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Abstract

In this paper an extension of the algorithms with saturation
functions to the nonlinear H∞ control for robot manipulators
introduced in [4] has been carried out. Based on the classi-
cal algorithm, this extension copes with a nonlinear equation
of the closed-loop error. The resulting Lyapunov’s equation in
the linear case is substituted for a Hamilton-Jacobi-Bellman-
Isaacs equation. A modified expression for the control signal
increment is supplied, and the local closed-loop stability of this
approach is discussed. Finally, simulation results for an indus-
trial robot –the RM-10– have been presented. Results obtained
with this method have been compared with the ones attained
with the original controllers to show the improvements sup-
plied by this method.

Keywords: Robot manipulators, nonlinear H∞ control, robust
control, Lyapunov-based algorithms.

1 Introduction

During last years many publications have appeared related to
the nonlinear H∞ control theory (see, for example, [2],[8]),
whose solution to the continuous nonlinear system was given
by van der Schaft in his famous article [7]. In this paper, ap-
plications related with robotics are of special interest, where
this theory has been used successfully in ([1],[3], [5]), among
others.

In [1], a vector of disturbance signals acting upon the input
channels is used to represent the combined effect of mode-
lling errors and external disturbances. Thus, this analytical so-
lution to the nonlinear H∞ control problem provides for the
control system the ability to reject these disturbances (main-
taining small tracking error) without excessive control effort.
However, this issue (successfully applied in [5]) assumes null-
average disturbances and a perfect robot model. In this way,
uncertainties were considered like a vector of disturbance sig-
nals acting on input channels (torques).

The first restriction was solved in [4], where an additional in-
tegral term was included to cope with persistent disturbances,
such as constant weights at the end-effector. This controller
was interpreted like a computed torque control with and exter-
nal PID, whose gain matrices vary with the position and ve-
locity of the robot joints. A particular case of a cost variable
weighting matrix was also presented in which the resulting ex-

ternal nonlinear PID does not depend on the attenuation level
γ of the H∞ formulation. However, a perfect model was still
supposed, with the same interpretation of the uncertainty.

This paper deals with this last restriction, assuming bounded
uncertainties in the robot model. The proposed solution is
based on the classical algorithms with saturation functions
(see, for example, [6]), where a linear equation of the closed-
loop error is handled. This classical method can not be applied
to the controller proposed in [4] since the gain matrices of its
external PID vary along the time. Thus, in this paper the clas-
sical algorithm has been extended to be able to cope with the
resulting nonlinear equations of the error.

The remainder of the paper is organized as follows: An ap-
proach upon the concepts of L2 gain and H∞ optimization in
the context of nonlinear systems are introduced in Section 2.
In Section 3 the main results presented in [4] are summarized.
Next, a brief exposition of a classical algorithm with saturation
function is carried out it Section 4. In Section 5, the classical
algorithm is extended in order to be able to cope with the error
nonlinear equation proposed in the previous controller. Sim-
ulation results for the RM-10 robot manipulator are shown in
Section 6 as example to show the performance of these con-
trollers. Finally, the major conclusions to be drawn are given
in Section 7.

2 Nonlinear H∞ control approach

The dynamical equation of a nth order smooth nonlinear sys-
tem which is affected by an unknown disturbance can be ex-
pressed as follows:

ẋ = f (x, t) + g (x, t) u + k (x, t) d (1)

where u ∈ �p is the vector of control inputs, d ∈ �q is the
vector of external disturbances and x ∈ �n is the vector of
states. Performance can be defined using the cost variable z ∈
�(m+p) given by the expression:

z = W

[
h(x)

u

]

where h (x) ∈ �m is the error vector to be controlled and W
∈ �(m+p)×(m+p) is a weighting matrix. If we assume that the
states x are available for measurement then the optimal H∞
problem can be posed as follows [7]:



Find the smallest value γ∗ ≥ 0 such that for any γ ≥ γ∗ there
exists a state feedback u = u (x, t) such that the L2 gain from
d to z is less than or equal to γ, that is,

∫ T

0

‖z‖2
2 dt ≤ γ2

∫ T

0

‖d‖2
2 dt (2)

The integral expression on the left-hand side of expression (2)
can be written as:

‖z‖2
2 = zT z =

[
hT (x) uT

]
WT W

[
h(x)

u

]

and the symmetric positive definite matrix WT W can be parti-
tioned as follows:

WT W =
[

Q C̄
C̄T R

]
> 0

where:

Q =


 Q1 Q12 Q13

Q12 Q2 Q23

Q13 Q23 Q3


 C̄ =


 C̄1

C̄2

C̄3




The matrices Q and R are symmetric positive definite and the
fact that WT W > 0 guarantees that Q − C̄R−1C̄T > 0.

An optimal control signal u∗ may be computed for system (1)
if there exists a smooth solution V (x, t), with V (x0, t) ≡ 0 for
t ≥ 0, to the following Hamilton-Jacobi equation:

∂V

∂t
+

∂T V

∂x
f(x, t) +

1

2

∂T V

∂x

[
1

γ2
k(x, t)kT (x, t)

− g(x, t)R−1gT (x, t)
]

∂V

∂x
− ∂T V

∂x
G(x, t)R−1CT h(x)

+
1

2
hT (x)

(
Q − C̄R−1C̄T

)
h (x) = 0 (3)

for each γ >
√

σmax (R) ≥ 0. In such case, the optimal state
feedback control law –see [1]– is derived as:

u∗ = −R−1

(
C̄T h(x) + gT (x, t)

∂V

∂x

)
(4)

3 Nonlinear H∞ optimization in manipulator
motion control

The following Euler-Lagrange equations of motion are used to
describe the behavior of a n degree-of-freedom (DOF) robot
manipulator:

M(q)q̈ + V (q, q̇) + G (q) = τ + dτ (5)

where q is the vector of joint variables (joint positions) and
q̇ is its temporal derivative (joint speeds). It is supposed that
these two vectors are available for measurements. The vector
τ (torques applied on the axis of the joints) is the signal input
of the system and dτ represents the total effect of system mo-
delling errors and the external disturbances. The inertia matrix
M (q) is symmetric and positive definite, V (q, q̇) is the vector

of centripetal and Coriolis terms and G (q) is a vector which
consists of the gravitational terms.

Denoting by qr, q̇r and q̈r the desired position, speed and ac-
celeration of the joints, respectively, the tracking error vector x
and its derivative ẋ are defined as follows:

x =


 ė

e∫
edt


 and ẋ =


 ë

ė
e




where: ë = q̈ − q̈r, ė = q̇ − q̇r,

e = q − qr,
∫

edt =
∫ t

o

(q − qr) dt.

For system (5) the following optimal control law is proposed in
[4]:

τ∗ = M (q) q̈r + V (q, q̇) + G (q)−
− (

KD ė + KP e + KI

∫
edt

)
(6)

In the particular case (see [4]) where the weighting matrix
WT W satisfies Q1 = w2

1I , Q2 = w2
2I , Q3 = w2

3I , R = w2
uI ,

Q12 = Q13 = Q23 = O, and C̄1 = C̄2 = C̄3 = O, the gain
matrices take the form:

KD =

√
w2

2 + 2w1w3

w1
M +

1

2
Ṁ + N +

1

w2
u

I

KP =
w3

w1
M +

√
w2

2 + 2w1w3

w1

(
1

2
Ṁ + N +

1

w2
u

I
)

KI =
w3

w1

(
1

2
Ṁ + N +

1

w2
u

I
)

being N (q, q̇) = V (q, q̇) + G (q). These expressions have an
important property: they do not depend on the parameter γ.
Thereby we have algebraic expressions to compute the general
optimal solution for this particular case.

4 The classical algorithm with saturation func-
tions

In the following section a brief summary of an algorithm with
saturation functions is exposed. A more detailed exposition can
be found in [6].

Let M(q), V (q, q̇) and G(q) be the dynamic matrices of the
Euler-Lagrange equations (5) and M̂(q), V̂ (q, q̇) and Ĝ(q)
their respective estimations. The following hypotheses are as-
sumed:

1. supt≥0 ‖q̈r‖ < Q1 < ∞.

2. ‖E(q)‖ ≡ ‖M(q)−1 ˆM(q) − I‖ ≤ α ≤ 1 for some value
of α.

3. ‖∆N(q, q̇)‖ ≡ ‖∆V (q, q̇)+∆G(q)‖ ≤ φ(x, t) for some
time-bounded function φ(x, t), where in this case x(t) =
[ė(t) e(t)]T and

∆V (q, q̇) = V (q, q̇)−V̂ (q, q̇) ∆G(q) = G(q)−Ĝ(q)



Once the values of the bounds have been calculated, this
method proposes a computed torque structure where the robot
dynamic is linearized with the estimated matrices . If there
were no uncertainty and the external controller were a linear
PD control law (with constant gain matrices KP and KD re-
spectively), the closed-loop dynamic of the error would satisfy
the following linear differential equation:

ẋ(t) = Āx(t) = (A − BK)x(t) (7)

being the constant matrices A, B and K as follows:

A =
[

0 0
I 0

]
B =

[
I
0

]
K =

[
KD KP

]

Since estimations can not be perfect, the following algorithm is
proposed to achieve an appropriate control signal v(t) :

1. Design a control law v(t) as follows:

v(t) = q̈r(t) − Kx(t) + ∆v(t)

where K = [KD KP ] are the gain matrices of the external
PD controller. The next dynamic equation of the closed-
loop error is obtained with this linearization:

ẋ = Āx + B(∆v + η)

where K should be designed such that Ā = A − BK is
Hurwitz, and η has the following expression:

η = E∆v + E(q̈r − Kx) + M−1∆N

2. Compute the function ρ(x, t) satisfying:

‖η‖ < ρ(x, t) ‖∆v‖ < ρ(x, t) (8)

as follows:

ρ(x, t) =
1

1 − α
(αQ1 + ‖K‖‖x‖ + Mφ(x, t)) (9)

where ‖M(q)−1‖ ≤ M ∀q ∈ �n

3. Since Ā is Hurwitz, select a symmetric positive definite
matrix X and find the unique symmetric positive definite
solution P of the following Lyapunov’s equation:

ĀT P + PĀ + X = 0 (10)

4. Finally, compute the term ∆v(t) by means of the follo-
wing expression:

∆v(t) =




−ρ(x, t)
BT Px

‖BT Px‖ if ‖BT Px‖ ≥ ε

−ρ(x, t)
ε

BT Px if ‖BT Px‖ < ε

(11)

5 Extension of the algorithm with saturation
function

The main idea is to include an algorithm similar to the above
exposed into the control law stated in Section 3. However, the
above classical method can not be used since the external con-
troller consists of nonlinear gain matrices, which implies a non-
linear closed-loop error equation.

This handicap can be solved taking into account the following
points:

• The dynamic of the closed-loop error attained with the
controller of Section 3 is stable for the nominal case (null
uncertainty).

• The Lyapunov’s equation 10 in the linear case is obtained
from the assumption of a quadratic function Ψ(x) =
xT Px. The constant symmetric positive definite matrix
P is the one used for the calculus of ∆v(t) in Equation 11
through the term BT Px.

Therefore, an analogy between linear and nonlinear optimal
control (see [2], for example) can be carried out, comparing
the control laws obtained for linear case (−BT PT x) and for

the nonlinear one (−gT ∂Ψ(x, t)
∂x

).

Bearing in mind this analogy, the classical algorithm may be
modified as follows:

Let M(q), V (q, q̇) and G(q) be the dynamic matrices of the
Euler-Lagrange equations (5) and M̂(q), V̂ (q, q̇) and Ĝ(q)
their respective estimations. Assuming the same hypothesis
than the ones of the classical method, a control signal v(t) can
be attained by means of the following algorithm:

1. Design an external control law v as follows:

v(t) = q̈r(t) − M̂−1Kx(t) + ∆v(t) (12)

where x is the error vector defined in Section 3,
K = [KD KP KI ] is the matrix of the external nonlinear
PID controller of Equation 6 and ∆v(t) has the same
meaning than the one of the classical method. Following
the methodology exposed in Section 4 for the linear PD
external controller, an expression for the dynamic of the
closed-loop error can be obtained as follows:

ẋ = f̄(x, t)+B(∆v+η) = Ā(q, q̇)x+B(∆v+η) (13)

where f̄(x, t) ≡ Ā(q, q̇)x(t). In this case, the dynamic
matrix of the error has the following expression:

Ā(q, q̇) = A − BM̂−1K(q, q̇) (14)

being A and B the same matrices of the classical algo-
rithm. Notice the time dependency of the vector f̄(x, t)
through the temporal variation of the joint positions and
velocities.



2. Compute a scalar function ρ(e, t) by means of Equation
(9), where Inequalities (8) are supposed to be satisfied.
Notice that only a bound of the uncertainties is computed,
which is independent of the method applied.

3. Find a scalar function Ψ(x, t) ≥ 0 such that satisfies the
following inequality:

∂Ψ(x, t)
∂t

+
∂T Ψ(x, t)

∂x
f̄(x, t) < 0 ∀ x 	= 0 (15)

where f̄(x, t) = Ā(q, q̇)x(t). It must be remembered that
the matrix K has been designed such that the dynamic
vector of the error f̄ is stable in the nominal case (null
uncertainties).

4. Finally, to complete the control law of Equation (12), de-
sign the term ∆v(t) by the following expression:

∆v(t) =




−ρ(x, t)
BT ∂Ψ(x, t)

∂x∥∥∥∥BT
∂Ψ(x, t)

∂x

∥∥∥∥
if

∥∥∥∥BT ∂Ψ(x, t)

∂x

∥∥∥∥ ≥ ε

−ρ(x, t)

ε
BT ∂Ψ(x, t)

∂x
if

∥∥∥∥BT ∂Ψ(x, t)

∂x

∥∥∥∥ < ε

(16)
Notice that ∆v(t) is again linearized for a bound value

of ‖BT ∂Ψ(x,t)
∂x ‖ less than ε.

The proof of the closed-loop stability when (16) is applied may
be carried out by means of the Lyapunov’s Second Method.
Thus, let Ψ(x, t) ≥ 0 be a scalar function satisfying (15). The
total temporal derivative of Ψ(x, t) follows:

dΨ(x, t)
dt

=
∂Ψ(x, t)

∂t
+

∂T Ψ(x, t)
∂x

ẋ(t)

Taking into account Equation (13), it follows that:

dΨ(x, t)
dt

=
∂Ψ(x, t)

∂t
+

∂T Ψ(x, t)
∂x

(f̄(x, t) + B (∆v + η))

<
∂T Ψ(x, t)

∂x
B (∆v + η)

where it has been used that Ψ(x, t) satisfies Equation (15). The
temporal derivative of Ψ(x, t) is negative if the following in-
equality is satisfied:

∂T Ψ(x, t)
∂x

B (∆v + η) ≤ 0

Therefore, the term ∆v must be chosen such that:

∂T Ψ(x, t)
∂x

B∆v ≤ −∂T Ψ(x, t)
∂x

Bη

Assume the worst case, that is, vectors BT ∂Ψ(x,t)
∂x and η with

the same direction. Then, Equation (8) enables us to con-
clude that ∆v must be design with opposite direction respect

to BT ∂Ψ(x,t)
∂x (in order to counteract the effect of η) and with

module equal to ρ(x, t), that is:

∆v = −ρ(x, t)
BT ∂Ψ(x, t)

∂x∥∥∥∥BT
∂Ψ(x, t)

∂x

∥∥∥∥ 


Due to the complexity of the resulting HJBI equation, no ana-
lytical expression is available yet for the scalar function Ψ(x, t)
in Equation 15. In this application, we have used the expres-
sion xT P (t)x as an approximation of Ψ(x, t). Matrix P (t) is
obtained as the solution of the following Lyapunov’s equation:

ĀT
o P + PĀo + X = 0

where X is again a symmetric positive definite matrix and Ao

is the Jacobian of the vector f̄(x, t) evaluated at (to, xo), that
is:

Āo =
∂f̄(x, t)

∂x

∣∣∣∣
t=to,x=xo

It must be noticed that Āo is Hurwitz (see Eq. 14) and there-
fore P (t) is well defined. The Aizerman’s conjecture (see [9])
is satisfied when the temporal derivative is assumed to be small
enough with respect to the spatial one. Hence, under this as-
sumption, the stability of this design can be guaranteed.

6 Simulation results for the RM-10 industrial
robot

The RM-10 robot manipulator, shown in Figure 1, is a six-
degree-of-freedom revolute joint manipulator arm. All the six

Figure 1: The RM-10 Robot Manipulator

joints are driven by DC-brushless low-inertia electric motors
which provide a uniform torque for all joint positions, and ena-
bles high control torque peaks. Torque is delivered to the joint
axis through gear reductions, thus RM-10 is an indirect-drive
manipulator.

Before accomplishing the design of a controller it is necessary
to obtain a dynamic model of the robot manipulator. Accor-
ding to the Euler-Lagrange formulation [6], the dynamic model



of a general n-link rigid-body robot is a second order nonlinear
equation, as shown in Equation 5. In this case, the motion equa-
tion is complex and contains a number of hard-to-handle non-
linear terms. In order to simplify the controller design, some
terms (friction, nondiagonal terms of the inertia matrix, . . . ) in
equation (5) have been neglected, and included as model un-
certainty. This yields a very simplified model that only takes
into account diagonal terms.

A number of additional parameters are required to characte-
rize the dynamic model of the robot manipulator, such as link
masses and inertias. These parameters have been estimated
by geometric measurements and dynamical experiments of the
robot arm. In Table 1, the estimated masses of the different
links of the robot are shown. These values may help to make
an idea of the characteristics of the robot. A diagonal WT W

link mass (Kg)
1 38.65
2 51.80
3 84.10
4 33.89
5 7.36
6 5.00

Table 1: Estimated masses of the links

weighting matrix has been considered to design the controller
exposed in Section 3. Table 2 shows the values for the diag-
onal weighting submatrices used for the RM-10 control syn-
thesis.Only the three first joints (the most important in mass)

Signal to minimize Weighting matrix

Velocity error ė Q1 =
(

1
3

)2
I

Position error e Q2 = I
Integral error

∫
edt Q3 = 32I

Additional control effort u R = 0.0052I

Table 2: Weights for the controller

have been controlled in the tests presented in this paper. Simu-
lations have been performed using a complete accurate model
of the robot. The position references (which are computed by a
trajectory generator) are fifth degree polynomials between the
initial position

[
q1 q2 q3

]
=

[
0 −π

2 0
]

rad to final
position equal to

[
q1 q2 q3

]
=

[
1.5 π

2
π
6

]
rad with

initial and final speeds and accelerations equal to zero. The
transition time is 3 seconds. In addition, in order to check the
performance supplied by the controllers, an external persistent
torque has been applied onto joints 1, 2 and 3 at times t = 0.5
s, t = 1 s and t = 1.5 s respectively.

In order to show the improvements achieved with the proposed
method, results obtained with three different controllers will
be exposed: the nonlinear PD controller (NL PD) proposed in
[1], the nonlinear PID controller (NL PID) proposed in [4] and
the nonlinear PID controlled with the modified algorithm (NLS
PID) proposed in this paper.

The position and velocity errors corresponding to the NL PD

controller are shown in Figure 2. In this case, the magnitude
of the position and velocity errors (maximum peak) are about
0.2 degrees and 0.08 rad/s respectively. Notice that there is a
non-null steady state error of the position since this controller
has no integral effect. The same variables in case of the NL
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Figure 2: Results with the NL PD controller.

PID controller are shown in Figure 3. It can be seen how both
maximum errors of position and velocity (about 0.13 degrees
and 0.06 rad/s respectively) are lightly attenuated respect to
the ones of the previous controller. However, it is important
to notice that a null steady state position error is achieved with
this controller.

Finally, Figure 4 shows the results obtained with the NLS PID
controller proposed in this paper. The parameters used for the
calculus of the saturation function have been calculated com-
putationally. A value equal to 0.1 has been selected for ε in this
application. It can be observed that, besides achieving a null
steady state position error, the magnitude of both errors have
been drastically decreased. The maximum values are about
0.025 degrees for the position error and about 0.003 rad/s in
case of the velocity error.

7 Summary

An extension of the algorithms with saturation functions to the
nonlinear H∞ control for robot manipulators introduced in [4]
has been carried out. Based on the classical method, where
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Figure 3: Results with the NL PID controller.

a linear equation is used, this extension copes with a nonli-
near equation of the error. The resulting Lyapunov’s equation
has been substituted for a Hamilton-Jacobi-Bellman-Isaacs in-
equality, which was solved by linearization at each operating
point. A modified expression for the control signal increment
has been supplied, showing that closed-loop stability has been
achieved. Simulation results for an industrial robot have been
presented. Several tests were carried out taking into account
the differences between the model used for the controllers syn-
thesis and the one implemented on the simulator. Finally, im-
provements obtained with the proposed algorithm have0 been
shown by comparison with the results attained with the original
controllers.
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