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Abstract Section 4 gives a brief introduction to the Rao-Blackwellised

particle filter (RBPF) and presents the development of the new
This paper presents the development of a new method p&rameter estimation method based on RBPF. In Section 5, the
parameter estimation in linear state space model. The pRéw method is applied to the plan view dynamic model de-
posed method is based on a Rao-Blackwellised particle filtéed in Section 2 and the results of parameter estimation are
The simulation results with a railway vehicle dynamic modglompared with the EKF approach. Conclusions are drawn in
are provided which demonstrate the effectiveness of the pfesction 6.
posed method in comparison with the conventional EKF-based

method. 2 Modelling of railway vehicle dynamics

Failure modes effects and criticality analysis (FMECA) from
railway vehicle manufacturers has highlighted that the sec-
The faults in the suspension elements of a railway vehicle wilndary lateral and anti-yaw dampers in a railway vehicle sus-
leads to the changes in the parameter values of the vehicle gnsion system have a lower reliability record than most other
namic model, which in turn may lead to the deterioration ¢uspension elements and are difficult to test in situ. The former
ride quality and increase of wheel-rail wear; in some casesc#uses degraded ride quality, whereas the latter affects running
may even cause a safety problem. Thus, an appropriate metbi@dility. The other key area is concerned with the wheel pro-
is required to perform parameter estimation so that the vehiélle: progressive wear can profoundly influence the contact me-
condition monitoring system is able to detect and isolate inciphanics and may cause unstable running at speed.

ient faults. The problem of parameter estimation in dynamf'ﬁ this section, a plan view dynamic model of a half body vehi-

SVS‘ef“S has been mtensye ly studied and the basic estima, Qs developed with the intention to detect the faults in these
techniques are well established, but, because of the com

¢ rail hicle d . h licali tth B dampers. Figure 1 gives the plan view of half of a con-
n_ature otrallway vehicle ynamlc_s,t €app ication of the tec{la (g bogie vehicle and the configuration of the sensors.
nigues to this particular problem is not straightforward.

The plan view equations of motion of the vehicle travelling on

The dynamic behaviour of the railway vehicle is usually detraight track are derived as follows:

scribed by a linear stochastic state space model. Convention-

ally, parameter estimation in such a system is performed withmn,,; 4,1 + 2{32 Yuw1 + Ky(Yw1 — Up) — 2f22 V1

the extended Kalman filter (EKF) based approach. Although—K,a¥;, = 0

the EKF approach to joint parameter and state estimation proby . 4 #\Pwl K2 (W — 1)

lem for linear systems with unknown parameters is well knOWI’]+2f11/\l _ 2ful
. . . " T Ywi T Y1

and widely spread, it has been shown that in general the estlr—n ° 4 2hay 0 K ) — 2fan

mates may be biased or divergent (seg [11] and references I“?yltﬁ ¢ Yw2 By Yuwz = Yo 22 P w2

therein). In this paper, a new parameter estimation method for+ y@=o _2f 2 )

linear stochastic state space model is developed and applied f({|w22‘lft§l2 + 50 N ‘1’1;12 + Kol (Vg — W)

estimation of the parameters in the railway vehicle dynamict f:-; Yuw2 = frlf, Y2

model. The new method is based on the newly-developednsds + Ky (Yo — Yuw1) + Ky (Yo — Yuw2) + Ky (Yp — Yba)

Rao-Blackwellised particle filter. The effectiveness of the new +Xsry (Y — ysr) = 0

method is demonstrated through the simulation with the rail-Iy Wy 4+ Csaylz, U + (2a* Ky + 2K,1%)0), — K, 12¥

way vehicle dynamic model and its performance is compared-aKyyw1 — Kzl?Uoyo + aKyyws =0

with the conventional EKF approach. Cosy(Usr — Uva) = Kary (b — Ysr)

. . . bd — Csy(Ysr — Y K, —y) =0
The rest of the paper is organised as follows. In Section 2, thembdybd v oa) + Koy (Woa = o) 1)

1 Introduction




A

Lateral damper \
1 1 i
% Cy,, L Ci?tg Ly Vericlebody
o
Ve Ksry%

Anti-yaw damper *yb

v K
.
V1 Vw2

Gyro

" c,?@ !
7‘\ /

Accelerometer /
wheelset
Bogie fran<

Figure 1: Plan view of half bogie vehicle and sensor configuration

The meaning of variables and parameter values in the equaiomodel-based filter, such as an EKF, a state-space form of
are given in the Appendix. Defining the relative lateral defystem model can be derived from (2) as:
lections between wheel and trackd&s= y,,1 — y¢1 andds =

Yw2 — Yi2, the above equations can be rearranged as follows: x=Ax+Gp (3)
N T where
Yuw1 = mwlvyw1 Mwt . . . . .
_’_any \I]b X = [ywl Yw1l \Ilwl \Ilwl Yw2 Yw2 \IJ'wZ \I/w2 Yb Yo
. wl 5. 5 5 ) . T
\Ilwl = _%\Pwl — l;:ll \Ile + Kml \I/ - QIhill:;ldl lj[Jb \Ilb ?de Yvd Ysr dl d2]
. . K,
waK: _7721f:222vy1U2 - m152 Yw2 + 72755; \ij + mwQ Yo B = [ Y1 Y2 }T
_afy
\I,m;; _mlty o KlPg oy Kallyg  2fudlg matricesA and G can be readily derived from the equations
LY K, Tuwav K, §K styHggiy ,{MTO (2) andB can be approximated as white Gaussian noise vector
be: e Ywl T Ywe — T Yy + T b 9.
+ STy y ) ) ) ) ]
i ™ K L+ K 2y aky L Ely The vehicle is equipped with five sensors (a gyro and four ac-
bc 12 ,y'” 9u? f? +21w<1z I, Yw2 I, T w2 celerometers) as shown in Figure 1 which can measure the lat-
— =, — ===, eral accelerations of the two wheelsejs { andj,), the lat-
Jbd = Kﬂifj’yb = il ypd — Y sy eral acceleration an_d yaw velocity of the bogjg énd¥,) and
or = Upd + = sw féw Ly, the lateral acceleration of the vehicle bogdy,). The measure-
ment equation is given as follows:
6?1 = Ywl — ytl
d2 = Yuw2 — Ys2 y=Hx+v (4)

)
It can been seen that the dynamic behaviour of a railway vehiglbere,y = [ Jwl Yw2 Uo Yy g ]T, v represents the
is very complex and highly interactive. For the development afeasurement noise vector and the measurement nidtiix



obtained readily from the system matix If the sampling timel” is short compared with the system time
constants, the system can be treated as linear time-invariant

A(L,:) over the sampling interval’. Therefore the above nonlinear
A(5,:) filtering problem for estimating augmented stgtso as to de-
H=| A(9,) (5) termine the parametetsis attacked by the sampled-data EKF
A(12,:) as follows [11],[12],[2]:
A(13,:)
e Measurement Update at the sampling time instant

Faults in the secondary lateral and anti-yaw dampers are ref - Ty —1
lected by the changes in the damping coeffici€itsandCs., Ki = Prpa ¥ Ry (12)
in equations (2), which in turn will change the matdxof the R, = UP,;,1¥" +Q, (13)
above dynamic model (3). Therefore, the faults can be detected € = €k|k—1 +Ki(yr — Hige1)  (14)
and isolated by monitoring the changes in these two parame P, = Py K.¥Py (15)

ters. To facilitate presentation, the above dynamic model (3)
and (4) is rewritten as follows to include explicitly the parame-  where,

ters associated with the faults to be detected and isolated: o 5
=[5 (Hx) | 55(Hx) | =[H|0 ]

x = A0)x+Gp (6) , . . ,
_ H - e Time Propagation over the sampling interval (i.e between
y = XtV ™ measurements)
where, 6 collects all the parameters to be monitored which . ®(0,) 0]
will determine matricesA (in the present casef = k+1lk = 0 I 3 (16)
[ Coy Ciuay ]T, the extension to include the wheel profile- rolf[Q. o0][r”o
related parameters such as conicityvill be discussed in an- Prir = FkPkFg‘F[O I} { OW Q } { 0 I] (17)

other paper). Note thdl is independent of.
where,®(6;,) ~ I+ A(,)T, T ~ IGT and

3 Parameter estimation using EKF . ) © )
k= 778 =£,

One way to deal with the parameter estimation problem in the o€ e
system described by (6) and (7) is to view the parameters as _ [ & (@0)x) | 5(2(0)x) )
additional states, or more precisely, to augment the state vector 0 \ 1 X =Xk
x with the parameter vectdt as¢ = [x? 6717 and re-write 0 =0y
the state space model in termsgpfve then have the following ®0) | T2 (A0)x)
set of equations: = [ 0 ‘ a9 I } X = X},

N 0 =6,

_ [ A(6)x } + { G 0 } { B } () As indicated in [1]‘Although this extended Kalman filter
0 0 I n approach appears perfectly straightforward, experience has
y = Hx+v (9) shown that with the usual state-space model, it does not work
well in practice”.
For most practical applications, the measurements are usually
sampled-data (i.e. discrete) resulting from the digital implgr

mentation and the discrete version of above model is given as Parameter estimation using RBPF

follows (seee.qg.[11],[12]): 4.1 Background
Eoir— Xp1| _ (&) + '@, O W Starting from the_ seminal paper of Gordon, Salmond ar_ld Smith
BT g, | T BISH 0 I ny, [7], the particle filter (PF) (also known as Monte Carlo filter), a
B (0,)x T'(0;) 0] [wi §imu|_ation—based method for nonlingar non-Ga}ussian state es-
= [ 0, } { 0 I} {nk] (10) timation, has gone through a dynamic and rapid development.
In the mid 1990s, several particle filter algorithms were pro-
i = Hxp + vi (11)

posed independently under the different names, see [4] for a

where,®(0),) — AT T(6,) = fOT AT Gdr andwy, summary of the state-of-the-art.

ny are white Gaussian noises of appropriate strength. To obt@ime PF is developed in the framework of recursive Bayesian
the parameter estimation recursively, we shall consequergitimation which attempt to approximate the complete prob-
faced with a general nonlinear filtering problem. ability density function (pdf) of the state to be estimated as



opposed to just estimating the first few central moments of4t2 System description

such as in EKF. The major innovation of the PF is to approxi- ) .
mate the required, usually complicated, pdf by a swarm of iguppose the observations are generated by the model specified
teracting points called “particles” which can be considered s follows:

the realiza}tions or samples from the required pdf, rather'than 0, ~ p(6]6k_1) (19)

by a function over the state space. As such, the method is not Xp = ®(6)xp1 +T(0p)w (20)
restricted by considerations of analytic tractability. The PF will ko k) Tk—1 k) Tk
propagate and update these particles and their mean and covari- ye = Hxp+vg (21)

ance matrix are approximations to the Bayesian estimates. wherep(+|0;,_1) denotes the pdf conditional @_ 1, the equa-

The use of PF for simultaneously estimating the states and Bans (20) and (21) are the discrete version of equations (6) and
rameters has been proposed in [8] which extends the idea uBdwith ®(8;) = eAO7|g_q, , T'(0)) = fOT AT Gdr,

in Section 3 to the general nonlinear non-Gaussian state speueandvy, are zero mean white Gaussian with diagonal covari-
model, where a random walk modé, = )., + w}, with ance matrice€,, andQ,. A PF can be designed based on the
w). a zero mean Gaussian white noise is used for parametbpve model with the aim to determine the unknown parame-
evolution to allow the exploration of the parameter space atfsé by estimating the augmented staggs= [x}, 67]".

reduce sample degeneracy in particle filtering. A similar idea

was used in [7], where an additional independent random dis3  Algorithm for parameter estimation

turbance or “roughening jitter” was introduced to the sampled

state particles in an attempt to deal with sample degeneras§. mentioned previously, the use of Rao-Blackwellisation
Extending this idea to the present case for parameter estirfgghniques can increase the efficiency of sampling in PF by
tion, the standard deviatianof the Gaussian roughening jitterreducing the size of the state space to be sampled through
corresponding to a particular component of the parameter végarginalization, which results in RBPF. In our present ap-
tor @ is given byo = KEN—1i as suggested in [7], whefeis Pplication, the dimension of the augmented state vegfors

the interval between the maximum and the minimum sampl&é+ 2 = 19, but the model (19) and (20) has a tractable sub-
of this componentj is the dimension of the parameter vedor Structure which can be analytically marginalized out. In fact,
(i.e. the number of the parameters to be estimati&d} a con- for each realization (or sample) 6f;, we have a single linear
stant tuning parameter amd is the number of particles usedGaussian state space model. As such, the marginalization can
in PF. More recently, Liu and West [10] suggested an approde® carried out exactly using the Kalman filter algorithm. The
to improve the precision of the parameter estimation by usif@sulting RBPF is similar to PF but we only need to sample the
kernel smoothing with shrinkage for parameter evolution. Parameter vectady, (in present case, the dimension@fis 2,

their approach, the unwanted information loss effect or ovdhus the size of the space to be sampled is drastically reduced).
dispersion of the samples for the fixed parameter caused by Tien for each sample @, the mean and covariance of state
independent random shoek, is corrected by the introduction ) are updated using Kalman filter.

of negative correlations betweéh_; and the random shock Let 2,

, denote the set of measurements up to timei.e.
Wk'

Zir = {y1,¥2,"-*,yr}.- The proposed RBPF-based parame-
One of the major drawbacks of the particle filter for paranier estimation algorithm is summarized as follows.

eter estimation as described above is that sampling in highsislization: fori = 1.---. N. draw sample® (i) from the
dimensional space can be inefficient because a large numpear., pdf p(6) = p(0\720) :elnéi sefko (i) = %o, Po(i) = Po

of samples is.needed to reprggent the requirgd pdf. A ,Stan%%re,fco is the initial state estimate ar®), is the initial state
technique to increase the efficiency of sampling techniquesJsimation covariance matrix.

to reduce the size of the augmented state space by marginal-

izing out some of the variables analytically; this is an exanfrork = 1,2, - -, repeat the following steps:

ple of the techniques called Rao-Blackwellisation. Combin- .

ing this technique with the above particle filter results in Rao- ® For i = 1,2,--- N, draw sample 6;(i) from
Blackwellised particle filter (RBPF) (se=g. [3] [5]). RBPF P(Ok|0k—1(7)).

has been applied for state estimation of the jump Markov lin- § o, — 1,2,

ear systems in [6] and a hybrid filter is obtained where a part of

the calculations is realized analytically and the other part using ~

Monte Carlo methods. In the following, we extend this idea Xpp—1(1) = P(Ox(i))Xp—1(9)

to solve the problem of estimating the unknown parameters in Pk|k71(i) _ 4’(ék(i))Pk—1(i)‘1>T(ék(i)) +

linear state space models. - -
T(60x(1)QuT" (0x(i))

e Fori = 1,2,--- N, evaluate and normalize the impor-
tance weights:

.-+, N, propagate the meaty,_1 (i) and co-
varianceP_; (i) of the statex;_; as follows:

an(i) = p(ykl| Zr—1, 0k(i)) ~ N (Frpp—1 (), Ry (i)



O~[k (’L) x 10" (particle number N=1000)
T T T T

ap(l) = =y (22) ’
Z;'vzl Oék(j) 28F
where, 26f
S’k\k—l(i) = Hik\k—l(i)
Ri(i) = HPy()H" +Q,

Y

C,
s

e Parameter estimate is calculated as follows:

N
O, = > an(i)Bi(i) (23)
i=1 12
e Resampling particle$x, s (i), Pyj—1(3), 0x(i) : i = o os O 8 ’

1,2,---, N} with sampling probabilities proportional to
(i) to obtainV particles{Xy,,_1 (i), Px—1(i),0:(7) -  Figure 2: Estimation of’,, using RBPF withl000 particles
i=1,2,---,N}L

e For ¢+ = 1,2,--- N, performing measurement x16° ‘ o rumber 1o
update for state vectorx using Kalman recur-
sion to obtain particle {x(i),Pr(i),0(¢)} given
{Xkjk—1(2), Prir—1(4), Ox (i) }, where il

Xp(t) = Kpp—1(2) + K (@) (yr — HXpp—1())

Pip(i) = (I-Kg(@)H)Pgr_1(i)

Ki(i) = Pk\k—1(i)HTR;;1(i)

Ry(i) = HPy_()H" +Q,

 (Ns/m)

C
say

7

5 Simulation experiments

In this section, the RBPF-based parameter estimation method o os N : 8 ’
proposed in this paper is applied for estimating the parameters
0 = [ Cy Cuuy ]T in the plan view dynamic model (6) Figure 3: Estimation of’s, using RBPF with1000 particles
derived in Section 2. The parameter evolution density takes the
following form as suggested in [10]:

p(04]0k_1) ~ N(Orabr_1 + (1 — )81, h?V,_,) (24) 6 Conclusions
whereh? = 1 — a2 anda = (36 — 1)/26, 6 is a dis- A RBPF-based parameter estimation method is proposed in
count factor typically aroun®.95 ~ 0.99. 6;_; andV,_, this paper. The method is used to solve the parameter esti-
are the mean and variance of the Monte Carlo approximatiBation problem of the railway vehicle dynamic model where
{6x_1(7), x_1(3)} to p(B| Z,_1) respectively.s = 0.99 and the conventional EKF approach fails. This example clearly
particle numberV = 1000 are chosen for the following sim- demonstrates the inadequacy of the EKF-based approach and
ulation. The measurement sampling frequency#iglz, i.e. the RBPF-based method proposed in this paper offers much
T = 1mS. The results of parameter estimation are shown promise. Further work is being carried out to address the ro-
Figure 2 and Figure 3. For comparison, the EKF approach déistness issue for the proposed method.
scribed in Section 3 is also applied and the results are shown as
in Figure 4 and Figure 5. It can been seen, from these figur@egferences
the parameter estimates from RBPF-based method converge to ) o
the true values, whereas the EKF approach is not able to est:] B-D-O. Anderson and J.B. MooreOptimal Filtering
mate the parameters correctly. In Figure 4, the EKF estimate Prentice-hall, Englewood Cliffs, NJ, 1979.
qf C,, rises and falls severely in the initial pgrlod of estlma- 2] JA. Borrie. Stochastic Systems for Engineers—
tion, _and then tends_to settle down at a_negatlve value which Is Modelling, Estimation and ControlPrentice Hall Inter-
physically not mganlngful. The_ EKF estimate®@f,, doe; nqt national (UK) Ltd, UK, 1992.
converge and drifts away from its true value as shown in Figure
5 (in all the figures, the dashed line represents the true value {8] A. Doucet.  On sequential simulation-based meth-
the parameter and solid line represents the estimated value of ods for Bayesian filtering. Tech. Rep. CUED/F-
the parameter). INFENG/TR.310, Cambridge University, 1998.
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Appendix. Symbols and Parameters

lateral displacement of the leading wheelset
lateral displacement of the trailing wheelset
lateral displacement of the bogie

lateral displacement of vehicle body

yaw angle of the leading wheelset

yaw angle of the trailing wheelset

yaw angle of the bogie

lateral track displacement at the leading wheels
lateral track displacement at the trailing wheels
Wheelset mass(1259)

Wheelset yaw inertia(70@m?)

Bogie mass(258)

Bogie yaw inertia(2168gm?)

Half of vehicle body mass(130@9Q)

Primary lateral stiffness per wheelset(5800/m)
Primary longitudinal stiffness per wheelset
(9726:N/m)

Secondary lateral stiffness per bogie(242/m)
Secondary lateral end stiffness per bogie
(2420:N/m)

Secondary lateral damping per bogiefD6s/m)
Secondary anti-yaw damping per bogie
(160kNs/m)

longitudinal creep coefficient(1@ V)

lateral creep coefficient(1@ N)

Semi wheel-wheel spacing(t3

Half gauge(0.7 1)

Conicity

Vehicle forward velocity(45.3./s)

Wheelset radius(0.455%)

Semi bogie width(1.8)
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