
A FRAMEWORK BASED ON CORBA AND OO
TECHNOLOGIES FOR REMOTE ACCESS TO INDUSTRIAL

PLANTS

Isidro Calvo, Marga Marcos, Dario Orive

Department of Automatic Control and System Engineering
E.T.S.I. de Bilbao (University of the Basque Country)

Alda Urquijo, s/n, Bilbao (SPAIN)
fax: +34 946 01 41 87

e-mail: {jtpcagoi, jtpmamum, jtporred}@bi.ehu.es

Keywords: Remote control. Distributed computer control
systems. Object modelling techniques. Flexible
manufacturing systems. Computer-integrated manufacturing.

Abstract

The current paper presents an overview of a general
architecture that provides remote access to industrial plants.
In this paper the components of the architecture are described
in detail, focusing on the key element of the architecture,
which is the Application Server. This architecture has been
applied to a case study consisting of a manufacturing cell to
provide users located anywhere on the Internet remote access
to the system under control.

1 Introduction

Today, the interconnection of field area devices to the
Internet is one of the most challenging topics in automation.
There are several reasons that make this interconnection
worth studying. On one side, the worldwide acceptation of
Internet as a communications medium has converted it in a
“de facto” standard, used even internally in proprietary
networks (intranets). Moreover, modern information
technologies make possible the integration of control systems
in distributed environments connected by high-speed
networks, such as fieldbuses, Ethernet, ATM and wireless
networks. Even though, at the moment a lot of users do not
trust this kind of technologies to be applied to industrial
fields, in our opinion they are mature enough to be used in
this kind of environments, allowing remote users to directly
monitor and teleoperate control systems or to integrate the
field area devices in higher-level applications.

Obviously, the integration of all the necessary components, in
order to obtain a distributed application working in an
Internet type environment, is not an easy task. In [1,2,4] it is
presented a methodology that provides a framework to build

this kind of systems. This methodology is based on object-
oriented architectures that adapt remarkably well to Internet
environments such as CORBA [3], DCOM or Java/RMI.
These architectures permit to use remote objects as if they
were local and provide interesting services that ease the
development of applications. In [6] it is possible to find a
comparative among them. Moreover, the use of Java language
provides interesting characteristics such as platform
independence and easy integration in HTML browsers.
Besides, using object-oriented technologies also achieves the
typical advantages provided by those (such as objects
reusability or easier maintenance).

This paper details the internal architecture of the key element
of the architecture, the application server, which is the
gateway that provides remote access to remote users. It also
describes how the whole architecture has been applied to a
case study composed by a manufacturing cell.

The layout of the paper is as follows: section 2 summarizes
the proposed architecture as it has been presented in previous
papers. Section 3 details the generic architecture obtained for
the application server and the methodology used to obtain it.
It follows another section with the application of the whole
architecture to a case study. Finally, the last section draws
some conclusions.

2 General architecture overview

This section presents the architecture proposed. This
architecture pretends to be generic enough to be used with
different kinds of industrial plants. However, some
requirements need to be satisfied. For example, it is
convenient that plants behave autonomously. This is due to
the fact that, at the moment, Internet connections are not
reliable enough to make systems that respond adequately to
time requirements. This autonomous behaviour, nevertheless,
is frequently found in industrial processes.

Broadly, our architecture divides systems into the following
categories (see Fig. 1): physical plants, plant controllers,
application servers and remote client applications.

• Physical plants are made out of the connected field
devices. These may consist of several devices connected
to any kind of local network, fieldbus, etc, or directly to
the plant controller. In fact, physical plants may be seen
as the process under control.

• Plant controllers take care of the local behaviour of the
applications, as well as of providing application servers
the information they need. They may also provide user
interfaces for specific local operators who take local
decisions over the system under control. These
components may be either designed ad hoc or a legacy
controllers (CORBA-like architectures may help here).

• Application servers act as gateways that connect the
local controllers to the Internet. It is desirable that these
nodes are connected to plant controllers with dedicated
links, so they may exchange frequently information
about the state of plants. They are the key elements of the
architecture as they contain a model of the plant under
control, which it will be called from here on the Virtual
Plant. Virtual Plants consists of a set of objects that
contain the relevant information as well as the methods
with the operations remote users may perform over the
plant. They are also responsible for the distribution of the
alarms. Other tasks are related to the users management:
remote users validation, filtering the operations, etc. In
short, they offer a CORBA interface to remote
applications.

• Remote applications allow remote users to operate the
system. They will use CORBA objects that communicate
with the CORBA interface provided by the application
server. They will be responsible for presenting the
information to remote users. Here, the use of Java applets
together to the use of Internet browsers (Internet
Explorer, Netscape…) provides a standard interface that
eases the application learning curve.

It is important to remark that this architecture allows remote
applications to integrate easily information obtained from
several application servers (each of them containing objects

that model several physical plants), as well as to provide
remote access to the physical plants from anywhere in the
Internet through the application servers. Besides, the use of
distributed object architectures such as CORBA permits to
divide the application between several application servers.

This architecture may be complemented with other nodes
such as databases Web servers, etc.

In order to filter the operations that may be undertaken over
the system it will be convenient to define several user profiles
that will group all operations a specific kind of user may take
over the system. This will be explained in further detail later.

This approach allows remote users to perform several kinds
of operations over the system: These operations may involve

• Monitoring

• Information requirement

• Configuration

• Orders over the physical plant

• Alarm distribution

3 Architecture of the application server

3.1 Methodology used to design the application server

According to the approach presented in [5], there are three
main steps in the design of a distributed architecture for a
system. Figure 2 depicts these three basic stages:

 OBJECT ARCHITECTURE

TASKS ARCHITECTURE

SYSTEM ARCHITECTURE Refinements

Application Server /
Virtual Plant Model Local Operator

Engineering Fig 2. Stages in the design of a system Internet

/intranet Plant Controller • Object architecture: It will consist of identifying a
collection of objects that communicate and collaborate to
implement a specific function.

Production
Manager Physical

Plant under
Control • Task architecture: This stage will consist of identifying

the concurrent tasks in which the system will be divided
in order to perform the desired behaviour. Maintenance

Operator
• System architecture: Here, it will be detailed how the

system is assembled from a set of building blocks, by
selecting from among various computational elements
and topologies. This stage will include the identification
of the nodes in which the system is implemented. At this

Fig. 1. General architecture overview

stage, depending on the tools (operating systems,
programming languages… etc) may be necessary to
perform several refinements.

Next, the architecture of the application server will be
described in these terms.

3.2 Object architecture

This stage identifies the objects that compound the
application server. This task was mainly presented in [1,2].
Fig 3 shows the main components found at this stage.
Following there is a brief description about the functionality
of each of them.

• Virtual plant: It contains a collection of objects with
information and actions relevant to remote users.
Evidently, these objects may be reused in other
applications, which would reduce the efforts in the
building of new applications. These objects cannot be
accessed directly by remote users, instead, they are
protected by the View Models that will deliver the orders
received from the remote users.

• View Models Manager: This a single object responsible
for offering the management task of the system. Some of
these tasks are authentication of remote users and
distribution of alarms that may be originated by the plant
controller or by other objects of the Application Server.

• View Models: Different remote users are assigned to a
specific profile. Profiles allow the application server to
filter the operations that may be performed over the
system. The view models will be the objects that
correspond to every profile. These objects dialogue with
all the remote users of a specific profile.

3.3 Task architecture

This section describes which tasks will perform every object
identified in the object architecture.

3.3.1 Virtual Plant

The virtual plant is just a container of objects, so at this stage,
it will be necessary to identify the actions that will perform
these objects. These tasks involve the continuous updating of
information obtained from the plant controller as well as the
actions required by remote users through the corresponding
View Models. Upgrading the information inside these objects
is an internal task performed periodically depending on the
period set up to refresh every virtual plant component.

Application Server

Virtual Plant Model Plant Controller 3.3.2 View Models Manager
Object 1 Object 2

Controller
interface

 This object will perform two main tasks: allow remote users
to open new connections and alarms distribution.

3.3.3 View Models
View Models Manager

They concentrate the connections between the application
server and all remote users of a specific profile. This
connection involves the following tasks: Users

Database VM: Profile 2 VM: Profile 1
o Accepting orders from remote users that will be

processed by the methods of the virtual plant objects.
Client App 1. Client App 2. o Delivering monitoring data to remote users.

o Delivering the alarms between all the remote users of the
profile.

o Acknowledging the alarms.
Fig. 3. Components of the application server and their
relation with other components of the architecture For some of these tasks it will be used the CORBA event

service [7]. The event service defines several models
depending on the desired behaviour of the application.
Briefly, all models use an event channel that is used to deliver
some data to several users. Two of these models are the
PUSH-PULL model and the PUSH-PUSH model. In the first
model it is the supplier who sends the data to the event
channel where it remains until a remote user recovers it. The
second model, the PUSH-PUSH model, is useful to distribute
the same information to several registered remote users. In
this case, the supplier sends the data to the event channel and
this one distributes it between all the registered users.

Figure 4 shows the task architecture for a View Model of one
user profile. In the figure three remote clients of the same
profile are connected to the View Model.

The monitoring task thread uses the CORBA event service.
This thread is responsible for obtaining the data from the
Virtual Plant objects and sending it to the Monitoring Event
Channel. In this case the most suitable model is the PUSH-
PULL. This procedure will allow remote users to specify the
frequency at which data will be recovered from the channel.

This ability of setting up the frequency is very interesting in
Internet like environments to adapt to the QoS requirements.

Orders are processed by the Orders acceptation thread. All
operations that are required by remote users will pass through
this thread.

Finally, the alarm delivery is undertaken by another thread
that receives the alarms from the View Models Manager and
after logging the alarms it sends them to the corresponding
Alarm Event Channel, and this one delivers the alarms among
all the registered users. In this case the PUSH-PUSH CORBA
event model is the one that adapts best to the required
performance. Once remote clients receive the alarms, any of
them may acknowledge the alarm and take the corresponding
actions over the plant to counteract the alarm.

3.4 System architecture

Finally, it will be also necessary to distribute the different
objects among the nodes that will constitute the system.

This stage is highly dependent on the specific requirements
for the system, such as operating system, computation power
needs, etc.

3.5 Security

It is clear that in an architecture that offers access to remote
users through Internet security is a key point. This
requirement will by achieved by implementing the currently
available technologies in the application server.

In [9] it is possible to find a discussion about the available
techniques. These techniques provide:

• Confidentiality

• Authentication

• Integrity

• Non-repudiation

These techniques are based on cryptography. Broadly, there
are two kinds cryptographic techniques; symmetric key

encryption and public key encryption. The first one uses the
same key for both the sender and receiver of the information,
(examples of these algorithms are DES or RC5), whereas the
public key encryption use different keys that must match. The
second type of encryption is much securer but it also requires
much more processing power, slowing the applications. This
is why they are usually employed together.

VM: User Profile X

Orders
Aceptation

Monitoring Alarms

In our framework both techniques will be used. The
monitoring and alarm information will be coded before it is
sent to the corresponding event channel with a symmetric key
algorithm being the clients responsible for the decoding. The
symmetric key both ends will use during the connection must
be delivered at the beginning of the connection with the view
models manager by using public key encryption techniques.
In order to check that messages are not altered during the
delivery hash functions must be also used to test their
integrity.

Monitoring
Event Channel

 Alarms
Event Channel

Client 2 Client 3 Client 1

Fig. 4. Task architecture for View Models

On the other side, orders undertaken over the application
server must be signed by the remote user’s digital signature.
This method will provide both authentication and non-
repudiation. However, it will require the use of a third party
responsible for certifying the digital signatures.

These techniques have proven reliable enough depending on
the length of the keys (this is a critical parameter above all in
symmetric key techniques). In this scheme key management,
above all, during public keys delivery, is a crucial factor as
here is where most attacks are usually directed. In [8] is
proposed a method to improve this key delivery.

4 Case Study

In order to validate the architecture proposed above, this
section presents the implementation of these ideas in a real
case study composed by a manufacturing cell.

4.1 Physical plant

The physical plant will consist of the following devices
attached to a MAP-Ethernet network with MMS protocols as
it is shown in figure 5.

WAREHOUSE-PLC
Siemens S5-115U

ROBOT-Kuka
IR 363/6.0

Cell Controller (PC)

Quality Controller-
PLC AB-5/11

CNC-Siemens
Sinumeric 880M

MAP-Ethernet Network
(MMS Protocols)

Fig. 5. Physical plant devices of the case study

• Warehouse: It is responsible for storing both the raw and
processed material. This device will be controlled by a
PLC that accepts the orders from the cell controller.

• CNC: It manufactures the raw items withdrawn from the
warehouse. The cell controller will supply the necessary
programs used to manufacture the items.

• Robot: It assumes the role of being the transport element
of the cell. The programs that define the movements of
the robot will be also downloaded by the cell controller.

• Quality controller: It consist of a PLC responsible for
identifying those items that do not pass a quality test in
order to discard them.

In this case study, the communications among the devices are
provided by a MAP-Ethernet network because being itself
object oriented it eases the task of identifying the objects of
the virtual plant. However, it will be valid any other network.

4.2 Cell Controller

The cell controller is another node attached to the
manufacturing network, as figure 5 shows. This node takes
the local decisions over the plant and it is relatively
autonomous.

In this case study, the cell controller has been developed ad
hoc, nevertheless, CORBA may be also used to provide an
interface to a legacy cell controller.

Local operation applications are allowed to perform
operations through the CORBA interface that are not
permitted to remote users. In most cases this is due to that
some operations must be performed at the physical plant site.

4.3 Identified profiles

For this case study, the following profiles have been
identified. More information about every user and the
operations they are allowed to may be found in [1].

• Cell operator

• Maintenance operator

• Warehouse manager

• Engineering

• Production manager

• Client

• Users Administrator

4.4 Application Server

4.4.1 Object architecture

According to the framework presented in the previous
section, the object architecture in this case will be composed
of the virtual plant, with all its objects, the view models
manager, and a view model for every profile described above.

The most interesting part of this section is the virtual plant.
Objects inside have been described in [1]. Figure 6 presents a
class diagram for the case study.

 Product Design
Product Ref.
Raw Material Ref.

Rows
Columns

Shelf

CNC Program
QC Program
Robot Program
Max number of faults
Get Product Information
Set Product Information

Cell
Prod.Rhythm Device
Get Cell Status Name
Get Prod.
Set Prod Rhythm
Add New Design
Delete Design

Status
Warehouse
Withdraw Pallet

Get Name
Get Status
List Programs
Add Program
Delete Program
List Devices
Add Dev. Element
Delete Dev. Element

Get Contents

Production
Order Queue Device Element Production Order

Monitoring
Add
Stop
Resume
Delete
Pause

Order Number
Priority
Product Ref
Items Number
Client Ref.
Get Prod. Order
Get Order Status
Set Priority

Name
Last Change Date
Edit Program
View Program
Get Last Change Date

Program

Name Ref Number
Pallet

Max. Live Time Number of items
Current Use Time Get Reference
Get MLT Get Number of items
Set MLT
Get CUT

Fig. 6. Class diagram for the objects contained in the Virtual Plant

4.4.2 Task architecture

As described in section 3.3 objects in the virtual plant will
request the information from the physical plant periodically.
The view models manager will consist of two threads, one for
accepting connection orders and the other for distributing the
alarms. Also there is one view model for every profile that
will follow the structure described above.

4.5 System architecture

Figure 7 depicts the architecture used for this case study. This
diagram may be compared with figure 1.

The cell controller node has been implemented on a Pentium
III running Windows NT 4.0. The cell controller was
implemented under Visual C++ and the SISCO MMS-Ease
libraries. The interface between the cell controller and the
application server was completed with CORBA (Visibroker).

The application server has been implemented over a Pentium
IV running Windows 2000. The application server was
implemented with Java and CORBA (Visibroker).

Another node holds the database used to keep all the
production historic files, as well as the users database, etc.
This database has been implemented using MySQL. This
database will keep process information, the users database,
the historic files, alarm historic files…etc..

Finally, a Web-server is used to download the CORBA-Java
applets remote users will use. This eases the distribution of
the applications.

Remote clients will use a navigator, such as IE, Netscape or
any other to access the application server. Remote nodes may
be running any operating system, as long as they have the
Java virtual machine installed and there is a navigator for this
operating system.

5 Conclusions and Future Work

The architecture presented in this paper allows remote access
to industrial plants. It pretends to be generic enough to be
used with industrial plants from different environments, as

long as they present a relatively autonomous behaviour. It has
been implemented over a case study consisting of a
manufacturing cell.

In this sense, the next step will be to investigate the features
of RT-CORBA in order to overcome the response time
limitations of CORBA in such type of applications.

Acknowledgements

This work has been supported by CICYT project DPI2002-
03946

References

[1] Calvo I., M. Marcos, I. Sarachaga, D. Orive, “Using OO
Technologies in Factory Automation” Proc. of the 28th
IECON Conference Seville. (2002)

[2] Calvo I., M. Marcos, I. Sarachaga, D. Orive, “Using
UML for modelling remote access to manufacturing
systems” Proc. of the 15th IFAC Congress Barcelona.
(2002) WEB-SERVER

[3] Henning M. and S. Vinoski “Advanced CORBA
Programming with C++”, Addison Wesley Longman,
Inc. (1999)

CELL CONTROLLER [4] Marcos M., J.M. Fuertes, I. Calvo, P. Martí, D. Orive,
R. Villá, I. Sarachaga and S. Buzoianu “Object-Oriented
Modeling for Remote Monitoring of Manufacturing
Processes” 8th IEEE International Conference on
Emerging Technologies and Factory Automation, Nice.
(2001)

CLIENT 1

CLIENT 2 APPLICATION SERVER

CLIENT 3 [5] Moore A., Cooling N. “Developing Real-Time Systems
using Object Technology – Overview”. URL:
http://www.artisan.com (2000)

DATABASE

Fig. 7. System architecture for the case study
[6] Orfali R., D. Harkey (1998) "Client/Server

Programming with Java and CORBA" John Wiley &
Sons. (1998)

[7] Object Management Group, Event Service Specification
URL: http://cgi.omg.org/docs/formal/01-03-01.pdf
(2001)

[8] Schwaiger C., Sauter T., “A Secure Architecture for
Fieldbus/Internet Gateways” 8th IEEE International
Conference on Emerging Technologies and Factory
Automation, Nice. (2001)

[9] Weaver A C.”Privacy and Security on the Internet”,
URL:
http://intercom.virginia.edu/crypto/privacy_and_security
.pdf

[10] Wollschlaeger M “Framework for Web Integration of
Factory Communication Systems” 8th IEEE
International Conference on Emerging Technologies
and Factory Automation, Nice. (2001)

http://www.artisan.com/
http://cgi.omg.org/docs/formal/01-03-01.pdf
http://intercom.virginia.edu/crypto/privacy_and_security.pdf
http://intercom.virginia.edu/crypto/privacy_and_security.pdf

	Session Index
	Author Index

