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Abstract: The goal of this paper is to propose new alarm
filtering techniques for Intelligent Alarm Processing Systems
(IAPS). A basic idea of our approach of alarm filtering is to
use a type of knowledge model (the functional graph) to
define synthesis alarms. Using causal inhibition principle,
detail alarms are inhibited by synthesis alarms to reduce the
number of alarm presented to the operator. Moreover, we
propose a hierarchy of concepts to characterise the status of
an alarm. This hierarchy enable us to propose integrated
filtering techniques that take into account both filtering due to
system properties (validation, causal inhibition) and the
interaction of the operator with the alarm system to sort
presented alarms (acquitement, suppression).

1 Introduction

Today alarm systems are widely used in the industry to pilot
and to survey complex industrial plants. In spite of the
number of supervision software on the market, very few
progresses have been achieved to reduce the complexity of
operator tasks in case of fault situations. The goal of this
paper is to propose new features to design Intelligent Alarm
Processing Systems (IAPS) [7, 9]. Alarm filtering is one of
the features of a tool we are developing in the European
CHEM* project. The main objective of CHEM isto develop a
set of new Decision Support Systems (DSS) to allow an
intelligent supervision of actual plants.

The paper is organised as follows. The first section will set
the problem of fault treatment from piloting operator point of
view. The goa of this section is to define what type of
information need these operators and what are the problems
they meet with actual alarm systems. In the second section,
we will introduce different types of alarm that must be
distinguished when we build an alarm system. The third
section will introduce the Functional Graph and severa

1 CHEM: “Advanced Decison Support  System for chemical and

petrochemical processes’. Project is funded by the European Community
under the Competitive and Sustainable Growth programme of the Fifth RTD
Framework Programme (1998-2002) under contract G1IRD-CT-2001-00466.
See www.cordis.lu or www.chem-dss.org

concepts we apply for aarm filtering. We will notably
propose a hierarchy of these concepts to build robust alarm
filtering algorithms. The fourth section presents a prolog
prototype that implements the alarm filtering techniques
proposed in this paper.

2 Fault treatment for piloting operators point of view

Most of the supervision systems of actua complex
Automated Production Systems are based on alarm systems.
The roll of an alarm system is mainly to report process
misbehaviours (faults) to the operators. In this case, the
operators can select an appropriate procedure to apply
corrective actions to avoid the propagation of the fault
conseguences. The main problem of actual alarm systems is
to provide too much information to the operators. Severa
reasons explain this fact. The first reason is the way alarms
aretriggered off.

In general, an alarm is triggered off when a fault event occurs
in the process. When only one event characterises a fault or
when the event can be generated by a critica fault, an
automatic procedure is used to treat the fault. In this case,
some authors propose to trigger off informative alarms. Their
goa is to report to the operators the fault context (the plant
state), the unavailability of some plant resources and the new
configuration of the plant. In this case the operators have
nothing to do except to take into account these information to
perform future piloting or corrective actions. However, in
general, the relation between a fault and an event is not
bijective. Indeed, from faults viewpoint, several events are
generally necessary to characterise a fault. At the opposite, a
misbehaviour event can be produced by different faults. This
leads some designers to link an alarm to each of the events
produced by afault. The idea is that the operators can reason
from these alarms to diagnose the fault that have produced
them. This kind of reasoning is difficult in case of multiple
faults because all the events produced by an alarm do not
necessary occurred at the same time and then can interleave
with the events that characterised another fault. Moreover,
causal relations in a process imply fault propagation notably
if corrective actions are not taken quickly. In consequences,
they generate alarms avalanches that increase the difficulty
for the operator to diagnose the root fault of process
misbehaviour.



Another cause of alarm overload is the occurrence of false
aarms. For example, in nuclear power plant system it is
classical to have a few hundred alarms on operators control
consoles in normal working. False alarms are generally due to
the use of static thresholds to monitor continuous variables of
the plant. These thresholds are fixed with regard a specific
working mode. In alot of plants they are chosen with regard
to a steady state of the plant. Consequently, they are not
suitable for transitory modes such as starting working mode
or closure mode. Another source of false alarms is systematic
maintenance operations on the plant resources. Since
maintenance mode is not taken into account, when
maintenance agents operates on a resource they modify the
value of the variables that characterise this resource. False
alarms can also be triggered off by a bad use of the process.
As an example, let us consider the case of a machine tool
stopped by a maintenance operator in order to perform
systematic maintenance operations. If the Control-command
tries to run the program of the machine and gets no response,
an alarm would be triggered off to warn the operators about
the faulty state of the machine.

However, the overload of piloting operator consoles is not
only cause by alarms. As invoked in above paragraphs, an
Automated Production System (APS) must be piloted
according to the production objective and to al the events that
enable the operator to identify the state of its plant. Moreover,
the operators must always know which resources are available
and which of them are unavailable. For example, informative
adarmsin case of automatic reconfiguration or alarms induced
by maintenance operations aim to inform of the status of
concerned resources. Graphical user interfaces of supervision
systems are generally designed to alow the operators to
understand quickly which resources are operational .

3 Taxonomy of alarmsand alarm filtering

To reduce the number of alarms, they can be composed
before alarm presentation step. The goal is to produce fewer
adarms with more expressive power. We distinguish four
types of alarms depending on the place where they are
activated (the command or the alarm system) and the way
they defined from fault events. A non-synthetic alarm is
triggered off by the command on the occurrence of a fault
event. At the opposite, synthetic alarms are triggered off by
the alarm system from a set of characteristic example. For
example, Causal Temporal Signature [3] is auseful formalism
to combine fault events to define synthetic alarms. Synthesis
alarms are defined in the alarm system. They summarise to
the operator the information given by several detail alarms. A
detail alarm can belong to all the alarm type introduced in
this section. A basic idea of our approach of alarm filtering is
to use a type of knowledge model (the functional graph) to
define synthesis alarms. Using causal inhibition principle (see
section 4.4), detail alarms are inhibited by synthesis alarms to
reduce the number of alarm presented to the operator. In next
section we will use the expression "raw alarm™ for synthetic
or non-synthetic alarms.

4  Alarmfiltering based on the Functional Graph and
the alarm status

In this section we introduce the different states of an alarm
that enables us to filter with regard to fault detection and
isolation process and the action of an operator. We use
StateCharts formalism [6] to specify these states. This
formalism is useful to represent the hierarchy of the concepts
and the inhibition property [5] that links these concepts.

4.1  Brief recall on Functional Graph

A Functional Graph (FG hereafter) is a graphical tool that
enables us to filter raw alarms of an APS [1, 2]. An FG
models the relations between the main functions of a plant
and the internal functions delivered by plant items. At each
node we associate a function of the system. Directed arrows
that model functional dependency relationships interconnect
these nodes. The dependency relationships are of different
types. composition relationships, flow relationships or
adaptation relationships [2]. In the functional hierarchy given
by an FG, some functions are distinguished: Principal
Functions that corresponds to the system services and Initial
Functions (Figure 1). Initial functions are implemented by
elementary plant items. Consequently they are the initia
causes of every faults of the system.
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Figure 1: An example of Functional Graph

Graphically, the model is also completed by the addition of
"or" operators (noted by a "+") that enable the designer to
model the cases of functional redundancy. A functional
redundancy is the fact that higher-level function (for example
f3 in Figure 1) can be implemented differently by severa
lower level functions (for example f5 and f6 in Figure 1). It
expresses the active or passive flexibility of the system. This
flexibility characterises the different working modes and will
be used when a failure will occur. In the other cases, the
functional dependence relationships are constrained by an
"and" operator. This operator is implicit in our models. On
this example, since alarms at f10 or f11 nodes imply an alarm
at f3 level, we can say that an alarm at f3 is a synthesis alarm.
The two others are detail alarms.



4.2  Activation concept

Basically an darm can be in two states. activated or not
activated. The default state of an alarm is not activated
because most of the time a plant works normally without
faults. An alarm is activated when the plant behaviour is
abnormal and verifies some conditions. The activation is a
necessary condition to present the alarm to the operators.
According to the fault detection (Cl) and isolation
specification of the plant, different cases are distinguished to
alow an aarm to come back to the inactivation stated.
Generally, it is sufficient that the starting condition becomes
false. This is notably used when the starting condition
depends on the monitoring of continuous variables. For
example, when the variable value exceeds a threshold the
alarm can be activated. As soon as the value goes down again
under de threshold, the alarm can be deactivated even if the
operator has not yet treated it. This scheme is more difficult to
apply in discrete event system where many faults are
characterised by rising edge of instantaneous events. In this
case, the alarm can be deactivated only if the fault has been
diagnosed (C2).
fault
detection (C1)
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Figure2: Activation states and their transition conditions.

4.3  Validation concept

When an alarm is activated, it must not be necessary
presented to the operators. Its presentation depends on its
validation status. By default, an alarm is not validated. It state
switches automatically to validate if the actual working mode
of the plant requires the use of the associate function to
assume the plant production (transition condition C3 in

Figure 3).
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Figure 3: Validation statesand their transition conditions.

Let us assume that the choice of a mode allows usto retain in
exploitation a specific configuration of an FG. It means that
the selected mode enables us to determine how a higher
function is implemented by its redundant sub-functions. For

example, let us consider the case of the process modelled in
Figure 1. The actual mode selects function f3 to implement
f1, f6 to implement f3, and f7 to implement f4. In Figure 4,
the parts of the graph in grey colour represent the parts of the
system that are not exploited by the current mode. If a raw
alarm is triggered off concerning function f9, it must not be
validated because this function is not in production.
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Figure 4. Projection of a Functional Graph by using a
specific working mode.

The use of the validation concept is very useful to suppress
fase alarms such as the alarms produced by maintenance
operations on the process. In addition, this concept is very
powerful for filtering because it defines filtering rules in a
positive way. Indeed, in some IAPS (Intelligent Alarm
Processing System), the authors try to define forbidden states
for an alarm or a group of alarms. Since the forbidden states
are generally due to failures and since it is difficult to identify
all the states that can be reached because of the combination
of multiple failures, it is easier to know the normal behaviour
of a system and to define alarm presentation with regard to
this state.

4.4  Causal inhibition concept

To reduce the number of alarms that are presented to the
operators we also propose to exploit causal inhibition
concept. This concept exploits the causal relations between
the functions of the different levels of an FG. These causal
relations are illustrated by the existence of paths that link the
initial functions to the principal functions of an FG. On a
causal path, if we observe the behaviour of the system at
different levels, in case of fault occurrence, raw alarms can be
triggered off by al of these observable functions. The
presentation of all these alarms is not necessary because they
all inform about a common and unique fault (the failure of the
initial function that initiates the causal path) and about the
same consequences. Causal inhibition consists in masking all
the alarms belonging to the same causal path, excepted one of
them. The remaining alarm depends on the status of the
operator. Piloting operators need to know which flexibility
remains in the process to continue the production. For them,
the reconfiguration process consists in finding the lowest
aternative (“OR” node) from the initial function where it is
possible to commute. In this case, causal inhibition consistsin



masking a detail alarm (lower-level alarm) by a synthesis
alarm (higher-level alarm). For maintenance operator, it is the
opposite because these operators need to diagnose the root
cause of plant misbehaviour in order to identify which plant
item must be repaired or replaced.

Consequently a validated alarm can be in two states (Figure
5): non-inhibited or inhibited. Non-inhibited is the default
state because initially, the alarm must be treated, as it was
aone. If an inhibiting alarm exists or occurs after (transition
condition C5), immediately its state becomes inhibited and
the alarm is no more presented. The transition from the
inhibited state to the non-inhibited state depends on the
absence of al of its inhibiting alarms (transition condition
C5). An alarm can be inhibited only by validated alarms.

ﬂcﬂve
Validate

Presence or

L3 occurrence of an

inhibiting alarm (C5)
. Noninhibited |, | Inhibited

C1 DI ‘

isappearance of
all inhibiting
c2 alarms (C6)

c4 c3

Unvalidate }

C

Figure5: Inhibition states and their transition conditions.

45  Suppression concept

When an alarm is presented to an operator, sometimes he
wants to suppress it (C7 condition in Figure 6) in order to
distinguish the most important alarms that are displayed on
his console. Such suppression does not necessary means that
the alarm has been treated. Since the operator can have
forgotten this suppression, it must not be definitive. It is the
reason why two states are necessary to refine the status of a
presented alarm: presented or not presented. When an alarmis
not presented this means that after a delay, it must be
displayed again on the console of the operator (C8) (Figure
6).
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Figure 6: Presentation statesand their transition
conditions.

4.6  Acquitement concept

In order to focus the attention of the operators, new alarms
flash on the console's screen. However, this feature can

disturb them when the screen is overloaded by many flashing
alarms. To prevent this situation, the operator can acquit some
alarms without treating immediately their causes (transition
condition C9 in Figure 7). This action stops their flashing and
eventually ranges these alarms in a list of acquitted alarms.
But these alarms remain visible contrary to suppressed
alarms. This status reduces the risk for an operator to forget to
treat an alarm. Two states implement acquitement concept:
flashing (the default state) and acquitted. When the operator
select the acquit action, the alarm status becomes acquitted.
An acquitted alarm comes back in flashing status after a
temporisation time out or when the alarm is represented to the
operator because a new detection of the same fault (transition

condition C10in Figure 7).
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Figure 7: Acquitement states and their transition
condition.
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47  Conclusion

Acquitement or suppression actions of an alarm depend on
the operator choice. This choice must be based on the gravity
and the delay to treat an alarm. These information must be
supplied to the operator. This problem is out of the scope of
this paper. An operator can also decide to suppress an alarm
after its acquitment. In this case the presented/acquitted status
of the alarm isinhibited, and the alarm becomes not presented
(seeFigure 7).

5 A prolog prototypefor alarm filtering

In this section we will describe an inference engine for alarm
filtering based on the Functional Graph and the concepts
evoked in the sections 3 and 4. The inference engine is
developed in prolog language. Its purpose is to filter alarms
for a piloting operator by taking into account the model of
alarm states (Figure 7) and the notion of synthesis alarms.
Some features of the inference engine such as the search for
recovery actions are explained in [1] and are not developed in
this paper.

5.1 The prototype functioning

Figure 8 shows the architecture of the developed prototype. In
fact, it is based on two principal parts: a base of predicates
and a base of rules.



At first, some predicates describe the structure, the properties
and currently used configuration of the FG. The last point is
necessary to decide whether an alarm is validated or not.
"arrow(Fi, Fj)" means that there is a dependency relation
from Fj to Fi.

1
—=2 Alarm-states
| 1—s Currently used 1 updating rules
- graph i
i
i
! o_1
I_2—  Alarms list 1
1
I3 Actived Alarms | | |]!]
states i
H Faultrecovery | |, o 2

rules

Figure 8: The prolog prototype architecture

"node OR (Fi)" predicate qudifies "OR" node.
"observable(Fi)" means that the behaviour of the system
(faulty or not) can be edsablished at this node level.
Consequently, raw alarms are only triggered off at observable
nodes. "arrow_c(Fi,Fj)" enables a designer to distinguish the
part of an FG that is not validated by the actual working
mode. This predicates means that there is a potential
dependency relation from Fj to Fi.

Other predicates such as "alarm(Fi)" enable us to define the
different states of an alarm. The last predicate means that an
active alarm has occurred at the node Fi. The absence of this
predicate to qualify a node means that the associate alarm is
inactive. The other concepts introduced in section 4 are
implemented by a similar scheme that defines each alarm
state (validate, invalidate, inhibited, not_inhibited, presented,
not_presented, flashing, acquitted) by a predicate in the form
"state alarm(Fi)". Thus, if the predicate
"validated_alarm(Fi)" exists this means that there is a
validated alarm at the node Fi. When an alarm is activated,
and the associated node belongs to the currently used graph,
this adds the following predicates to the database: alarm(Fi),
validated alarm(Fi), not_inhibited_alarm(Fi),
presented_alarm, flashing_alarm(Fi). These predicates enable
the operator to have different sub-lists to consult the alarms of
the plant (output O_1 in Figure 8). For example, the operator
can know all the alarms that are currently inhibited or
invalidated, by simply entering questions such as
"inhibited_alarm(X)" or "not validated_alarm (X)" (Figure
9). In the previous questions, "X" is a variable that is
successively assigned to each node that verifies the predicate.

The base of rulesis structured in three packages of rules. The
first package enables the operator to interact with the alarm
system. It contains three categories of rules (see Figure 8).
The category | 1 (exploit(Fi,F) and not_exploit(Fi,Fj))
enables him to select the configuration of currently used
functional graph. In the second category (I_2),
"appears alarm(Fi)" is a rule that enables the operator to
activate an alarm at an observable node level. To deactivate
an alarm the operator has "disappears alarm(Fi)" rule. The

rule "alarm_list([ ])" gives all the alarm that are actives at a
moment. " The third category (inputs |_3) are used to control
the presentation of active alarms: "clear(Fi)" rule and
"acquitt(Fi)" rules apply respectively the suppression concept
and the acquitement concept.

?- appears_alarm(f11).
Yes

?- alarms_list(Liste ).

Liste = [alarm(f11)] ;

No

?- alarm(X).

X=f11;

No

?- validated_alarm(X ).
X=f11;

No

?- not_inhibited_alarm(X ).
X=f11;

No

?- not_validated_alarm(X ).
No

?- not_inhibited_alarm(X ).
X=f11;

No

?- inhibited_alarm(X ).

No

?- supressed_alarm(X ).
No

?-

Figure 9: Definition of sub-lists of alarms.

The second package of rules implements alarm filtering
techniques according to validation and causal inhibition
concept. They are called each time the structure of the graph
changes, or when anew alarm is activated. As an example, let
us consider the activation of a new aarm a f1l1 node
according to the active FG of Figure 4. Thisaarm is flashing
because it is validated and not inhibited and then displayed on
the alarm system screen (Figure 10-a). Let us now suppose
the occurrence of another alarm at f3 node. The applying of
causal inhibition concept implies the inhibition of the
previous alarm, which is no more displayed (Figure 10-b).
When a new alarm occurs at f10, it is not presented because it
status is invalidated by the fact this node does not belong to
the actual configuration of the plant (Figure 10-c).

? gpeas dam(fll). 2 gpeas dan(f3. 2 gpeas dan(fl0).
natirtibiteddamin f11 rtirhikiteddamin 3
Yes
Yes Yes 2 flaghing dam(X).
2 flaghing dam(X). 2 flaghing dam(X).
X=f3;
X=f11; X=f3;
No No
No 2 irhibted dam(X). 2 ot velickted dam(X).
?
X=f11; X=f10;
No No
2 2
a b <

Figure 10: Illustration of causal inhibition and validation
concepts.



The third package of rule assists the operator to determine the
reconfiguration actions (output O_2) to perform in to handle
the actual faults of the plant. In this case, reconfiguration
decisions are posting on another screen of the alarm system
(Figure 11).
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recovery actions
A

Validation and applying
of recovery decisions

Figure 11: General functioning of the prototype.

6 Conclusion

In this paper we have presented a prolog prototype that
implements different techniques for alarm filtering. These
techniques consist notably in reducing the number of
presented alarms by combining the techniques of synthesis
adarms and causal inhibition. Moreover, by using validation
technique, we are able to filter al the alarms that are not
relevant with the actual working mode of the plant. All these
techniques are applied through the functional graph of the
plant. We have improved the filtering mechanisms by
defining different alarm states that take into account the
interaction of the operator with the alarm system. This
inference engine is a generic one since the alarm filtering
techniques we propose are independent of how raw alarms are
triggered off. It can either be used with raw alarms based on
residual techniques [4] or artificia intelligence techniques
such as Causal Temporal Signatures[3].

The prototype presented is entirely off-line and obliges the
operator to enter manually the alarms or their disappearance.
But, we are actually developing an on-line prototype.

In future, we want to take into account in our alarm system a
more accurate modelling of the plant-working mode. The idea
consists to associate with each node of the functional graph a
behavioural model [2, 8]. The goa isto refine reconfiguration
procedures that are proposed to the operator in case of fault.
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