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Abstract number of references approaching the problem with classi-
cal techniques, nonlinear programming and fuzzy logic ap-

In this paper the problem of lateral dynamics control of a raib'roaches.Hoo approaches have also been applied, the reader
way car is addressed. A full dynamic model, including car, b%’an refer for instance to [3] in which lateral, yaw and roll

gies ar_1d wheelsets dynami(_;s Is considered, leading 1o a 34ﬁt5'tions are reduced by using a frequency shaping approach.
order linear system. Two different sensor/actuator Conf'gurﬁlbreover, alsou-synthesis approaches [4] have shown their

.IIOHS are considered and correspondlng. performances are g i eness in the control of longitudinal dynamics of a half-
ically compared. The control strategy is based on a MlMQar model

high order sliding manifold approach, which provides high ro-

bustness with respect to system uncertainties and exogend&§/ recent papers attack the problem from different a point of
disturbances. The design procedure yields a MIMO controllé€W: in [5] a double nested control loop is considered, where
in terms of LMFD description. Simulations are used to shotfie inner loop controls the ride and the outer the attitude. The
the effectiveness of the proposed approach and to carry out'itfe loops are decoupled by means of an input decoupling trans-
comparisons among the two considered solutions. formation, and the resulting controller reduces heave, pitch and
roll motions. Also controller parameterizations based on LFT
approach have been used [6] and tested on quarter-car, half-car
and full car models, considering also the nonlinear dynamic
Control of various kinds of vibrations in railway vehicles is anodel of the car. Hunting instability is dealt with in [7], where
problem that has attracted the interest of many researcher@gtive electro-mechanic yaw dampers and experimental results
the last decade. While traditionally vibration alleviation corare presented.

trol strategies were used only to increase riding comfort, tlrl‘?nally, mechatronic approaches have been proposed, using a
use of high speed trains with lighter cars has dramatically i, concept for the control of car vibrations. Specifically,

preased the importance of V|brat|on_ reduction cgntrollers []:Jctive steering [8] with different control strategies and active
in order to compensate not only for increased noise levels, lﬁ\{t[g] with experimental tests have been considered
also for possible unstable behaviors exhibited above the “criti-

cal speed”. For instance, it is well known that the coupled Idf? this paper we propose a robust controller design based on a
eral and yaw vibration of the bogie, caused by the interactig#gh order sliding manifold approach. Specifically, the order of
between wheel and rail, can result in the so-called “hunting i€ sliding strategy is defined by the actuators/sensors location.
stability”, which degrades both the wheel and the line and, fh34-th order linear model is derived and two cases are consid-
some cases, increases the risk of derailment. ered. In the first case, four linear actuators on the wheelsets are

o . considered, and colocated sensors are used. In the second case,
In order to reduce vibrations, both primary and secondary Se sensors are moved to the bogie, in order to operate them in

pensmn system'sf are used.m railway cgrs. Howeve'r, t_he_Eﬁs_qéss harsh environment. This control strategy has been cho-
tiveness of traditional passive suspension systems is I|m|tedsgh for its robustness properties, since some parameters of the

frequency, because their major contribution is around a fixgdhic|e are very uncertain and extyernal disturbances have to
nominal resonance frequency. To overcome this limitation aBg considered

increase the damping in a broad frequency band, active suspen-

sion systems have to be designed and controlled. In [10], [11] it has been shown that, by using the mathemati-
cal tools of the Singular Perturbation Theory [12], it is possible

Active suspensions control systems have been approached ffB'Besign a state feedback controller that has robustness prop-

m.any po.ints of vieyv. Optimal LQ-based control strategies fties similar to these of high-gain control systems. However,
widely discussed in [2] and the same paper collects a large

1 Introduction



the controller does not exhibit any “peaking” phenomenon that

affects the latter. In fact, it is well known [14] that using high z

gain systems the system state is decomposed into a “fast” and Y

“slow” part, while in the proposed control strategy the whole HJ - hs Qzﬁ K.
state is “slow”, while the control is the “fast” variable. \J% F |
In [13], the above procedure has been extended to the case of Ky i 2y i

MIMO output feedback. In detail, the controller order is based 2d

on the (multivariable) pole-zero excess, that can be exactly de-
fined based on the plant Markov’s parameters. A number of
transfer zeros is added by the controller so as to fill up the
pole-zero excess, and, to make the controller proper, suitable %1
faraway poles are introduced and justified by using the singu- 7—W
lar perturbation theory. The zeros are located by defining a
suitable time-varying sliding manifold so that the system out-
put and its successive time derivatives up to the order of sliding y
are assigned with a desired behavior. The resulting controller is EN 2z
again very robust against external disturbances, like a high-gain

controller. KE%QVQI j}:@

In this paper, based on the methodology presented in [13], we 7*%
propose two control strategies for robustly stabilizing the lat- U U
eral dynamics of a railway car. Simulation results address the
case of the lateral control of a railway vehicle, which is sub-
ject to lateral disturbances on the wheels. The disturbances are
such as to yield flange contacts of the wheels on the rail in the
non controlled car, and are strongly rejected by the controller. Figure 1: Bogie and wheelset.

)
oy
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2 System modeling

In Fig. 1 the bogie is reported, while in Fig. 2 a scheme of half
acar is depicted_ Mc?jc + 4Kby 2yc + 20.hy — Ypl — Yb2 + (ebl + 6b2)h2 +

The model of lateral dynamics of the railway vehicle comprises 4Cby 2Je +20chs —u1 — o2 + (01 + Op2)ha =0
17 dof’s, whose meaning is summarized in Table 1.

Jzebie +2Kpy 20ac(L +a) — (ap1 + ap2)a + yp1 — Yp2+

Car Front bogie Rear bogie
ye lat. displ. | yp1 lat. displ. | ype lat. displ. (Ov2 — Op1)h2 (L +a) 4+ 2Ky, 20ac(L — a) + (ap1 + ap)a+
Qe yaw Qp1  yaw Qp2  yaw .
yp1 — Yv2 + (Op2 — Op1)ha (L —a) +2Chy 2dc(L +a)—
0. roll 0p1  roll Opo  roll

) ) (1 + dn2)a + Gp1 — Pu2 + (Op2 — Op1)ha (L + a) +2Cy,
Wheelsets (front bogie)  Wheelsets (rear bogie)

y1 lat. displ. (front) | ys  lat. displ. (front) 26c(L — a) + (6u1 + dw2)a + 9u1 — Ho2 + (Op2 — Op1)ha (L — a)
a1 yaw (front) a3 yaw (front) +2Kp (20 — ap1 — ap2)d2 + 2Chy (26 — dp1 — Gp2)d2 =0
y2 lat. disp.(rear) y4 lat. disp. (rear)

as  yaw (rear) as yaw (rear) JzcOc + 4Ky 2yc + 20ch1 + (051 — Op2)h2 — Yo1 — Y2 h1+

4Chy 29 + 20chs + (Bp1 — Op2)ha — Up1 — Gb2 ha+

4K, (200 — Oyt — Op2)d3 + 4Cy, (200 — Op1 — Opa)d3+
Mcg/2(2yc — yp1 — Yp2) =0

Table 1: Degrees-of-freedom meaning

Based on the derivation of the dynamic models of railway ve- Miiny + 2Ky (653hs + 2 )+ 26, (yahs + 2
H H H 1 H Yb1 Yy b1/t5 Y1 — Y1 — Y2 Yy b1/t5 Yo1—
hicle systems in [15], the equations of motion can be written 1~ 52) — 2k (e + Bkt — a1 + Boaha — L) — 2Ch, (ot
as Ochs — g1 + Op1ha — éeL) =0
Jzap1 + 2Ky (y1 — y2 + 201 )l + 2K, (201 — a1 — ag)d% +2CYy
(11 — P2 + 26p11)l + 2C (26001 — &1 — 62)d3 + 2Kpe (p1 — ote)d2+
2Cpg (Gpy — bee)d2 + 4Ky (a1 — ae)a? + 4Chy (dp1 — cie)a? =0
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Figure 2: Half a car with bogie.

JuOp1 + 2Ky (2051 + 2041h5 — y1 — y2)hs + 2C,y (201 + 2041 hs—
91— 92)hs + 2K:041d7 + 2C2051d3 + 4K (041 — 0c)d3+
AChz (Op1 — Oc)d + 4Ky (ye + Ochy + Op1ha — yp1 — aca)ha+
4Chy (Ye + Ochi + Op1ha — Go1 — Gca)ha + Meg/2(ye — yp1)+
Myg/2(2yp1 —y1 —y2) =0

Mijpa + 2Ky (2052h5 + 2yp2 — y3 — ya) + 2Cy (20p2h5 + 2gp2—

Y3 — 9a) = 2Ky (Ye + Ocha — yp2 + Op2ho — acL) — 2Cpy (ge+
Ochs — yp2 + Opoha — GeL) =0

szbg =+ Qky (yg — Y4 + QOngl)l + 2k (201b2 — a3 — Oz4)d% + QCy (y3

—J4 + 26p2l)l + 2C4 (2002 — 63 — 6u)d3 + 2Kpy (o2 — ac)d2+
2C0y (dipa — dre)d2 + 4Ky (o2 — ae)a? + 4Chy (cipa — éic)a® =0

JoOz + 2Ky (242 + 2062hs — y3 — ya)hs + 2Cy (2062 + 2052hs—
U3 — Ya)hs + 2K 0p2d? + 20, 042d3 + 4Ky, (02 — 0c)d3 4 4C,
(b2 — 0c)d3 + 4Ky (ye + Och1 + Oyaha — ypa — cca)ha + 4Ch,
(e + Ocha + Opoha — b2 — dea)ha + Meg/2(ye — yp2)+
Myg/2(2yp2 —y3 —ya) =0

Maij + 2Ky (y1 + ap1l — yp1 — Op1hs) + 2Cy (91 + dp1l — Yp1—
Op1hs) +2F0(J1/v — 1) + Fuyn = w

Jsé1 + 2Kz (0 — ap1)ds + 2C5 (61 — dup1)d2 + 2Fps(sén /v+
y1v/r) =0

Majjz + 2Ky (y2 — w1l — yp1 — Op1hs) + 2Cy (Y2 — dpal — gp1—
Op1hs5) + 2F0(y2 /v — az) + Fuyz = uz

Jséa + 2Kz (a2 — apr)ds + 2Cx (&2 — dup1)d2 + 2Fps(sée v+
y2v/r) =0

Maiiz + 2Ky (y3 + ol — Yoz — Ob2hs) + 2Cy (U3 + vl — Yoo —
Op2hs) + 2Fo(ys/v — as) + Fuys = us

Jsas + QKZ(Ozg — abg)d% + QCI(dS — dbz)d%+
2Fys(sas/v+y3y/r) =0

Maija + 2Ky (ya — apal — Yoz — Op2hs) + 2Cy (94 — dnal — Gp2—
Opohs) + 2F0(9a/v — aa) + Fuys = ug
Jsba + 2Kz (o — apo)ds + 205 (& — dup2)d3+
2Fps(sca/v + yay/r) =0

whereu;, ¢ = 1,...,4 are the control inputs acting on the lat-

eral dynamics of the wheelsets. The dynamic parameters of the

model are explained in Tab. 2. In the following, the subscript
denotes the longitudinal direction, the subscgigtenotes the
lateral direction and the subscriptdenotes the vertical direc-

tion.
Parameter Definition
Me, M, Mg Car, bogie and wheelset mass
g gravity acceleration magnitude
Joc, Iz Car and bogie roll inertia
JaeyJz, Js Car, bogie and wheelset yaw inertia
Ky, Ky, K. Primary suspensions stiffness
Ky, Kyy, Ky, Secondary suspensions stiffness
Cz,Cy,C2 Primary suspensions damping
Cha, Cry, Cy.  Secondary suspensions damping
T,y Wheel radius and conicity
v Vehicle travel speed
Fo, Fy, Creep coefficients
h1 Vertical distance car barycenter-secondary suspensions
ha Vert. dist. bogie barycenter-secondary suspensions
h3 Vert. dist. car barycenter-secondary lateral dampers
ha Vert. dist. bogie barycenter-secondary lateral dampers
hs Vert. dist. bogie barycenter-primary suspensions
2d1 Lateral distance primary vertical suspensions
2do Lateral distance primary vertical dampers
2d3 Lateral distance secondary vertical suspensions
2dy Lateral distance secondary vertical dampers
2ds Lateral distance secondary longitudinal suspensions
2a Longitudinal distance secondary suspensions
2s Wheelset gauge
21 Spacing between the two wheelsets in the same bogie
2L Spacing between the two bogies

Table 2: Dynamic parameters

The above model can be written in state space form

Az + Bu+ x 1)
y = Cx 2)

i’:

wherez € R34 is the state vector, collecting the variables in
Table 1 and their time derivatives, € R* is the input vector,



d € R* is a state disturbance vector and: R* is the system wheree > 0 is a “small” real constant, andD;,i = 1,...,v,

output vector. N;,i=0,...,parereal constant x r matrices to be selected,
with v andp integers such that > p.
3 COI’]'[I’O| Strategy Assume that:

In this Section, we present the control system design. The ob-i
jective of the controller is to reject the disturbances while guar-
anteeing closed-loop stability. Specifically, assuming that som@) the disturbances are “matched”, i.e. there exigtg R”
bounded disturbances enter the system we want the system out- such thaty = By,

put and its firsp time derivatives to asymptotically remain in a

the plant is minimum phase;

. _ (iii) the integerp and the matricesVy, kK = 1,..., p are such
bounded neighborhood of zero, i.e. that thep-th Markov parametetl, = C A?~! B s invert-
lim [jy® ()| <6, k=0,...p—1 (3) ible and letN,H, = Dy, with Dy invertibler x r real
tee maitrix, while the previous Markov parameters are zero,
for given small real numberg, > 0,k = 0,...p — 1, where Hi=0,i=0,...,p—1;
p is a given integer to be defined next, based on the MIMO
pole-zero excess. (iv) the polynomial
In order to fulfill the above requirement, we define a time- det (Dys” + Dy_18" "' + -+ Dis+ Do)  (10)

varying sliding manifoldS as is strictly Hurwitz;

S= {(x,t) e R x Ry O'(k)(y,t) =0,k=0,...,p— 1} (v) the polynomial

(4)
whereo : R* x R, — R* is given by det (Nys” + Nyp18”~" + - + No) (11)
Pl i is strictly Hurwitz;
o(y,t) = —y+n(t), t)=eVt Ci— 5
1) y+n®), ) ; i! ®) (vi) there exists a real < 0 such that
andW is a Hurwitz4 x 4 real matrix to be suitably selected, ReApax(W) < v <0 12)
whilec;,i =0, ..., p—1 are real vectors given by the recursive
equation where ReAmax (X) denotes the largest real part of the eigen-
b1 values of the matri¥.
. k —3
o = yMO0) =) ( ; ) Wk, Then, there existy > 0,5 > 0, A < 0, with A > ~, such that
=0 for anye € (0, o], the solution(x(t, €), u(t, €)) of (7), (9), is
kal,...,p—l, €o :y(0)7 (6) such that

beingy®) (0),k = 0,..., p—1 the initial conditions of the sys-  p-1

tem output and its time derivatives. The functigit) takes into Y [¥* (£, )| <6+ ae*  forany t € [0,+00), (13)
account initial conditions on the output and its time derivatives ¥=0

so as to have ®) (y,t)[,—0 = 0, k =0,...,p — 1. whereaq is a positive constant depending on the plant initial

The design of the robust controller is addressed by the foIIO\(/:vc-md't'ons'

ing Theorem, that is a slightly modified version of Theorem

in [13]; ‘il'he proof of this Theorem can easily be deduced form the one

in [13].

Theorem 1 Consider the completely controllable and observFhe above Theorem suggests us a procedure for designing the

able MIMO plant controller:
& = Av+Butx (M 1. select the boundary layer dynamics by assigning 1
y = Cx (8) matricesDy, k = 0, ... such that eqn. (10) holds;
wherer € R", u € R", y € R". 2. selectp matricesNy, k = 0, ..., p— 1 such that the poly-

Let the control law be defined by the differential equation nomial

D™ + 1D, 1wV 4. + eDyi det (s” + Np_18°7 1+ -+ Ny) (14)

=N, 0 4+ N, 160%™ 4 ... £ N16 + Noo, (9) is Hurwitz;



3. letN, = DoH, ', Ny = NyNi, k=0,...,p— 1. <10 Wheelset lateral displacement

2 : ; ;
4. select a “small’e and compute the controller.
1.5+ B
The MFD of the controller is obviously computed as A
C(s,e) = (Dye’s” + D, tsv b4y Dles)i1 1 ':l: :". i
P =1 ... ’ oy 0
(Nps” + Np_18”~H + -4+ No) . (15) £ 05 h ’ x ; ho
. . I lll |\\ ,", : X 1! |I || ,"
and the control signal is(s) = C(s,e)o(s). As far as the dney A < s R
LI | ] ! o - :’-' A FAE Y
selection oflV/, it defines the way the system output recovel 0%@“}——7’—\'\?—7—1—%’%
possible initial offsets, hence it can be chosen as a Hurw Y v :' \ ’/ oA v
matrix with eigenvalues related to output recovery time. -0.5- i Ao ) o
N v v
4 Simulation results o5 1 15 2 25 3 35 a4

The procedure presented in the previous section is applied

in two cases. Four linear actuators have been consideredFigure 3: Closed-loop front wheelset lateral displacement
the lateral displacement of the four wheelsets. Moreover (feont bogie). Solid line: colocated feedback; dashed line: non-
band-limited random disturbance has been considered the fresibcated feedback.

wheelset of the front bogie, and the same disturbance has been

applied to the other wheelsets considering a time delay corre-

sponding to the train speed00 km/h) and the wheelset dis-

tances. The disturbance is such that the open-loop lateral ¢§-car yaw and roll accelerations. Finally, in Figure 5 the con-

placement of the wheelsets fsnm. In the first simulation g|ier output are shown, whose shapes are such as to compen-
set we have considered sensors on the four wheelset displaggs for applied disturbances.

ment. Hence we have a colocated actuators/sensors configura-
tion, which results inp = 2 and H, diagonal. Using the pro-
cedure in the previous Section, we have seledbgts, N's
andW as diagonal matrices, hence the resulting controller|ig this paper the model of the lateral dynamics of a railway car
decentralized. The results of the simulation show very QO%S been presented, and a robust MIMO control strategy has
robustness properties, with high disturbance rejection. Hopeen presented and applied to control the car. The car has two
ever, placing sensors on the wheelsets can be not realistic, si\¢gies, each bearing two wheelsets, hence a 17 dofs’ model
the wheelset vibrations can reduce sensors life time. Hencgegults. The control strategy is based on the Theory of Singu-
second sensor configuration has been considered, moving|fteerturbations, and exhibits very good robustness properties
sensors on the bogies in order to put them in a less harsh eyth respect to external disturbances and uncertain model pa-
ronment. Specifically, lateral displacement and yaw have be@imeters. Simulations are performed in order to test the pro-
measured for each bogie, and in this case 4. Using again posed strategy in two cases: a colocated feedback policy, that
the procedure given in the previous Section, in order to sifg-shown to give the best results in terms of disturbance rejec-
plify computation we have still chosely’s, Ny's andW di-  tion, and a noncolocated centralized controller, that, although
agonal, but, since the Markov parametéy is no longer di- sightly degrading the closed-loop performances, allows better
agonal, the resulting controller is fully coupled. SimulatioBensor placement. Performances are also evaluated in terms of
results are shown and compared in Figures 3, 4, 5. In Figurgassengers comfort.

the wheelset lateral displacement is depicted, and it is appar-

ent that the first strategy, co.Iocated feedba_ck,.(.axh|b|ts. betﬁéferences

performance. Nevertheless, in both cases significant displace-

ment reduction have been achieved with respect to open-Igep Foo E. and Goodall R.M., “Active Suspension Con-
(5mm). Moreover, also body acceleration have been consid-trol of Flexible-Bodied Railway Vehicles using Electro-
ered as a measure of ride comfort. In Figure 4 the closed-loopHydraulic and Electro-Magnetic Actuator€ontrol Engi-
behavior is reported in the two cases. Again, the colocatedneering Practicevol. 8, pp. 507-518, 2000.

strategy works better, and again closed-loop systems outper-

form the open-loop system, whose maximum acceleration[Z§ Hrovat D. “Survery of Advanced Suspension Develop-
about0.3 m/s>. The same performances can be shown to hold ments and Related Optimal Control Application#uto-

5 Conclusions
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