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Abstract In this paper new computationally eÆ-
cient algorithms for spline interpolation method are
explained. Theoretical comparative analysis of the
spline interpolation method with combined high-gain
observer and spline interpolation method is presented.
New spline interpolation algorithms are implemented
for estimation of the engine angular acceleration from
the crankshaft angle measurements.

1 Introduction

Numerical calculation of the derivatives of a signal is
an old problem in numerical analysis and digital signal
processing. The backward di�erence method gives one
of the simplest numerical di�erentiators. Despite the
fact that it is quite common in engineering applications
the behavior of the derivative is very often accompanied
with peaking phenomena. Spline interpolation method
proposed in [2] is based on on-line least-squares poly-
nomial �tting over the moving in time window of a
size w. The advantage of this method over the back-
ward di�erence method is its good transient behavior.
The idea for the spline interpolation method is to �t
a polynomial of a certain order as a function of time
in least squares sense and take the derivatives analyti-
cally. Properties of this method are described in [2],[1].
However, several practical problems remain. Relatively
large window size w requires more on-line computations

and makes practical implementation of the method dif-
�cult. This necessitates the development of compu-
tationally eÆcient recursive algorithms. Moreover, in
[2],[1] only constant intersampling time is considered,
which in many practical applications is not constant.
For example, crankshaft angle measurements in auto-
motive engines are based on the measurements of the
crankwheel tooth number and therefore the elapsed
time between two teeth passing a �xed point varies.
This necessitates the development of recursive compu-
tationally eÆcient algorithms for variable discretization
step.
The contributions of this paper are the following : new
computationally eÆcient recursive spline interpolation
algorithms for variable discretization step ; theoretical
comparative analysis of the spline interpolation method
and combined spline method with high gain observer;
real-time implementation of the spline interpolation
method for the crankshaft acceleration estimation.

2 Estimation of the derivatives

of signal

The �rst step is to choose the interpolating polynomial
as

�̂ = c0 + c1t+ :::+ cnt
n (1)

where �̂ is an estimate of the measured signal �, t is
continuous time, ci,i = 0; :::; n are coeÆcients to be
found. The estimates of the derivatives are obtained
by di�erentiating (1) analytically.



Suppose that there is a measured window of data
f�k�(w�1); :::; �kg of a size w, measured discretely with
variable discretization step. It is convenient to place
the origin at the point k� (w� 1), where k is the step
number, then there is a window of data f�0; :::; �w�1g
measured at f0; :::; tw�1g respectively. Variable dis-
cretization step is presented as �ti = ti � ti�1, i =
1; :::; w � 1. The sum to be minimized at every step is

S =
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(�i � (c0 + c1ti + :::+ cnt
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i
))2 (2)

where ti, i = 0; :::; w� 1 is a discrete time which corre-
sponds to the signal measurements �i, t0 = 0.

Minimum of S is achieved when equating to zero partial
derivatives of S with respect to ci, i = 0; :::; n, i.e.,
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Equations (3) can be written as follows
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where equation (4) represents @S

@c0
= 0, equation (5)

represents @S

@c1
= 0 and �nally equation (6) represents

@S

@cn
= 0 .

The system (4) - (6) should be resolved at every step in
order to �nd the coeÆcients ci, i = 0; :::; n. It is clear
that for a suÆciently large window size w, the calcu-
lation of sums in the system (4) - (6) requires a lot of
computational power and our next step is to present

recursive computationally eÆcient algorithms to com-
pute these sums.

Let us consider one step of the moving window of a size
w. Suppose that at step k�1 there is the following data
f�0; :::; �w�1g measured at f0; :::; tw�1g, and at step k

there is f�1; :::; �wg measured at f0; :::; twg. The new
value �w measured at the time tw enters the window (
bu�er) and the value �0 leaves the window. Our prob-
lem statement is to �nd computationally eÆcient recur-
sive algorithms to compute the sums Smk

=
P

w

i=1 t
m

i

via the sums on the previous step Smk�1
=
P

w�1

i=0 t
m

i
,

where m = 1; :::2n.

De�ne the sum of order m at step k as follows
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=
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where t1 = 0.
The sum (7) should be computed using the same sum
on a previous step k � 1 which can written as
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and the sums of lower order at step k which are de�ned
as
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where 1 � j � (m� 1), m > 1.

Starting with (8) and using the following identity
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where m = 0; 1; 2; :::, one gets



Smk�1
= (w � 1)�t

m

1 +�t
m

2 + (�t2 +�t3)
m + :::

+(�t2 +�t3 + :::+�tw�1)
m

+

m�1X
j=1

C
m

j
(�t

j

1�t
m�j

2 + :::

+�t
j

1(�t2 + :::+�tw�1)
m�j) (11)

Notice that

�t
m

2 + (�t2 +�t3)
m + :::

+(�t2 +�t3 + :::+�tw�1)
m

= Smk � (�t2 +�t3 + :::+�tw)
m (12)

and

m�1X
j=1

C
m

j
(�t

j

1�t
m�j

2 + :::

+�t
j

1(�t2 + :::+�tw�1)
m�j)

=

m�1X
j=1

C
m

j
�t

j(S(m�j)k

�(�t2 + :::+�tw)
m�j) (13)

Substituting (12) and (13) in (11) one gets
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, 1 � j � (m� 1), m > 1.

Our next step is to calculate the sums on the right
hand side of the equations (4) - (6). The sums S�mk
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Using similar arguments one can show that
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is the sum on the step (k � 1), and
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where 1 � j � (m� 1), m > 1.

The order of the interpolating polynomial should be so
selected to be as low as possible in order to reduce the
computational burden and to �lter out measurement
noise.

In the next Section the detailed solution of the inter-
polation problem for the second order polynomial is
presented. This example is used in Section 4 for the
crankshaft acceleration estimation.

3 Second Order Example

3.1 Spline Interpolation Method

For the second order polynomial (1), where n = 2,
equations (4) - (6) can be written as follows
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where the sums are computed using recursive formulas
(14) and (17).
Presenting equations (18) - (20) in matrix form yields

Ac = b (21)

where

A =

0
@

a11 a12 a13

a21 a22 a23

a31 a32 a33

1
A, c

T = (c0; c1; c2), b
T =

(b1; b2; b3) , where

a11 = w; a12 = S1k; a13 = S2k

a21 = S1k; a22 = S2k; a23 = S3k

a31 = S2k; a32 = S3k; a33 = S4k

b1 = S�k; b2 = S�1k; b3 = S�2k

Notice that, a12 = a21 and a22 = a31 = a13, a23 = a32.

In order to �nd spline coeÆcients ci, i = 0; 1; 2 the
matrix equation (21) should be solved with respect to
ci at every step ( c = A

�1
b). To this end matrix A is

inverted analytically.

Remark 1. This algorithm has only one parameter to be
optimized, this being the size of the moving window w.
If the derivative of the measured signal changes slowly
it is advisable to have a relatively large window size to
�lter out measurement noise. If the derivative changes

quickly, the window size should be suÆciently small to
capture corresponding fast changes in the derivative.
The disadvantage of a small window size is the noise in
the estimated signal. Ideally, the window size should be
adjustable so that it is small enough during transients
to capture fast changes in the derivative of the signal,
and large enough under steady-state conditions to �lter
out measurement and space-discretization noise.

Remark 2. For constant discretization step the sums
Sm do not change with time, matrix A is constant and
computational burden is minimal.

Remark 3. The recursive computations presented
above accumulate an approximation error, which in-
creases with time. To avoid this error accumulation

problem, repeatable initialization of the algorithms is
required.

3.2 Combination of high gain observer

and spline interpolation method

and their comparative analysis

In [2], [1] it is mentioned that the spline interpolation
method can be combined with high-gain observers. The
combined scheme shows improved transient behavior.
In this Section the comparative analysis of the spline in-
terpolation method and combined method is presented.

The signal is estimated via the second order polynomial
described above

�̂(t) = c0 + c1t+ c2t
2 (22)

where �̂(t) is the estimate of the signal �.

A combination of the spline interpolation algorithm
with a simple high gain observer is presented as fol-
lows

y(t) =
1

�
�+ y1(t) (23)

_y1(t) = �
1

�
y(t) + �̂�; y1(t0) = _̂�(t0)�

1

�
�(t0)(24)

where y(t) is the estimate of the _�, � > 0 is the algo-
rithm parameter, _̂�(t0) is the estimate of the derivative
from spline interpolation method evaluated at time t0,
�̂� is spline estimate of the second derivative. The condi-
tion y1(t0) = _̂�(t0)�

1
�
�(t0) corresponds to the follow-

ing initial value assignment y(t0) = _̂�(t0). This means

that high gain observer (23), (24) is initialized to the
spline estimate. Moreover, the second order derivative
�̂� is used directly as an input to the high gain observer.
Notice that, _̂�(t0) = c1 + 2c2t0 and �̂� = 2c2.

Remark 4. Equations (23) and (24) represent the fol-
lowing estimator of the derivative

y(p) =
p

�p+ 1
�(p) (25)

if �̂� = 0, where p = jw is a Laplace variable. Esti-
mates from the spline interpolation method are used
as a feedforward part in the estimator (25).



Assuming a spline approximation error, then this error
is expressed in terms of the error in spline coeÆcients
and the true signal can be expressed as follows

�(t) = c0� + c1�t+ c2�t
2 (26)

where �(t) is the signal, ci�, i = 0; 1; 2 are true coeÆ-
cients.

Assuming a constant error in the coeÆcients w.r.t.
time one gets

ci = ci� +�ci (27)

where �ci, i = 0; 1; 2 are constant errors in spline co-
eÆcients.

Our task is to compare the following estimation errors

e1(t1) = _̂�(t1)� _�(t1) (28)

e2(t1) = y(t1)� _�(t1) (29)

where t1 is a �xed time.

First we evaluate e1(t1)

e1(t1) = �c1 + 2�c2t1 (30)

The next step is to evaluate e2(t1). Di�erentiating (23)
and taking into account that �̂� = ��+ 2�c2 one gets

_y � �� = �
1

�
(y � _�) + 2�c2 (31)

The solution of (31) is the following

y(t)� _�(t) = (y(t0)� _�(t0)� 2�c2�)e
�

t� t0
� +2�c2�

(32)

Initialization of high gain observer gives the following:
y(t0) = _̂�(t0). Taking into account that _̂�(t0)� _�(t0) =
�c1 + 2�c2t0 one obtains

y(t)� _�(t) = (�c1+2�c2t0�2�c2�)e
�

t� t0
� +2�c2�

(33)

Evaluating e2(t1) one gets

e2(t1) = (�c1 + 2�c2t0 � 2�c2�)e
�

t1 � t0
� + 2�c2�

(34)

Comparing (34) and (30), it can be seen that je2(t1)j
can always be made smaller than je1(t1)j by reducing
the design parameter � . However, in the presence of
noise the reduction of � leads to a deterioration of the
signal quality. The advantages of this combined scheme
can be shown if the parameter � can be reduced to a
suÆciently small value without any signal quality de-
terioration.

As the simulation results did not show any signi�cant
superiority of the combined method over the spline in-
terpolation method and the latter is chosen for imple-
mentation.

4 Implementation Results

In this Section the implementation results are pre-
sented for a second order spline �tting method, as
described in Section 3.1. A Volvo S80 passenger car
equipped with a crankshaft angle sensor is used for ex-
periments. The method described in Section 3.1 is used
to estimate the crankshaft acceleration,which gives vi-
tal information about the quality of the combustion in
the engine, from the crankshaft angle measurements.

The car is equipped with a special Engine Control Unit,
which is called Volvo Rapid Prototyping System. This
system consists of the PM (Power Module) and the
AM (Application Module) connected together via a 1

Mbit/s CAN channel.

The PM provides information based on a number of en-
gine sensor signals. The crankshaft wheel has 58 teeth
spaced every 6 degrees and a gap corresponding to two
\ missing teeth \. Engine speed and cylinder position
can be calculated from the resulting crankshaft sen-
sor signal. The PM calculates the engine speed based
on the measured time between the tooth events via
the backward di�erence method. This engine speed is
transmitted along with other measurements every 4th
millisecond to the AM.

The 4 millisecond sampled crankshaft angle calculated
from the tooth number signal is the input to the
crankshaft acceleration estimation, which runs in the



AM. The accuracy of the estimation is veri�ed by com-
paring the engine speed, calculated by the spline inter-
polation method, with the engine speed calculated in
the PM.

Implementation results are presented in Fig.1 which
shows engine speeds as a function of time. The ac-
curacy of the estimation is veri�ed by comparing fast
engine speed measured in the PM module ( dotted line
) and engine speed calculated via spline interpolation
method ( solid line ).
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Figure 1
Experimental results. The comparison of two engine
speeds as functions of time. Engine speed computed
in PM is plotted with dotted line. Engine speed

calculated with spline interpolation method is plotted
with solid line.

Figure 2 shows an application of the proposed recursive
spline interpolation method to the mis�re diagnostics.
In this Figure two engine cycles of a 5 cylinder en-
gine are shown, and the mis�re is generated on the
second cycle of cylinder N 4. The tooth number sig-
nal is plotted with a dashdot line. Crankshaft accel-
eration estimated by the spline interpolation method
is plotted with a solid line. In the event of a mis-
�re, the crankshaft acceleration changes dramatically,
which permits the cylinder individual mis�re detection.
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Figure 2
Experimental results. Two engine cycles of 5 cylinder
engine. The mis�re is generated on the second cycle
in the cylinder 4. Tooth number signal is plotted with
dashdot line. Crankshaft acceleration estimated by
the spline interpolation method is plotted as a

function of time with a solid line.

5 Conclusion

Computationally eÆcient algorithms for spline interpo-
lation method allowing a reduction in computational
burden as well as the implementation of the spline in-
terpolation method are presented. A further challenge
is to improve the performance of these algorithms by
adjusting the size of the moving window.
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