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Abstract 
This paper assesses relative merits and drawbacks of different 
digital implementations of non-integer order controllers. 
Twenty-eight formulas are considered. Their frequency 
behaviours, together with those of discretised CRONE 
controllers, are compared to the ideal ones. All those formulas 
are used for implementing controllers found in the literature 
for a robotic arm. Backward finite difference formulas, Tustin 
formula and a zero order hold discretisation of a CRONE 
controller achieve the best results. 

1 Introduction 
The application of non-integer calculus to the field of control 
has resulted in controllers with good robustness properties 
that may be applied to the control of robots. This is a 
demanding area, where performance specifications often call 
for an accurate control. This is particularly the case of hybrid 
control, where both the position of the robot actuator and the 
force it exerts on a surface must be taken into account. 

This paper is organised as follows. Section 2 introduces 
different formulas for implementing approximations of a non-
integer order derivative in the time domain. Section 3 presents 
the application of these formulas to the position / force hybrid 
control of a robot. Section 4 draws some conclusions. 

2 Formulas for discrete-time implementation 
This section deals with how to implement a transfer function  
G(s)=sv, v∈R, in the time domain. 

2.1 MacLaurin expansion formulas 

Grünwald-Letnikoff or first-order backward finite difference 
formula. Operator D may be implemented in the time-domain 
by using the Grünwald-Letnikoff definition of a non-integer 
order derivative Dv y(t), v∈R: 
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Time-step h will be approximated by the sampling time T, 

and the summation will be truncated after a finite number of 
terms n [3], resulting in formula (12) of Table 2. This formula 
might also have been obtained from a first-order backward 
finite difference (1-z-1)/T. Raising the finite difference to a 
non-integer power v results in something which is not the 
ratio of two polynomials in z-1. But performing a MacLaurin 
series expansion (which is reasonable since sampling times 
ought to be small), we will obtain a polynomial in z-1: 
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(See the Appendix on how expansions found throughout the 
paper have been obtained.) This polynomial, truncated after n 
terms (this is needed since the MacLaurin series has an 
infinite number of terms), results in formula (12) again. 

Second and third order backward finite difference formulas. 
It is reasonable to try to use higher-order finite differences, in 
the same manner as a first-order one was, for approximating 
operator D [5]. The results for second-order and third-order 
backward finite differences are given in Table 2. 

Tustin and Simpson formulas. Instead of approximating 
derivatives with finite differences, other formulas for 
conversion between the continuous and discrete domains may 
be used [3, 5]. Results for Tustin and Simpson formulas are 
given in Table 2. 

2.2 Impulse and step response formulas 

Two further formulas for approximating operator D may be 
obtained requiring the impulse response or the step response 
to be equal, at sampling times, to the ideal impulse or step 
responses, respectively. This, however, is not feasible for t=0, 
since these responses are not always continuous at that 
instant. An additional condition is needed for determining the 
independent coefficient of the transfer function; the choice 
was to require both the impulse and the step responses to be 
equal to the ideal ones at t=Ts; for further time instants only 
one of those two responses is to be followed. The two 
resulting formulas are given in Table 2. 

2.3 Continued fraction expansion formulas 

We have now seven formulas for implementing 
approximations of non-integer order derivatives in the time 
domain, five of which include a truncated MacLaurin series 



expansion, which was necessary for providing a polynomial 
approximation of a non-rational quantity. 
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Figure 1. Bode diagrams for a 0.5 derivative implemented 

with n=9 for a sampling time of 1 s; from top to down: 
formulas of Table 2; formulas of Table 1; formulas of Table 2 

inverted with (3); formulas of Table 1 inverted with (3) 

Instead of a MacLaurin series expansion a continued fraction 
expansion can be used (this is done in [6] for the first order 
backward finite difference and Tustin formulas). In impulse 
and time response formulas no expansions appear: 
nevertheless, it is possible to expand the corresponding series 
into a continued fraction. Seven additional formulas for 

implementing non-integer derivatives in the time domain, 
found in Table 1, will thus be obtained. 

2.4 Inverted formulas 

All formulas presented so far are approximations of a non-
integer power of the Laplace variable s. As s=1/s-1, it is 
possible to write 

 ( ) ( )
1v

vD y t
D y t−=  (3) 

Applying expression (3) to the formulas of Table 1 and Table 
2 results in fourteen additional formulas for implementing D 
(this is done in [6] for the first order backward finite 
difference formula). This is important since some formulas 
may have good performances for positive values of v but not 
for negative ones, or vice-versa: expression (3) allows 
choosing the sign with which results will be better. 

2.5 Discretised frequency-domain non-integer controllers 

Several frequency-domain approximations of non-integer 
controllers are described in the literature, of which the 
CRONE is the best known [4]. These may be discretised in 
the usual ways. 
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Figure 2. Bode diagrams for a 0.5 derivative implemented 

with formula (12) for a sampling time of 1 s 
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Figure 3. Bode diagrams of discretisations of (4) 

2.6 Bode diagrams 

Computing the gain and the phase of G(s)=sv shows that its 
Bode diagram has a constant vπ/2 rad phase and a linear gain 
with a 20v dB/decade slope. Different formulas approximate 
this ideal Bode diagram in a limited frequency range, as seen 
in Figure 1 for v=0.5 (in which case the phase should be 
0.5π/2 rad = 45º, and the gain should have a slope of 



20×0.5=10 dB/decade). In what concerns formulas of Table 2, 
the best approximations are given by (in decreasing order) 
third, second and first order backward finite difference 
formulas, step and impulse response formulas. Tustin formula 
results in a Bode diagram with spurious oscillations and 
Simpson formula has a Bode plot that is completely out of 
range. In what concerns formulas of Table 1, all achieve a 
reasonable approximation, impulse response formula being 
the worst (well behind Simpson formula, this time). When 
formulas of Table 2 are inverted with formula (3) spurious 
oscillations appear: this shows that those inverted formulas 
should not be used for positive values of v, but only for 
negative ones. When formulas of Table 1 are inverted with 
formula (3) all achieve a reasonable approximation, Simpson 
formula resulting now in the poorest performance. 

The number of terms kept after the truncation is also of 
importance: as seen in Figure 2 for the first order backward 
finite difference formula, increasing n improves the 
performance especially for low frequencies. 

A comparison with a discretised CRONE controller must be 
carried out using a similar number of zeros and poles and a 
similar frequency range. Controllers of Figure 1 having good 
results in the [0.1;1] rad/s range, a CRONE controller with 
similar performance will be 
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Discretisations thereof, as seen in Figure 3, provide good 
approximations of the ideal Bode diagram, the best method of 
discretisation being Tustin, and the poorest zero order hold. 
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Figure 5. Control scheme 

3 Control of a robot arm 
In this section formulas presented above are applied to a plant 
found in the literature [2] to which non-integer order control 
has been successfully applied. The purpose is to verify 
relative merits and drawbacks of different implementations. 

3.1 Description 

Let us consider a 2D robotic arm with two degrees of freedom 
consisting of two rigid links (with masses m1 and m2, lengths 
r1 and r2, moments of inertia J1m and J2m, and connected by 
joints with moments of inertia J1g and J2g), leaning on a 
surface as seen in Figure 4. Its dynamic behaviour is given by 
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where q=[q1 q2]T is a 2×1 vector of joint coordinates, as seen 
in Figure 4; τ= [τ1 τ2]T is a 2×1 vector of actuator torques, 
consisting of the torques applied to each of the two joints; 
H(q) is a 2×2 inertia matrix,; c q  is a 2×1 vector of 
centrifugal and Coriolis terms; g(q) is a 2×1 vector of 
gravitational terms; J(q) is the 2×2 Jacobian matrix of the 
robot; and F is a 2×1 vector with the force exerted by the 
environment on the robot's tip, which, the wall against which 
the robot leans being vertical and friction being neglected, 
will be modelled by 

( , )q�
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Coordinates x and y will be force and position controlled, 
respectively; the hybrid control scheme is found in Figure 5 
[1]. The selection matrix S, the kinematic equations Λc (for 
finding (xc,yc) from the joint coordinates (q1,q2)) and the 
Jacobian of these kinematic equations Jc are given by 
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Robot and environment parameters are given in Table 3. A 



test will be performed with the robot beginning at 
q1=q2=15π/36, without exerting force on the environment; a 1 
N step at the force reference is applied when t=0, while the 
vertical position yc should remain constant. 
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Figure 6. Effect of n for the first order backward finite 

difference formula 

3.2 Non-integer order control 

Non-integer order controllers given in the literature quoted 
above are CF=[103D-1/5  103D-1/5]T and CP=[105D1/2  105D1/2]T, 
implemented with first order backward finite difference 
formula, n=17 and a sampling time of 1 ms. In what follows 
n=8, because a large n results in a larger steady-state error for 
the vertical position, in slightly larger overshoots for the force 
and in larger settling times. The value of n used here is a 
compromise with a smaller steady-state error for the force. 
This may be seen in Figure 6. 

Only backward finite differences and Tustin formulas result 
in implementations that stabilize the control loop (third-order 
backward finite difference formula only if a MacLaurin series 
is used). Stable responses are shown in Figure 7. Inversion 
with (3) results in very similar force responses. Formulas 
given in Table 1 have larger transient responses and larger 
overshoots. The best force response is obtained with first 
order backward finite difference formula, using a MacLaurin 
expansion without inversion with (3) (formula (12)); Tustin 
formula, using a MacLaurin expansion without inversion with 
(3) (formula (15)), provides the best position response: but no 
clear advantage over other MacLaurin expanded stability-
achieving implementations exists. 

CRONE controllers reckoned for the [100,1000] rad/s 
frequency range and having a similar number of zeros and 
poles are 
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Figure 7. Performance of different formulas 

Only a zero-order hold discretisation thereof achieves a stable 
control loop, with, as seen in Figure 8, a very good result in 
what concerns force control (the best in this paper), but a very 
poor one in what concerns position control. 

4 Conclusions 
The following conclusions may be drawn: 

� backward finite differences formulas provide good 
approximations of D in the discrete time domain (with the 
exception of the third order backward finite difference 
formula expanded into a continued fraction); 
� both MacLaurin series and continued fraction expansions 
may be used; the latter have Bode diagrams closer to the ideal 
ones, but poorer results when non-integer order controllers for 



a robot were simulated; 
� Tustin formula approximations have Bode diagrams not 
always close to the ideal ones, but perform well in the 
simulations of the robotic arm; 
� Simpson, impulse response and step response formulas 
provide unacceptable results; 
� discretised CRONE controllers have Bode diagrams close 
to the ideal one, but only a zero-order hold discretisation had 
a good performance when simulating the control of the robot. 
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Figure 8. Performance of a discretised CRONE controller 

Future work includes a more thorough study of formulas 
presented in Tables 2 and 3 (including for instance an analysis 
of zero and pole placement), and laboratory implementation 
of controllers simulated for the robotic arm. 
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Appendix: Remarks on tables 
Formula (2) is easily proved by mathematical induction. No 
formal proofs were obtained for formulas (13), (14), (15) and 
(16), but they allow obtaining the corresponding series: a) up 
to the first eleven terms in their general expressions; and b) 
up to the 100th term for several particular values of v. Even 
though a proof cannot be replaced by such considerations, the 
precision obtained shall certainly exceed the one needed for 
any engineering implementation, since hardly more terms will 
be employed; and in several fields of Mathematics one must 
rely on considerations like those above (instead of formal 
proofs), since it is not possible, at least in the current state of 
knowledge, to validate results otherwise. Formulas (9) and 
(10) are obtained from expansions found, together with their 
proofs, in [87], pp. 335-346. 
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Let f(x) be a real valued function given by the 
ratio of two polynomials: 
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Table 1. Continued fraction expansion formulas. 
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Simpson 

Let ijA  be the set of all unordered sequences of j natural numbers adding up to i; let the sij be the sequences of 

ijA , ij ijs ∈A ; and let ( )ijsR  be the product of the factorials of the numbers of times each natural appears in sij; 

that is to say, 
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Step 
response ( )

1 1
1

v
v ts

s v

−
−  × =  Γ − + 

L  
( ) ( )

( )
( )

1 1

0
0 0

, , , 1, 2, ,
1 1

vv vn k
si s s

i k i
i i

kTT T
a z a a a k n

v v v

−− − − −
−

= =

  = − = − + =  Γ − + Γ − Γ − + 
∑ ∑ …  (18) 

Table 2. MacLaurin expansion formulas and time response formulas. 

 

m1=0.5 kg r1=1.0 m J1m=1.0 kg m2 J1g=4.0 kg m2 M=0.03 kg K=400 N/m 
m2=6.25 kg r2=0.8 m J2m=1.0 kg m2 J2m=4.0 kg m2 B=1 Ns/m θ=π/2 rad 

Table 3. Robot parameters. 
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