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Abstract: The goal of this paper is to propose new alarm 
filtering techniques for Intelligent Alarm Processing Systems 
(IAPS). A basic idea of our approach of alarm filtering is to 
use a type of knowledge model (the functional graph) to 
define synthesis alarms. Using causal inhibition principle, 
detail alarms are inhibited by synthesis alarms to reduce the 
number of alarm presented to the operator. Moreover, we 
propose a hierarchy of concepts to characterise the status of 
an alarm. This hierarchy enable us to propose integrated 
filtering techniques that take into account both filtering due to 
system properties (validation, causal inhibition) and the 
interaction of the operator with the alarm system to sort 
presented alarms (acquitement, suppression).  

1 Introduction 
Today alarm systems are widely used in the industry to pilot 
and to survey complex industrial plants. In spite of the 
number of supervision software on the market, very few 
progresses have been achieved to reduce the complexity of 
operator tasks in case of fault situations. The goal of this 
paper is to propose new features to design Intelligent Alarm 
Processing Systems (IAPS) [7, 9]. Alarm filtering is one of 
the features of a tool we are developing in the European 
CHEM1 project. The main objective of CHEM is to develop a 
set of new Decision Support Systems (DSS) to allow an 
intelligent supervision of actual plants. 
The paper is organised as follows. The first section will set 
the problem of fault treatment from piloting operator point of 
view. The goal of this section is to define what type of 
information need these operators and what are the problems 
they meet with actual alarm systems. In the second section, 
we will introduce different types of alarm that must be 
distinguished when we build an alarm system. The third 
section will introduce the Functional Graph and several 
                                                      
1 CHEM: “Advanced Decision Support System for chemical and 
petrochemical processes”. Project is funded by the European Community 
under the Competitive and Sustainable Growth programme of the Fifth RTD 
Framework Programme (1998-2002) under contract G1RD-CT-2001-00466. 
See www.cordis.lu or www.chem-dss.org 
 

concepts we apply for alarm filtering. We will notably 
propose a hierarchy of these concepts to build robust alarm 
filtering algorithms. The fourth section presents a prolog 
prototype that implements the alarm filtering techniques 
proposed in this paper. 

2 Fault treatment for piloting operators point of view 
Most of the supervision systems of actual complex 
Automated Production Systems are based on alarm systems. 
The roll of an alarm system is mainly to report process 
misbehaviours (faults) to the operators. In this case, the 
operators can select an appropriate procedure to apply 
corrective actions to avoid the propagation of the fault 
consequences. The main problem of actual alarm systems is 
to provide too much information to the operators. Several 
reasons explain this fact. The first reason is the way alarms 
are triggered off. 
In general, an alarm is triggered off when a fault event occurs 
in the process. When only one event characterises a fault or 
when the event can be generated by a critical fault, an 
automatic procedure is used to treat the fault. In this case, 
some authors propose to trigger off informative alarms. Their 
goal is to report to the operators the fault context (the plant 
state), the unavailability of some plant resources and the new 
configuration of the plant. In this case the operators have 
nothing to do except to take into account these information to 
perform future piloting or corrective actions. However, in 
general, the relation between a fault and an event is not 
bijective. Indeed, from faults viewpoint, several events are 
generally necessary to characterise a fault. At the opposite, a 
misbehaviour event can be produced by different faults. This 
leads some designers to link an alarm to each of the events 
produced by a fault. The idea is that the operators can reason 
from these alarms to diagnose the fault that have produced 
them. This kind of reasoning is difficult in case of multiple 
faults because all the events produced by an alarm do not 
necessary occurred at the same time and then can interleave 
with the events that characterised another fault. Moreover, 
causal relations in a process imply fault propagation notably 
if corrective actions are not taken quickly. In consequences, 
they generate alarms avalanches that increase the difficulty 
for the operator to diagnose the root fault of process 
misbehaviour. 



  

Another cause of alarm overload is the occurrence of false 
alarms. For example, in nuclear power plant system it is 
classical to have a few hundred alarms on operators control 
consoles in normal working. False alarms are generally due to 
the use of static thresholds to monitor continuous variables of 
the plant. These thresholds are fixed with regard a specific 
working mode. In a lot of plants they are chosen with regard 
to a steady state of the plant. Consequently, they are not 
suitable for transitory modes such as starting working mode 
or closure mode. Another source of false alarms is systematic 
maintenance operations on the plant resources. Since 
maintenance mode is not taken into account, when 
maintenance agents operates on a resource they modify the 
value of the variables that characterise this resource. False 
alarms can also be triggered off by a bad use of the process. 
As an example, let us consider the case of a machine tool 
stopped by a maintenance operator in order to perform 
systematic maintenance operations. If the Control-command 
tries to run the program of the machine and gets no response, 
an alarm would be triggered off to warn the operators about 
the faulty state of the machine. 
 
However, the overload of piloting operator consoles is not 
only cause by alarms. As invoked in above paragraphs, an 
Automated Production System (APS) must be piloted 
according to the production objective and to all the events that 
enable the operator to identify the state of its plant. Moreover, 
the operators must always know which resources are available 
and which of them are unavailable. For example, informative 
alarms in case of automatic reconfiguration or alarms induced 
by maintenance operations aim to inform of the status of 
concerned resources. Graphical user interfaces of supervision 
systems are generally designed to allow the operators to 
understand quickly which resources are operational.  

3 Taxonomy of alarms and alarm filtering  
To reduce the number of alarms, they can be composed 
before alarm presentation step. The goal is to produce fewer 
alarms with more expressive power. We distinguish four 
types of alarms depending on the place where they are 
activated (the command or the alarm system) and the way 
they defined from fault events. A non-synthetic alarm is 
triggered off by the command on the occurrence of a fault 
event. At the opposite, synthetic alarms are triggered off by 
the alarm system from a set of characteristic example. For 
example, Causal Temporal Signature [3] is a useful formalism 
to combine fault events to define synthetic alarms. Synthesis 
alarms are defined in the alarm system. They summarise to 
the operator the information given by several detail alarms. A 
detail alarm can belong to all the alarm type introduced in 
this section. A basic idea of our approach of alarm filtering is 
to use a type of knowledge model (the functional graph) to 
define synthesis alarms. Using causal inhibition principle (see 
section 4.4), detail alarms are inhibited by synthesis alarms to 
reduce the number of alarm presented to the operator. In next 
section we will use the expression "raw alarm" for synthetic 
or non-synthetic alarms.  
 

4 Alarm filtering based on the Functional Graph and 
the alarm status  

In this section we introduce the different states of an alarm 
that enables us to filter with regard to fault detection and 
isolation process and the action of an operator. We use 
StateCharts formalism [6] to specify these states. This 
formalism is useful to represent the hierarchy of the concepts 
and the inhibition property [5] that links these concepts.   

4.1 Brief recall on Functional Graph 
A Functional Graph (FG hereafter) is a graphical tool that 
enables us to filter raw alarms of an APS [1, 2]. An FG 
models the relations between the main functions of a plant 
and the internal functions delivered by plant items. At each 
node we associate a function of the system. Directed arrows 
that model functional dependency relationships interconnect 
these nodes. The dependency relationships are of different 
types: composition relationships, flow relationships or 
adaptation relationships [2]. In the functional hierarchy given 
by an FG, some functions are distinguished: Principal 
Functions that corresponds to the system services and Initial 
Functions (Figure 1). Initial functions are implemented by 
elementary plant items. Consequently they are the initial 
causes of every faults of the system.    
 

Principal functions

Initial functions

f3

f1 f2

f4

f8f7f6f5

f9 f10 f11

+

+ +

f3

f1 f2

f4

f8f7f6f5

f9 f10 f11

+

+ +

Dependency 
Arrow

Functional 
redundancy

 
 

Figure 1: An example of Functional Graph 

Graphically, the model is also completed by the addition of  
"or" operators (noted by a "+") that enable the designer to 
model the cases of functional redundancy. A functional 
redundancy is the fact that higher-level function (for example 
f3 in Figure 1) can be implemented differently by several 
lower level functions (for example f5 and f6 in Figure 1). It 
expresses the active or passive flexibility of the system. This 
flexibility characterises the different working modes and will 
be used when a failure will occur. In the other cases, the 
functional dependence relationships are constrained by an 
"and" operator. This operator is implicit in our models. On 
this example, since alarms at f10 or f11 nodes imply an alarm 
at f3 level, we can say that an alarm at f3 is a synthesis alarm. 
The two others are detail alarms. 



  

4.2 Activation concept 

Basically an alarm can be in two states: activated or not 
activated. The default state of an alarm is not activated 
because most of the time a plant works normally without 
faults. An alarm is activated when the plant behaviour is 
abnormal and verifies some conditions. The activation is a 
necessary condition to present the alarm to the operators. 
According to the fault detection (C1) and isolation 
specification of the plant, different cases are distinguished to 
allow an alarm to come back to the inactivation stated. 
Generally, it is sufficient that the starting condition becomes 
false. This is notably used when the starting condition 
depends on the monitoring of continuous variables.  For 
example, when the variable value exceeds a threshold the 
alarm can be activated. As soon as the value goes down again 
under de threshold, the alarm can be deactivated even if the 
operator has not yet treated it. This scheme is more difficult to 
apply in discrete event system where many faults are 
characterised by rising edge of instantaneous events. In this 
case, the alarm can be deactivated only if the fault has been 
diagnosed (C2).  

Not active Active

fault 
detection (C1)

Diagnostic of the fault 
or disappearance of 
fault evidences (C2)

Not active ActiveActive

fault 
detection (C1)

Diagnostic of the fault 
or disappearance of 
fault evidences (C2)  

Figure 2: Activation states and their transition conditions. 

4.3 Validation concept 

When an alarm is activated, it must not be necessary 
presented to the operators. Its presentation depends on its 
validation status. By default, an alarm is not validated. It state 
switches automatically to validate if the actual working mode 
of the plant requires the use of the associate function to 
assume the plant production (transition condition C3 in 
Figure 3). 
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Figure 3: Validation states and their transition conditions. 

Let us assume that the choice of a mode allows us to retain in 
exploitation a specific configuration of an FG. It means that 
the selected mode enables us to determine how a higher 
function is implemented by its redundant sub-functions. For 

example, let us consider the case of the process modelled in 
Figure 1. The actual mode selects function f3 to implement 
f1, f6 to implement f3, and f7 to implement f4. In Figure 4, 
the parts of the graph in grey colour represent the parts of the 
system that are not exploited by the current mode. If a raw 
alarm is triggered off concerning function f9, it must not be 
validated because this function is not in production. 
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Figure 4: Projection of a Functional Graph by using a 
specific working mode. 

The use of the validation concept is very useful to suppress 
false alarms such as the alarms produced by maintenance 
operations on the process. In addition, this concept is very 
powerful for filtering because it defines filtering rules in a 
positive way. Indeed, in some IAPS (Intelligent Alarm 
Processing System), the authors try to define forbidden states 
for an alarm or a group of alarms. Since the forbidden states 
are generally due to failures and since it is difficult to identify 
all the states that can be reached because of the combination 
of multiple failures, it is easier to know the normal behaviour 
of a system and to define alarm presentation with regard to 
this state.  

4.4 Causal inhibition concept 

To reduce the number of alarms that are presented to the 
operators we also propose to exploit causal inhibition 
concept. This concept exploits the causal relations between 
the functions of the different levels of an FG. These causal 
relations are illustrated by the existence of paths that link the 
initial functions to the principal functions of an FG. On a 
causal path, if we observe the behaviour of the system at 
different levels, in case of fault occurrence, raw alarms can be 
triggered off by all of these observable functions. The 
presentation of all these alarms is not necessary because they 
all inform about a common and unique fault (the failure of the 
initial function that initiates the causal path) and about the 
same consequences. Causal inhibition consists in masking all 
the alarms belonging to the same causal path, excepted one of 
them. The remaining alarm depends on the status of the 
operator. Piloting operators need to know which flexibility 
remains in the process to continue the production. For them, 
the reconfiguration process consists in finding the lowest 
alternative (“OR” node) from the initial function where it is 
possible to commute. In this case, causal inhibition consists in 



  

masking a detail alarm (lower-level alarm) by a synthesis 
alarm (higher-level alarm). For maintenance operator, it is the 
opposite because these operators need to diagnose the root 
cause of plant misbehaviour in order to identify which plant 
item must be repaired or replaced.  
Consequently a validated alarm can be in two states (Figure 
5): non-inhibited or inhibited. Non-inhibited is the default 
state because initially, the alarm must be treated, as it was 
alone. If an inhibiting alarm exists or occurs after (transition 
condition C5), immediately its state becomes inhibited and 
the alarm is no more presented. The transition from the 
inhibited state to the non-inhibited state depends on the 
absence of all of its inhibiting alarms (transition condition 
C5). An alarm can be inhibited only by validated alarms.   
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Figure 5: Inhibition states and their transition conditions. 

4.5 Suppression concept 

When an alarm is presented to an operator, sometimes he 
wants to suppress it (C7 condition in Figure 6) in order to 
distinguish the most important alarms that are displayed on 
his console. Such suppression does not necessary means that 
the alarm has been treated. Since the operator can have 
forgotten this suppression, it must not be definitive. It is the 
reason why two states are necessary to refine the status of a 
presented alarm: presented or not presented. When an alarm is 
not presented this means that after a delay, it must be 
displayed again on the console of the operator (C8) (Figure 
6).  
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Figure 6: Presentation states and their transition 
conditions. 

4.6 Acquitement concept 

In order to focus the attention of the operators, new alarms 
flash on the console's screen. However, this feature can 

disturb them when the screen is overloaded by many flashing 
alarms. To prevent this situation, the operator can acquit some 
alarms without treating immediately their causes (transition 
condition C9 in Figure 7). This action stops their flashing and 
eventually ranges these alarms in a list of acquitted alarms. 
But these alarms remain visible contrary to suppressed 
alarms. This status reduces the risk for an operator to forget to 
treat an alarm. Two states implement acquitement concept: 
flashing (the default state) and acquitted. When the operator 
select the acquit action, the alarm status becomes acquitted. 
An acquitted alarm comes back in flashing status after a 
temporisation time out or when the alarm is represented to the 
operator because a new detection of the same fault (transition 
condition C10 in Figure 7). 
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Figure 7: Acquitement states and their transition 
condition. 

4.7 Conclusion 

Acquitement or suppression actions of an alarm depend on 
the operator choice. This choice must be based on the gravity 
and the delay to treat an alarm. These information must be 
supplied to the operator. This problem is out of the scope of 
this paper. An operator can also decide to suppress an alarm 
after its acquitment. In this case the presented/acquitted status 
of the alarm is inhibited, and the alarm becomes not presented 
(see Figure 7).  

5 A prolog prototype for alarm filtering 
In this section we will describe an inference engine for alarm 
filtering based on the Functional Graph and the concepts 
evoked in the sections 3 and 4. The inference engine is 
developed in prolog language. Its purpose is to filter alarms 
for a piloting operator by taking into account the model of 
alarm states (Figure 7) and the notion of synthesis alarms. 
Some features of the inference engine such as the search for 
recovery actions are explained in [1] and are not developed in 
this paper. 

5.1 The prototype functioning 
Figure 8 shows the architecture of the developed prototype. In 
fact, it is based on two principal parts: a base of predicates 
and a base of rules.  



  

At first, some predicates describe the structure, the properties 
and currently used configuration of the FG. The last point is 
necessary to decide whether an alarm is validated or not. 
"arrow(Fi, Fj)" means that there is a dependency relation  
from Fj to Fi. 
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Figure 8: The prolog prototype architecture 

"node_OR (Fi)" predicate qualifies "OR" node. 
"observable(Fi)" means that the behaviour of the system 
(faulty or not) can be established at this node level. 
Consequently, raw alarms are only triggered off at observable 
nodes. "arrow_c(Fi,Fj)" enables a designer to distinguish the 
part of an FG that is not validated by the actual working 
mode. This predicates means that there is a potential 
dependency relation from Fj to Fi.  
Other predicates such as "alarm(Fi)" enable us to define the 
different states of an alarm. The last predicate means that an 
active alarm has occurred at the node Fi. The absence of this 
predicate to qualify a node means that the associate alarm is 
inactive. The other concepts introduced in section 4 are 
implemented by a similar scheme that defines each alarm 
state (validate, invalidate, inhibited, not_inhibited, presented, 
not_presented, flashing, acquitted) by a predicate in the form 
"state_alarm(Fi)". Thus, if the predicate 
"validated_alarm(Fi)" exists this means that there is a 
validated alarm at the node Fi. When an alarm is activated, 
and the associated node belongs to the currently used graph, 
this adds the following predicates to the database: alarm(Fi), 
validated_alarm(Fi), not_inhibited_alarm(Fi), 
presented_alarm, flashing_alarm(Fi). These predicates enable 
the operator to have different sub-lists to consult the alarms of 
the plant (output O_1 in Figure 8). For example, the operator 
can know all the alarms that are currently inhibited or 
invalidated, by simply entering questions such as 
"inhibited_alarm(X)" or "not_validated_alarm (X)" (Figure 
9). In the previous questions, "X" is a variable that is 
successively assigned to each node that verifies the predicate. 
The base of rules is structured in three packages of rules. The 
first package enables the operator to interact with the alarm 
system.  It contains three categories of rules (see Figure 8).  
The category I_1 (exploit(Fi,Fj) and not_exploit(Fi,Fj)) 
enables him to select the configuration of currently used 
functional graph. In the second category (I_2), 
"appears_alarm(Fi)" is a rule that enables the operator to 
activate an alarm at an observable node level. To deactivate 
an alarm the operator has "disappears_alarm(Fi)" rule. The 

rule "alarm_list([ ])" gives all the alarm that are actives at a 
moment. " The third category (inputs I_3) are used to control 
the presentation of active alarms: "clear(Fi)" rule and 
"acquitt(Fi)" rules apply respectively the suppression concept 
and the acquitement concept. 
  

 

?- appears_alarm(f11).
Yes
?- alarms_list(Liste ).
Liste = [alarm(f11)] ;
No
?- alarm(X ).
X = f11 ;
No
?- validated_alarm(X ).
X = f11 ;
No
?- not_inhibited_alarm(X ).
X = f11 ;
No
?- not_validated_alarm(X ).
No
?- not_inhibited_alarm(X ).
X = f11 ;
No
?- inhibited_alarm(X ).
No
?- supressed_alarm(X ).
No
?-

 

Figure 9: Definition of sub-lists of alarms. 

 The second package of rules implements alarm filtering 
techniques according to validation and causal inhibition 
concept. They are called each time the structure of the graph 
changes, or when a new alarm is activated. As an example, let 
us consider the activation of a new alarm at f11 node 
according to the active FG of Figure 4. This alarm is flashing 
because it is validated and not inhibited and then displayed on 
the alarm system screen (Figure 10-a). Let us now suppose 
the occurrence of another alarm at f3 node. The applying of 
causal inhibition concept implies the inhibition of the 
previous alarm, which is no more displayed (Figure 10-b). 
When a new alarm occurs at f10, it is not presented because it 
status is invalidated by the fact this node does not belong to 
the actual configuration of the plant (Figure 10-c). 
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Figure 10: Illustration of causal inhibition and validation 
concepts. 



  

The third package of rule assists the operator to determine the 
reconfiguration actions (output O_2) to perform in to handle 
the actual faults of the plant. In this case, reconfiguration 
decisions are posting on another screen of the alarm system 
(Figure 11). 
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Figure 11: General functioning of the prototype. 

6 Conclusion 
In this paper we have presented a prolog prototype that 
implements different techniques for alarm filtering. These 
techniques consist notably in reducing the number of 
presented alarms by combining the techniques of synthesis 
alarms and causal inhibition. Moreover, by using validation 
technique, we are able to filter all the alarms that are not 
relevant with the actual working mode of the plant. All these 
techniques are applied through the functional graph of the 
plant. We have improved the filtering mechanisms by 
defining different alarm states that take into account the 
interaction of the operator with the alarm system. This 
inference engine is a generic one since the alarm filtering 
techniques we propose are independent of how raw alarms are 
triggered off. It can either be used with raw alarms based on 
residual techniques [4] or artificial intelligence techniques 
such as Causal Temporal Signatures [3].   
The prototype presented is entirely off-line and obliges the 
operator to enter manually the alarms or their disappearance. 
But, we are actually developing an on-line prototype. 
In future, we want to take into account in our alarm system a 
more accurate modelling of the plant-working mode. The idea 
consists to associate with each node of the functional graph a 
behavioural model [2, 8]. The goal is to refine reconfiguration 
procedures that are proposed to the operator in case of fault.  
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