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Abstract

A robust nonlinear state feedback control achieving tran-
sient stabilization is designed on the basis of the standard
third order model of a synchronous generator connected to
an infinite bus. Sudden mechanical power failures, short
circuits, infinite bus perturbations may drive the genera-
tor out of step. The proposed robust nonlinear excitation
control prevents the machine from going out of step in the
presence of any mechanical or electrical parameter pertur-
bation. L., and Lo disturbance attenuation are guaran-
teed from the power angle and relative speed regulation
errors with respect to time-varying parameter perturba-
tions from nominal values. The operating condition is the
only equilibrium point of the closed loop system with an
explicitly computable stability region, when all parame-
ters are equal to their nominal values.

1 Introduction

Transient stability and voltage regulation for power sys-
tems are classical control problems. Dynamical models
of increasing complexity have been developed both for a
single machine connected to an infinite bus and for multi-
machine networks ([1], [3]). They all show an intrinsic
nonlinear nature since the electric power provided by each
generator is a nonlinear function of the generators state
variables. As a consequence there are several stable and
unstable equilibrium points. Early studies aimed at de-
termining the stability regions of desired operating condi-
tions by means of Lyapunov functions in order to study the
effect of perturbations ([1], [9]). In fact sudden mechani-
cal (load shedding and generation tripping) and electrical
(short circuits with changes in the power network struc-

ture) perturbations may destabilize the operating condi-
tions and force one or more generators to go out of step
and to be disconnected from the network. The transient
stabilization problem consists in the design of an excita-
tion feedback control for each generator which keeps each
generator at synchronous speed when perturbations occur.
Voltage regulation is not considered at this stage. Lin-
ear controllers are actually employed which are designed
on the basis of linear approximations around operating
conditions: only small perturbations and small deviation
from operating conditions can be handled. It is clear that
nonlinear controllers [7] are required to handle the large
perturbations that typically occur in power systems. As a
first step in this direction it was shown that several power
systems models are linearizable by state feedback ([2], [4],
[14]) so that the operating condition is the only equilib-
rium point for the closed loop system and very large stabil-
ity regions can be assured by nonlinear feedback lineariz-
ing controllers provided that state variable measurements
and physical parameters are available to the controller:
transient stabilization along with voltage regulation can
be achieved in this case. Adaptive versions of feedback
linearizing controls were then developed in [12], [15] and
[8] so that the knowledge of some critical parameters which
may change during operations is no longer needed to guar-
antee speed regulation. Robust nonlinear state feedback
controls have also been investigated in [13] while in [10] ro-
bust adaptive nonlinear controllers are developed assum-
ing additive disturbances and unknown electrical param-
eters.

In this paper we address the problem of designing a non-
linear state feedback control for a third order model of a
synchronous generator connected to an infinite bus relying
only on the nonlinearities but not on the parameters which
are not assumed to be known by the controller and in fact
are also allowed to be time-varying to account for unmod-
elled dynamics. There are ten physical parameters (both
mechanical and electrical) in the third order model and
they can be time varying and undergo sudden variations



due to short circuits, turbine failures, load shedding, infi-
nite bus voltage and frequency perturbations. Following
the theoretical developments in [5], [6], [11] (even though
they do not apply to the model considered here in which
uncertain parameters multiply the control input), a ro-
bust nonlinear state feedback control is designed which
makes the operating condition the only equilibrium point
for the closed loop system when the parameters assume
their nominal value: it is exponentially stable with an ex-
plicitly computed very large stability region. The robust-
ness with respect to time varying variations from nominal
values is achieved guaranteeing boundedness and arbitrary
L., and L, disturbance attenuation from the regulation
errors with respect to the variations of all parameters from
their nominal values.

1 Problem Formulation

The well-known classical third order dynamic model of
a synchronous generator connected to an infinite bus is
given as follows (see [1]):
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where §(rad) is the power angle of the generator relative
to the angle of the infinite bus rotating at synchronous
speed wg; w(rad/s) is the angular speed of the genera-
tor relative to wg, ie., w = wyg — ws and wy is the gen-
erator angular speed; P.(p.u.) denotes the active electri-
cal power delivered by the generator to the infinite bus;
(6,w, P.) constitute the state variables; H (s) is the iner-
tia constant, D(p.u.) is damping constant and P, (p.u.)
is the mechanical input power; V(p.u.) is the voltage at
the infinite bus; X4, = Xs + Xqg = X7 + %XL + Xa(pu.)
is the total reactance which takes into account X 4(p.u.),
the generator direct axis reactance, X (p.u.), the trans-
mission line reactance, and X7 (p.u.), the reactance of the
transformer; X = X +X; = X7+ %XL + X/ (p.u.) with
X/, denoting the generator direct axis transient reactance;
uy(p.u.), which constitutes the control signal, is the input
to the SCR amplifier of the generator; K. is the gain of
the excitation amplifier and T = TyX} /X4, with Ty(s)
being the direct axis short circuit time constant.

The generator terminal voltage is given by
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which is to be regulated to its reference value V; . = 1(p.u.),
while the relative speed w is to be regulated to zero.

In practice, the exact values of the machine physical pa-
rameters (H,Xq,X,X7,X1,T4,K.) in model (1) are hard
to obtain, and (P,,,D ,ws,Vs) are lumped parameters which
account for unmodelled dynamics such as turbine dynam-
ics, load dynamics, damper windings and multimachine
dynamics. Those parameters may undergo sudden on line
variations due to mechanical and electrical perturbations
and faults. For instance, ws and P,, will change consid-
erably when the mechanical power is perturbed by load
shedding or turbine failures, and their variation is not
measurable. The infinite bus voltage Vs may change as
a consequence of perturbations occurred in the network.
Furthermore, when a fault occurs in the bus or causes a
change in the structure of the electrical network, the re-
actance of the transmission line will be changed and as a
result X4, and X will change considerably. Thus, there
is a need for the excitation control law which not only
stabilize the nominal system at a desired equilibrium with
a large stability region, but also guarantees robustness
with respect to unknown parameter perturbations. In the
next section, we will present an approach to design such a
feedback control law so that the closed loop system is ex-
ponentially stable with arbitrary small L., and Lo gains
from the parameter perturbations to the regulation error.
To this end, we reduce the eleven physical parameters in
the model (1) as follows
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where the new parametrization requires only six positive

parameters 6; > 0, (i = 1,2,---,6) defined as 6; = %7
, , Xq—X!

02 = %, 03 = % Pm, 04 = T%;? 5 = X:SX;L{ Ve, b =

)s/deTd While the variables (w, P, V;) can be measured,

6 measurements are not available, even though é can be
obtained by time integration of w measurements. In the
following, we will denote by ¢; (i =1,2,---,6) the known
constant nominal values of the parameters 6; and by 9, =
0;—c; (i =1,2,---,6) the parameter variations from nom-
inal values. Due to physical considerations we restrict the
operation of the system to the open set

Q= {(é,w,Pe) (8,0, P.) € (0,1) x R x w}. (3)

The asymptotically stable nominal operating condition is
given by
c3 c4C3Cq
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where 65 € (0, §), guarantees terminal voltage regulation
[Vi = 1(p.u.)]. Note that there is another unstable equi-
librium point (64,0, Pp,) with siné, = sind for equation
(2) which may be very close to the stable one making the
stability region very small. The control problem can be



formulated as follows: find a state feedback control law [k
is the arbitrary positive real scalar to be chosen]
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for the system (2) such that the closed loop system has
the asymptotically stable operating condition (4) as an
exponentially stable equilibrium point when the parame-
ters assume their nominal values and in addition satisfies
in terms of z(t) = [(6(t) —64),w(t)]T, z(t) = [2(t), (Pe(t) —
Peo)]T and w = [51, Oy, -, éﬁ}T the following properties:

(S1) exponential stability and Lo disturbance attenua-
tion.

I2()]1* < g(2(0))e ™" + %71(Ilw\|), vi>0 (6)

holds, where g(x(0)) > 0, ¢ > 0, v1(r) is a class K
function and k is an arbitrary positive real scalar;

(S2) Ly disturbance attenuation.
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holds for any given 7' > 0, where h(z(0)) > 0, v2(r)
is a class K function and k is an arbitrary positive
real scalar.
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The effect of physical parameters variations from their
nominal values is quantified by (6) and (7): (6) gives an
upper bound on L, regulation errors while (7) gives a
bound on Ls regulation errors. This formulation allows us
to solve the transient stability problem for the desired op-
erating condition and to characterize the robustness with
respect to parameter variations from their nominal values.

2 Robust Control Design

Defining §(t) = 6(t) — 6, and &(t) = w(t) — w,(t) = w(t) +
ks6(t) with ks > 0, from (2) we have
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where vy is to be designed and & > 0 is the constant

which appears in the disturbance attenuation inequalities

(6) and (7). Then, the equation (9) can be rewritten as
k
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Hence, by choosing v; as (k, > 0)
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the equation (12) becomes
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with ¢21 = —w, ¢a3 = 1. Note that & = & — W, = & +ksw.
Differentiating (11) and (13) with respect to time yields
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Therefore, from the model (2) and the last expression (15),
we get
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Using the same strategy employed in choosing vq, we de-
fine the robust control law as follows
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with v yet to be designed, which substituted in (16) gives
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Choosing vy as (k, > 0)
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and substituting it in (18), we obtain
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Thus, the closed loop system dynamics are given from (8),
(14) and (20) as
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where § = [51, 0~2,~-~,é5]T, ®y = [¢21, 0, ¢23, 0, 0]
and ®3 = [¢31, ¢32, ¢33, P34, P35 ]
Consider the quadratic positive definite function
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Computing the derivative of function V along the trajec-
tories of the closed loop system, we obtain
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Using repeatedly the inequality
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and recalling that 6, = % and 0~7 = —Lég, we obtain
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the dissipation inequality
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Let U (1) =V (3(2), &(1), Pe(t)) = $[82(1) + 2%(1) + P2(1)|
and ¢ = min{2ks, 2k, 2k, }.
From (26) it follows
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On the other hand, integrating (25) over [0, T), we obtain
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At the equilibrium (5 =060 =0,P, =06 =0 (i =

h(z(0) = [52(0) +6

1,2,---, 6)) for the closed loop system (21) we obtain from
(17), (19)
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in accordance to (4). When 9, =0 (i=1,2,---,6), that
is all parameters are equal to their nominal values, the
function V in (22) is a Lyapunov function according to
(24) and the stability region of the exponentially stable
operating condition (85,0, P,,) is given by

so that the singularities at § = 0 and § = 7 for the control
(17) are avoided. In the presence of parameters variations
from their nominal values, i.e., §; #0((i=1,2,--,06), the
control parameter k directly affects the influence of each
parameter variation on the regulation errors both in L
and Lg so that both transients and peaks can be controlled
to enhance the robustness and prevent the generator from
going out of step.

Remark: Following the design of the controller and
the analysis of its properties, it is obvious that (25) is
still valid even if the parameters 6; (i = 1,2,---,6) are
time varying: in the case, the inequality (25) and conse-
quently the inequalities (7) and (8) hold with v(||w(¢)|) =

S0y ei(t)F3(t).



3 Simulation Results

We tested by simulation the proposed controller (17), (19)
with control parameters: ks = k., = k, = 60, k = 0.1 with
reference to a synchronous generator characterized by the
following nominal values of the parameters:

ws = 314.159rad/s D = 5p.u. H =8s
Ty =6.9s K.=1 X4 =1.863p.u.
X{; = 0.257p.u. Xr=0.127p.u. X = 0.4853p.u.

The operating point §,=1.256 rad, P,,=0.9 p.u., w=0
guarantees Vy;=1 p.u., with V=1 p.u.. The goal of the
simulation is to verify the effect of a severe fault on the
turbine, a change in the structure of the electrical network
and a variation of the gain of the excitation amplifier. It
was considered a fast reduction (50% of the initial value) of
the mechanical input power and a sudden increase (20% of
the nominal value) of the transmission line reactance X,
and of the excitation amplifier gain K.. The simulation
was done according to the following time sequence:

1. The system is in pre-faulted state.

2. At t = 0.6 s the mechanical input power begins to
decrease.

3. At t = 1.9 s the mechanical input power is 50% of the
initial value.

4. At t = 2 s the transmission line reactance begins to
increase.

5. At t = 2.2 s the transmission line reactance is 120% of
the nominal value.

6. At t = 2.4 s the gain of the excitation amplifier begins
to increase.

7. At t = 2.6 s the gain of the excitation amplifier is 120%
of the nominal value.

Figs. 2.a)-2.c) show that the power angle 6, the relative
angular speed w of the generator and the electrical power
P, go smoothly to a stable equilibrium point for the per-
turbed system, according to (21).

Fig. 3.a) shows how the output voltage drops during the
mechanical and the electrical perturbations, while Fig.
3.b) shows that the control signal is smooth and kept in-
side the prescribed physical bounds.

Transient and steady state errors are small and can be
made even smaller by increasing the parameter k. The
choice of the control parameters is mainly constrained by
the limitation of the control signal.

4 Conclusions

For the well-known third order model (1) of a synchronous
generator connected to an infinite bus involving significant
nonlinearities and eleven physical parameters which are
difficult to measure and may undergo large and sudden
on line variations, the design of a state feedback control
which achieves transient stabilization and is robust with
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Figure 1: a) Mechanical input power P, b) Transmission
line reactance X c¢) Excitation amplifier gain K.
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Figure 2: a) Power angle § b) Relative angular speed of
the generator w c¢) Active electrical power P,



Figure 3: a) Generator terminal voltage V; b) Control

signal u ¢

respect to all parameter perturbations both in L. and
Lo sense is addressed and solved. The proposed nonlin-
ear controller guarantees: i) exponential stability of the
operating condition with an explicitly computed stability
region, when all parameters are equal to their nominal
values; ii) an explicitly quantified robustness with respect
to parameter variations from nominal values.

The control performance was tested by simulating severe
perturbations on three physical parameters: excellent tran-
sient and steady state behaviours are observed.
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