. Moore.Optimal Filtering.
Prentice-hall, Englewood Cliffs, NJ, 1979.

[2] J.A. Borrie. Stochastic Systems for Engineers—
Modelling, Estimation and Control. Prentice Hall Inter-
national (UK) Ltd, UK, 1992.

[3] A. Doucet. On sequential simulation-based meth-
ods for Bayesian filtering. Tech. Rep. CUED/F-
INFENG/TR.310, Cambridge University, 1998.



0 0.5 1 1.5 2 2.5 3
−6

−5

−4

−3

−2

−1

0

1

2

3
x 10

7

time (sec)

C
sy

 (
N

s/
m

)

Figure 4: Estimation ofCsy using EKF approach

0 0.5 1 1.5 2 2.5 3
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
x 10

5

time (sec)

C
sa

y (
N

s/
m

)

Figure 5: Estimation ofCsay using EKF approach

[4] A. Doucet, N.de Freitas, and N. Gordon, editors.Sequen-
tial Monte Carlo Methods in Practice. Statistics for En-
gineering and Information Science. Springer-Verlag, New
York, 2001.

[5] A. Doucet, N.de Freitas, K. Murphy, and S. Russell. Rao-
Blackwellised particle filtering for dynamic Bayesian
networks. In Proc. Uncertainty in Artificial Intelli-
gence’2000, pages 176–183, 2000.

[6] A. Doucet, N.J. Gordon, and V. Krishnamurthy. Particle
filters for state estimation of jump Markov linear systems.
Tech. Rep. CUED/F-INFENG/TR.359, Cambridge Uni-
versity, 1999.

[7] N.J. Gordon, D.J. Salmond, and A.F.M. Smith. Novel
approach to nonlinear non-Gaussian Bayesian state esti-
mation. IEE Proceedings-F, 140(2):107–113, 1993.

[8] G. Kitagawa. A self-organizing state-space model.
Journal of the American Statistical Association,
93(443):1203–1215, September 1998.

[9] H. Li. Measuring systems for active steering of railway
vehicles. PhD thesis, Loughborough University, 2001.

[10] J. Liu and M. West. Combined parameter and state esti-
mation in simulation-based filtering. In A. Doucet, N.de
Freitas, and N. Gordon, editors,Sequential Monte Carlo
Methods in Practice, Statistics for Engineering and Infor-
mation Science. Springer-Verlag, New York, 2001.

[11] L. Ljung. Asymptotic behavior of the extended Kalman
filter as a parameter estimator for linear systems.IEEE
Trans. on Automatic Control, AC-24(1):36–50, 1979.

[12] P. S. Maybeck. Stochastic Models, Estimation, and
Control—Volume 2. Academic Press, 111 Fifth Avenue,
New York, 1982.

Appendix. Symbols and Parameters

yw1 lateral displacement of the leading wheelset
yw2 lateral displacement of the trailing wheelset
yb lateral displacement of the bogie
ybd lateral displacement of vehicle body
Ψw1 yaw angle of the leading wheelset
Ψw2 yaw angle of the trailing wheelset
Ψb yaw angle of the bogie
yt1 lateral track displacement at the leading wheels
yt2 lateral track displacement at the trailing wheels
mw Wheelset mass(1250kg)
Iw Wheelset yaw inertia(700kgm2)
mb Bogie mass(2580kg)
Ib Bogie yaw inertia(2160kgm2)
mbd Half of vehicle body mass(13000kg)
Ky Primary lateral stiffness per wheelset(5000kN/m)
Kx Primary longitudinal stiffness per wheelset

(9726kN/m)
Ksy Secondary lateral stiffness per bogie(242kN/m)
Ksry Secondary lateral end stiffness per bogie

(2420kN/m)
Csy Secondary lateral damping per bogie(16kNs/m)
Csay Secondary anti-yaw damping per bogie

(160kNs/m)
f11 longitudinal creep coefficient(10MN )
f22 lateral creep coefficient(10MN )
a Semi wheel-wheel spacing(1.3m)
l Half gauge(0.717m)
λ Conicity
v Vehicle forward velocity(45.3m/s)
r0 Wheelset radius(0.455m)
lbw Semi bogie width(1.3m)
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