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Abstract
Shaping command input or preshaping is used for reducing
system vibration in motion control. Desired systems inputs
are altered so that the system finishes the requested move
without residual vibration. This technique, developed by N.C.
Singer and W.P. Seering, is used for example in the aerospace
field, in particular in flexible structure control. This paper
presents the extension of this method for explicit fractional
derivative systems (generalized derivative systems). A
robustness study is then presented, and preshaping is applied
to improve second generation CRONE control (explicit
fractional derivative transfer function) response time. Shaper
coefficients are calculated in real time using properties of
explicit fractional derivative systems and results in simulation
are given.

1  Introduction
Developing the control of a process that carries out a task
results from two stages of design: control synthesis and path
planning. Path planning is divided into two parts: path
generation and motion control. By means of command inputs,
path planning determines how to follow the path depending
on the desired performances and physical constraints of the
actuators. It is then necessary to determine an algorithm able
to calculate command inputs for feedback control systems,
while minimising the response time as well as the residual
oscillations.
The CRONE team developed a solution based on an implicit
fractional derivative filter [6][10]. A study compared this
approach with traditional prefilters and Bang-Bang laws [7].
Another approach based on shaping command inputs was
developed by N.C. Singer and W.P. Seering  [12]. Shaping
command input or preshaping is used to control the little-
damped modes, and aims  to eliminate residual vibration. It
was applied to second order systems. Systems of order higher
than 2 can always be separated into a cascade of  order 2 cells
[11]). The shaping command input technique consists in the
convolution between step function and impulse sequence. The

impulse amplitudes and their instant in time are calculated
according to constraints.
This paper presents the extension of this method for explicit
fractional derivative systems, robustness study and
application to CRONE control. The final goal is to improve
the second generation CRONE control (explicit fractional
derivative transfer function) response time, applying these
results [4]. Section 2 summarises Singer and Seering’s
preshaping method. In section 3, the shaper synthesis is
applied to explicit fractional derivative systems. Section 4
presents the robustness study of the method and its
application to second generation CRONE control. Shaper
coefficients are calculated in real time using properties of
explicit generalized derivative systems and results in
simulation are given. Finally, section 5 presents main results
of the method and some prospects.

2  Shaping command input principle
Shaping input is obtained by convolving desired input with an
impulse sequence. The amplitudes and instants of application
constitute the shaper coefficients. The goal of the shaper
synthesis is to calculate impulse amplitudes and instants of
application, so that the shaping reference variable reduces or
cancels the harmful effects of the mechanical system
flexibility or the control law resonance.
Figure 1 represents the convolution between a step function
and a shaper containing two impulses.

0 5 10 15 20
-1

-0.5

0

0.5

1

Time (sec.)

A
m

pl
itu

de

Response to first impulse 
Response to second impulse

(a) Impulse response of a second-order system to an impulse
(-), and to a delayed impulse (--)
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Fig. 1: Convolution between unit step function and a shaper
with two impulses to produce a step command input

Shaper synthesis is obtained according constraint equations
[12]. The system is:
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Resolution of (1) gives shaper called Zero
Vibration(Derivative)q or ( )qDZV  with Rq∈ . Shaper is thus
the convolution between the step function and (q+2)
impulses. However the disadvantage is: the higher the pulse
number of the shaper, the more significant the response time.
This is the robustness-speed compromise.

3  Shaping command input for explicit
fractional derivative systems

3.1 Introduction

Singer and Seering's method for integer systems is now
extended to explicit fractional derivative systems.
In the operational field, a fundamental system is called
explicit fractional derivative [9] when its transfer function is
described by:
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The unit pulsed response given by (2) is:
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Calculation of the inverse transform of (3) is by integration of
multiform functions by the residues [9]:
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Order n belongs to ] [2,1 . In this range, the transient is a
positive damping, thus the system is stable. ( )ty  in (4) results
from two distinct response elements [8]:
• the first part is the stable aperiodic multimode
• the second part is a dominant oscillatory mode. It can be

used to represent the control response. This is due to the
explicit presence of two combined complex poles.

This oscillatory mode is robust because its damping ratio ξ is
exclusively related to control order n, therefore independent
of the transitional frequency.
Figure 2 represents the decomposition step response of an
explicit fractional derivative system.
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Fig. 2: Unit decomposition step response of an explicit
fractional derivative system for n=1.5 and τ=1sec,(__)step

response;(---) aperiodic multimode; (...) dominant oscillatory
mode

Note: The greater n is, the quicker the aperiodic multimode
will tend towards zero.
Considering that the peak on the oscillatory and global
explicit generalized derivative curves do not coincide
sufficiently well, two approaches are applied to Singer and
Seering’s method  [12]:

• a temporal study on the oscillatory part
• a temporal study on the system’s global response (4).

3.2  Shaper synthesis on the oscillatory part of the explicit
fractional derivative system

This approach consists in determining the shaper synthesis on
the oscillatory part (second order), then to apply the shaped
command input thus obtained on the explicit fractional
derivative system. This is a direct application of Singer and
Seering’s method.
According to the pulsed response expression (4), the
oscillatory part is:
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This is a direct application of Singer and Seering’s method,
and system of constraint equations is (with Rq∈ ):
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3.2.1   ZV shaper

By solving (6) for N=2, ZV shaper amplitudes and instants of
application are:
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Note: iA  amplitudes are independent of τ .
Figure 3 represents the ZV shaper response hold for an
explicit fractional derivative system for n=1.7 and τ=1sec.
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Fig. 3: Explicit fractional derivative system response to ZV
shaper for n=1.7 and τ=1 sec

Contrary to the Singer and Seering’s method applied to a
perfectly known system, here a residual overshoot is always
present. As calculations are carried out only on the system’s
oscillatory part, the oscillations due to (5) are perfectly
cancelled following the application of the second impulse.
However the aperiodic multimode, induced by the first then
the second impulse, introduces a residual overshoot (the
closer n is to 2, the smaller is the overshoot).To cancel the
remaining overshoot, a prefilter could be introduced, for
example Davidson-Cole [3]. Here the robustness of the ZVD
has been chosen, along with the synthesis of the shaper
starting from the oscillatory part of the explicit fractional
derivative system.

3.2.2   ZVD shaper

The ZVD shaper is:
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Figure 4 represents the explicit fractional derivative system
response to the ZVD shaper for n=1.7 and τ=1sec.
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Fig. 4: Explicit fractional derivative system response to ZVD
shaper  with  n=1.7 and τ=1 sec

As the shaper is not applied to the step response peak, but to
the oscillatory curve peak, the robustness of the ZVD shaper
to errors due to parametric variations is thus used, in order to
cancel the residual overshoot. ZVD shaper synthesis on the
oscillatory part, and its application on an explicit fractional
derivative system, decreases the residual vibration. However
it is not eliminated, and the response time is increased. The
introduction of a ZVDD shaper would further reduce the
residual vibration, but the response time would be increased.

3.3 Shaper synthes is on  the global response of an explicit
fractional derivative system

In this approach, the goal is to obtained the first impulse
instant of the shaper more precisely. Thus calculation are
done on the global response of an explicit fractional
derivative system and not only on the oscillatory part. Taking
into account the complexity of the equation (4), this unit
pulsed response will be used [9]:
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Thus the step response is:
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From (9), shaper amplitudes and instants of application can be
calculated.

3.3.1   Analytical expression

- 1st approach:
From equation (9), the instants corresponding to the zeros of
the pulsed response can be expressed. The first instant of
application of the shaper is always taken equal to zero.
The first zero of the pulsed response is calculated using H.J.
Hamilton’s method [3]:
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Now, from this Hamilton method, and given that:
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calculations are carried out for τ=1sec, they will be divided
by τ for the general case ( )τ∀ .



Applying H.J. Hamilton method with τ=1 sec, the result is
given in appendix (7.1).
- 2nd approach:
The above result is not practical. A different approach
consists in developing ka  in (11) to a series with order 2. The
expression of the second impulse instant [ ]( )τ∀∈∀ ,2,1n  is
written then according to (11) and (12):
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This expression is much more practical, and is given with
more significant digits in appendix (7.2).

3.3.2   Shaper amplitudes

The first overshoot can be formulated in two ways:
• by the reduced overshoot:
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• or by introducing the instant of the zero of the impulse
response (13) in the step response (10).

These two formulations are equivalent, as similar results are
obtained in simulation. However thanks to its simplicity, the
expression (14)  is simpler and is thus preferred.
Figure 5 represents the explicit fractional derivative system
response to a ZV shaper for n=1.7 and τ=1sec.
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Fig. 5: Explicit fractional derivative system response to ZV
shaper for n=1.7 and τ=1 sec

Using the shaper synthesis method, the new first overshoot is
now smaller in accordance with the shaper principle on
integer order systems. However the aperiodic multimode is
still present, and the shaper no longer effects only the
oscillatory part. Thus residual oscillations still appear after
the second impulse. Thus a shaper with more impulses proves
necessary.
The initial analytical calculation should thus be extended to
include further pulsed response zeros. However for the
moment this calculation remains impractical.

3.4 Comparison of  the shaper synthesis methods

Figure 6 presents the explicit fractional derivative system
response to the two shapers, ZV and ZVD. They are
synthesised from the oscillatory part only, and also from the
global response. The simulation uses: n=1.7 and τ=1 sec.

For the global response, the second approach, the exact
analytic expression of the instant of the third impulse of the
ZVD shaper is not known. It can be considered that

23 2 tt ∗= which is not exact, but a good approximation.
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Fig. 6: Explicit fractional derivative system response to
various shapers

A particular interest on the study of ZV shapers can be
justified. Indeed, although ZV shapers oscillate more, they are
faster. This is particularly the case on the global response
where the desired command input at the second impulse is
reached rapidly.
Also, ZVD shapers are more effective than ZV shapers to
cancel residual vibration, but their drawback is the longer
time response. It proves justified to simply assume that

23 2 tt ∗= , because the oscillation achieved is reduced.
Lastly, the shapers used for the oscillatory part are easier to
synthesise and program than those used for the global
response. Also, not knowing even an approximation of the
third zero expression of the pulsed response to an explicit
fractional derivative system, a ZVDD shaper cannot be made.
However it can be assumed that the inclusion of a fourth
impulse in the shaper would further decrease residual
oscillation and would increase response time.
According previous results, a robustness study is developed.

4  Robustness study of preshaper control
applied to explicit fractional derivative systems
If natural frequency is uncertain, the shaper does not cancel
the residual oscillation.
To increase the robustness of the input to variations of the
system’s natural frequency, shaper synthesis is calculated in
real time using an explicit fractional derivative step response.
Here, only ZV shaper synthesis is  calculated.

4.1 Method

Three fundamental properties [8] of an explicit fractional
derivative system are, for a fixed order n and variation of τ :
• first overshoot quasi-invariance (insensitivity of the

damping ratio to parametric variations for a given range
variation)

• similarity factor ( )nτ/1  between the various step responses
• constant factor α between the instant of first inflection

point (maximum of pulsed response) and of step response
peak (first zero of pulsed response).

Figure 7 presents an explicit fractional derivative system step
response for given n and a factor 9 for τ.
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Fig. 7: Explicit fractional derivative system response for
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Thus, for a such a system (n fixed) with variation of pulsation
( )τ/1 , only the instants of application of the shaper can vary.
Impulses amplitudes are always the same, according to the
first property (expression (7) has amplitudes depending only
on n). To synthesise a robust shaper in real time, it is thus
necessary to calculate instants of application by exploiting the
other two properties.
A particular instant must be expressed, for example the
instant of the inflection point of the step response 0t . Next, as
the analytical expression of factor α is known, it is easy to
determine 2t , the instant of the step response peak.
To calculate factor α, two instants must be calculated:
• first 0t : the instant of the first point of inflection of the

step response (maximum of the impulse response  first
zero of the impulse response derivative)

• then 2t (known): the instant of the step response peak
(first zero of the impulse response).

Hamilton’s method is used to determine the first instant:
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Analytical expressions of the two instants are:
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From (16), the analytical expression of α is:
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Expression (17) shows a significant property: factor α is
independent of τ; it is constant for a given value of n.
More exact expressions of 0t , 2t and α are given in the
appendix (7.2).
Neither τ nor 2t  need to be known in advance. Factor α and
impulse amplitudes are calculated for a given n value. 0t  is
detected, thus 2t  can be determined in real time using relation

02 tt α= .

4.2 Simulation

The 0t  is detected using an algorithm in Matlab. The
robustness of the response to parameter τ variations is then

simulated.
The method is now applied to second generation CRONE
control whose main property is a constant damping ratio
directly related to non integer order n [8][9]. The transfer
function is an explicit fractional derivative system with
derivation order n between 1.3 and 1.5.
Figure 8 shows the step responses obtained for n=1.5 and τ
varying by a factor of 9.
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Fig. 8: CRONE control response to ZV shaper for τ varying
by a factor of 9

These results are the same as in section 3. The method in real
time is thus quite robust to variations of τ.

5  Conclusion
The overview of the Singer and Seering method (applicable
only on second order systems) highlights its cancellation of
the residual oscillations by using ( )qDZV  shapers with

0≥q , and amplitudes and instants of application are
calculated from the impulse response. The disadvantage of
this technique lies in the choice of q to counter parametric
variations: the greater q is, the better the reduction in residual
vibration, but the longer the response time.
The extension of this method for explicit fractional derivative
systems is obtained through two approaches: one on the
oscillatory part of the impulse response, and the other on the
global impulse response of the system. The first approach,
used on only the oscillatory part, is easier to synthesise thanks
to simpler analytical expressions through direct application of
Singer and Seering’s method. The residual oscillation due to
the oscillatory part are completely eliminated. However,
because of the presence of aperiodic multimode, a residual
overshoot persists. The second approach, used on the global
impulse response, eliminates the first overshoot, in
accordance with the shaper principle on integer order
systems. Response time is also improved. However, because
of the oscillations due to the oscillatory part, and because of
the presence of the aperiodic multimode, a residual oscillation
stay after the application of the second impulse.
Thanks to the three properties of explicit fractional derivative
systems, a robust shaper is synthesised in real time. A
constant factor α, for a given n, between the inflexion point
and the step response peak is determined.
Simulations show an improvement of path tracking. Residual
attenuation is decreased and response time is fast. Thus the
preshaping method can be used efficiently with second
generation CRONE control.
Shaping can thus uncouple the loop properties from tracking,
for example by imposing the first overshoot of the step



response. A single linear prefilter would be either non robust,
or with a too long response time.

Thus a shaper including more impulses should now be
designed. A method to determine a third instant of the shaper
is by using a response to the original ZV shaper of an explicit
fractional derivative system.
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7  Appendix

7.1 First zero analytical expression of the pulsed response
to explicit fractional derivative systems

Application of the H.J. Hamilton method with τ=1sec gives
the following result:
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7.2 Analytical expression of pulsed response zeros

Instant 0t , the first zero of pulsed response derivative, is:
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Instant 2t , the first step response peak, is:
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