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air vehicles, guidance and control, dynamic modeling lution follows the methodology described 8][where the au-
thors propose an integrated design of the guidance and control
Abstract systems for autonomous vehicles, and present an implemen-

tation for the case of autonomous underwater vehicles. This
This paper addresses the problem of path following control sygethodology has two main advantages over traditional ones:
tem design for model-scale helicopters. The presented desigatability of the combined guidance and control systems is
strategy builds on the definition of an adequate generalized @¢#aranteed, and ii) the resulting path following system achieves
ror space for expressing the vehicle’s dynamics and kinematigero steady state tracking error about trimming paths.

The path following problem is cast and solved in the framewo%e design method builds on three key results: i) the trim-

of gain schedullng control theory, usm.g_the D'methOdOIO_gPﬁing trajectories associated to trimming paths of helicopters
The resulting control law ensures that: i) the path followmgre helices parameterized by the vehicle’s linear speed, yaw

system _achleyes Zero steaQy state Frackmg error ?bOUt trFgl]t'e, and flight path angle (trimming vector); ii) steering the
ming trajectories, and ii) the linearizations of the nonlinear ga| hicle along a trimming path at constant speed is equivalent

scheduled feedback system and the corresponding linear e(ilriving a generalized tracking error to zero, and iii) the lin-

sig_ns_ present the same intermal as well as input-(_)utput Ch‘?"@ﬁﬁzation of the generalized error dynamics about any trim-
teristics. The controller_performance_ Is evaluated in 3|mglat|o{%ng path is time-invariant. In view of these results, the prob-
using a helicopter nonlinear dynar_nlc model parameterized 8m of steering a vehicle along a piecewise continuous concate-
the Vario X-treme model-scale helicopter. nation of trimming paths can be tackled using gain scheduling

[8]. The adopted methodology uses the D-methodology de-
1 Introduction scribed inlp], implementing a gain scheduled controller, which

ensures the equivalence between the linearization of the nonlin-

Model-scale helicopters constitute one of the most versatile g closed-loop system and the corresponding linear designs.
cost-effective unmanned air vehicle (UAV) platforms currently

used for the development and test of autonomous flight syidle paper is organized as follows. Sec{@describes a gen-
tems. The wide and valuable range of applications arising frétf@l dynamic model for a model-scale helicopter. Sed8on
the helicopter's maneuvering capabilities, allied to the incredBtroduces the concepts of trimming trajectories and paths and
ing availability of accurate, reliable, and miniaturized sensofé€fines a generalized error space for describing the vehicle’s
justify the extensive research and development effort thatotion. Sectio describes the methodology for the design of
being undertaken worldwide. Unlike fixed-wing aircraft, hed 9ain scheduled path following controller and outlines its im-
licopters were designed to describe vertical flight trajectorigdeémentation. Sectidd presents simulation results for the path
including hovering and vertical take-off and landing (VTOL)following controller obtained with the helicopter nonlinear dy-
Moreover, despite their ability to perform extremely agile mdtamic simulatorSimModHeli Sectioriel concludes the paper
neuvers at high and low speeds, helicopters still provide gobi@hlighting the main features of the proposed control system.
flying qualities in fast forward flight. The trade-off for this

enhanced versatility is an inherent complexity that gives rige  Helicopter dynamic model

to a highly nonlinear and unstable dynamical system. In this

context, the development of advanced guidance and coniféle helicopter dynamic model presented hereafter was the ba-
systems, based on accurate modeling of the helicopter's @ig for the development of a simulator, nam&unModHeli
namics, is instrumental in bringing about high performance a2}, implemented in Matlab, using Simulink and C MEX-file
tonomous systems. S-functions, that will be made freely available for the scien-

In thi h bi ‘ , gel e hell tific community. This simulator is completely parameterizable
n this paper, the problem of steering a model-scale helicoplg{y yescribes the dynamics of helicopters with any number of



blades, with or without a Hiller or Bell-Hiller stabilizing bar.

The simulation model is specially tailored for model-scale he-
licopters, such as the one depicted in Fidllrand includes the ! ‘
rigid body, main rotor flapping, and stabilizing bar dynamics. , [ Helicopter LG}* .
The dynamics of the helicopter can be described using a Six |components|n |

‘ { ;L ,,,,,,,,,,,,,,,,,,,,,,,, O

Figure 2:Helicopter model - block diagram

Gravity

study of helicopter dynamic modeling, including the remain-
ing helicopters components can be found3h [For in-depth
coverage of helicopter flight dynamics, the reader is referred to
[4.16][7].

2.1 Main rotor

Figure 1:Vario X-Treme helicopter

In rotary-wing aircraft, the main rotor is not only the dominant

degree of freedom rigid body model driven by forces and mgyStem, but also the most complex one. Itis the primary source
ments that explicitly include the effects of the main rotor, BelRf lift, which counteracts the body weight and sustains the heli-
Hiller stabilizing bar, tail rotor, fuselage, horizontal tailplaneSOPter in air. Additionally, the main rotor generates other forces
and vertical fin. To derive the equations of motion, the followBNd moments that enable the control of the aircraft position,

ing notation is required: orientation and velocity. This section presents a simplified ro-
{UY} - universal coordinate frame; tor dynamic model, whose main building blocks are depicted
{B} - body-fixed coordinate frame, with origin at the vein Figurel3
hicle’s centre of mass; main rotor

—————————————————————————————————————————————————————————

p=[zy z]" -position of the vehicle’s center of mass,

expressed iI{U }; @ fapping /, force & T[T
A= [¢0¢]" -ZY-XEuler angles that parameterize ;| . |- . dynamics - J T moment i,
locally the orientation of the vehicle relative {8/} ; N
v=|uwv w}T - body-fixed linear velocity vector; MI— S Ly
w=[p qr]" -body-fixed angular velocity vector. [t 1
Figurel2 captures the general structure of the helicopter model o _ 77777777777777777777
that can be written as Figure 3:Main rotor block diagram
v=1F (v,w, A ) The model adopted to describe the rotor blades is standard and
w=r, (v,w, A, u) 7 (1) assumes that these are rigid and linked to the hub through flap
b= R(A)v hinge springs, with stiffneskg [6]. The dynamic behaviour
A=QANw is thus confined to the flapping motion that can be described
with by vector3 = [60 B1c ﬂls]T, wheref, denotes the collec-
tive mode (also called coning), amti. and 5, the longitudi-
Fy(viw,A) = —w xv+£(A) /m, () nal and lateral cyclic modes, respectively. This vector corre-
F,(v,w,A) = =T ' [wx Iw+n(v,w,u)], (3) sponds to the constant and first-order harmonics of the Fourier

Series expansion of the flapping angleexpressed as function
f the blade azimuth angte = Qt (2 denotes the rotor angular
peed). The equations of motion for a flapping rotor, expressed
in the main rotor wind-aligned frame, can be approximated by
the following second-order system

wherem is the vehicle’s masd, is the tensor of inertia about
the { B} frame,f andn are the vectors of external forces an
moments respectively along the same frafjeis the gravi-
tational force also expressed {iB}, R is the rotation matrix
from {B} to {U}, andQ is the transformation from angular

speeds to Euler angle derivatives. The external force and mo- ) Bo
ment vectors are functions of the vehicle velocities and of the 8 + QA;(u)B + D2 Ag()B=Q?By(p) | b1c | +
command vecton = [y d1c d1s 5Ot}T that consists of the 015 @)
main rotor collective inpud,, main rotor and flybar cyclic in- _ Ly — Ao
putsd;. anddy, and tail rotor collective inpudy;. 02B, (1) B] + Q2B (1) Ae ,

>\ls

The following sections present mathematical models for the
main rotor and Bell-Hiller stabilizing bar. A comprehensivevhere, according to standard notation in helicopter the@lry [



the helicopter velocities are normalized, wjtrand ., denot- the same effects, namely the gyroscopic moments due the he-
ing the forward and vertical velocities, respectively, anahd licopter roll and pitch rates. However, unlike the main rotor,
g the roll and pitch rates, respectively. The induced downwaste flybar is not responsible for providing lift or maneuvering
is also normalized and decomposed into constgnand si- ability. Thus, it can be designed to have a slower response and
nusoidal components;. and A\;;. It should be noted that, provide the desired stabilization effect.
for _control system design PUrposes, the flapping mO“OT‘ as q%_e notation used to describe the Bell-Hiller system is pre-
scribed by[f) preserves a high degree of accuracy, while ren- - :

) ; sgnted in Figur@, where the mechanical arrangement for the
dering a much more tractable system. For instance, the cogfz ’ .
- X . . -Treme helicopter is reproduced.
ficient matrices inl4) depend solely on the helicopter forwar
velocity.

Control of the blade aerodynamic loads, which ultimately de-

termines the main rotor force and moment contributidis. ( \
andn,,,), is obtained by changing the blade pitch anglas / e
function of the rotor command inputs. Without the Bell-Hiller paddle As(y+a/2)
system and neglecting the servo actuator dynamics, the blade
pitch angle is given by

. 91(1//)}
0(1p) = o + d1ccos(tp) + 15 sin(e)). e S
In systems equipped with the Bell-Hiller stabilizing bar, onl /
: npu 0 g Bell-Hiller \

rotor blade

the collective inpuby is directly applied to the main rotor. The
(chordwise view)

cyclic inputsdy. andd; s are mixed with the motion of the bar
to determine the actual cyclic components.(and 6,,) ap-
plied to blade pitch links. The equations of motion for these
components are presented in the next section.

mixing lever

Using either the dynamic or the steady-state solution for the e swashplate

flapping equatiori4), the main rotor forces and moments at the oy) 17777 ffes
hub can be written as

(Y, —Zhe —Z5 O Bo Figure 4:Bell-Hiller system with angular displacements
fmr = g 7Y1c + g le 0 ZO /Blc ) (6)
| 220 0 0 0 s Due to the geometric constraint introduced by the mixing lever,
the flybar flapping and rotor blade pitching motions are effec-
and tively combined. The equations of motion for the main rotor
" o . —Nie —No —k; ey blade pitching can be written as
Ny, =n 0 + 5 Nis —]ﬂﬁ Ny ﬁlc . (7) . )
N
L £V0 0 0 0 ﬁls |:qlc:|+QA6'|:9~16:|+92A9(/L)|:916:|
1s '915 918

TheY( ), Z), andN, terms, in[g) and [@), represent the force 1 — Ao
and moment components generated by the blades. These quaiz g 1c 0B D 0B Z)\
tities are functions of the helicopter state variables and main 5(1) d1s * “lg| " A (k) e

Als
rotor inputs. Explicit expressions and a detailed description of ! 8)
these terms can be found §]{ The blade pitching motion, in particular its response to heli-
copter shaft rotations, depends on the physical parameters of
2.2 Bell-Hiller stabilizing bar the Bell-Hiller system, namely the lever arrhs andi,, the

flyb dii R, andR,, and the flybar Lock ber defined
The Bell-Hiller stabilizing bar, a mechanical blade pitch con—y arradilfu, andfz, andhe Tybar -ock number defined as

trol system that improves helicopter stability, is currently a A .

standard component in model-scale helicopters. From a con- vt = pegao, (Ry — Ry) [ 1g,., )

trol point of view, the stabilizing bar can be interpreted as a dy-

namic feedback system for the roll and pitch rates. The syst&herep is the air density¢, the paddle chords,, the paddle
consists of a so-called flybar (a teetering rotor placed%’a lift curve slope, and, the flybar moment of inertia. There-
rotation interval from the main rotor blades and tipped on botare, there are several different means of adjusting the flybar
ends by aerodynamic paddles) and a mixing device that costabilizing effect. Changing the shape, weight or distance be-
bines the flybar flapping motion with the cyclic inputs to detween the paddles or the ratio between the mixing lever & ms
termine the cyclic pitch angle applied to the main rotor bladesndi, are all straightforward ways of achieving this variation
The flybar and main rotor flapping motions are governed l§gee [I] for further details).



3 Generalized error dynamics

T,

This section introduces the concepts of trimming trajectories {C}
and paths for the helicopter model, presents a generalized er-
ror space to describe the helicopter's motion about trimming
paths, and computes explicitly the helicopter dynamics in the
new error space.

Consider the helicopter equations of motion presentef)in (
and letv,, w¢, pe, A, andu, denote the trimming values of T,
the state and input vectors. At trimming, these vectors satisfy
ve=1F, (Vw We, Ac, uc) =0 : \\‘\\§ o
{ <-:Jc = Fw (Vcawm >\ca uc) =0’ (10)
implying thati, = 0, ¢. = 0, andd, = 0. Given the depen-
dence of the gravitational terms on the roll and pitch angles,

only the yaw angle can change without violating the equilib- Figure 5:Path following notation
rium condition. Howevery, satisfies

0 Ve =V — V¢
We =W — We
_0 = Q ()\c) We, (11) d7r — HRfld i (14)
Ve A= Q '(A—A)
and thus the yaw rate),, is constant. As shown iff], trim- wherell is the projection matrix
ming trajectories correspond to helices that can be described
b m— |10 (15)
y — 1001
0 V.. cos(7e ) cos(et + 1) that selects the last two components of a vector. It should be
A= 10 Do = Vccos(%)sin(a/}ct + 0) | » (12) noted thatd is defined as the distance to the trimming path
Ve —V,sin(v.) and not to the trimming trajectory. It is easily shown that the

vehicle is following a patl’. at a constant spee¥,. if and
whereV, = ||v.| is the linear body speed,. the flight-path only if the generalized error vector defined [l is zero D).
angle, andy, the helix initial condition. The helix can thus beThis equivalence breaks down when the trimming velocity has

described by the following parameterization no forward component relative to the trimming path, i.e., when
Ver = [0,v,,v.]". The type of trimming paths tackled in this
e = [Vc Yo the %} " (13) Paper do not violate the referred validity condition. The rigid

body equations of motion, expressed in the new error space can

The time-independent 3D curve described by a vehicle t§ Written as
is tracking a trimming trajectory is usually called a trimming Ve =V

path, and is here denoted by. We =W

4, = F dAe) (16)
The definition of the error vector requires the introduction of LT Tde (Ve, we, dr; Ac)
the following additional notation, which relates the vehicle’s Ae = Fx.(Ve,we, Ac)

current state with the desired state on the trimming path.  whereu, = u — u., andF4_ andF_ are obtained frontll)
d - Distance vector from the vehicle’s current positpn and €.
to the closest poinp. on the path, expressed {&/}. The following fundamental result arises from the definition of

{T} - Tangent frame, whose, y andz axes correspond to the error space: the linearization @6 about the zero solu-
the tangent, normaL and binormal to the Curvp@_tNote tion, or equivalently, the linearization of the rlgld bOdy dynam-
that the distance vector expressed{m} takes the form ics about the ’[rlmmlng pa’[h, eXpressed in the generalized error
d; = [0, 4, zd]- space, is time-invariant (se@] ffor full details). The linearized

. L . system can be written as
{C} - Command frame, defined as coincident with the

body frame{B} when the vehicle follows the trimming [ 6Ve = Ajdve + Aydw, + Ao, + B,du,
path. Notice thafC'} is not necessarily aligned witi'}. dwe = ALoVe + AZdwe + AJOA: + Buou,
dd; = L(SR,we) dd,; + Jo(SR) [—Ve X 0Ae + 0Ve]’
The graphical representation of these frames and vectors is pre- 6\, = dw. — w. x A,
sented in FigurBl Let the generalized error vector be given by a7



where the coefficient matrices for the dynamics are computiedthe current implementatiorx,. comprisesu., v., andd,,
at trimming according to ensuring exact tracking of the trimming path. The resulting
5 5 nonlinear gain scheduled controller, depicted in Fig@ras

AY = 7y [F,(.)]| andB, = 50 [F.()] (18) 9iven by

Ue = U — Ue

Ve =V — Ve

d7r = HRil(pc - p)

%o = K (V70T AZA)" + Ko (n)lue ve 7]
From this result, it follows that associated with each trimming | u = x,

pathT'(n.) there is a linear time-invariant plafi{) for which

a linear controller can be designed. with w — Q' A. replacing)., since both yield the same ex-
pression when linearized about the trimming path. In Fi@ire

4 Control system design and implementation block E is responsible for the computation of the error state
variablesu., v., andd, given the original state variables p,

Following the methodology described &, B], the result stated and A, the desired patii',, and the forward velocity/,. The

in the previous section can be used to design a path followiggin matrix X (1) is selected according to the scheduling vari-
controller based on gain scheduling. The controller design pehlen = [V, v, )]

cedure can be described as follows:

and the coefficients for the kinematics are function§®fthe
constant rotation matrix fronjZ'} to {C}, andv, andw, the

command velocities. , (21)

\

e Select a finite set of trimming paths parameterizedby o d
e Linearize the corresponding generalized error plants about dt
the selected trimming paths. — = I u
e Design linear controllers with integral action on selected—P | u K(n)
states to achieve adequate performance for each of the lin- 4 E
ear plants. (L, V) d;
e Implement a non-linear gain scheduled controller, using
the D-methodologyd].

<
[N

Figure 6:Nonlinear path following controller
The structure of the linear systems givendl) can be rewrit-

ten in the more condensed form as In addition to solving the path following problem for all trim-
ming paths and alongside the already stated linearization prop-

0% = A(ne)dxe + B(ne)due, (19) erty, the nonlinear control implementation has other impor-
where tant properties, which are worthwhile emphasizing:aiito-
0xe = [0vT, 0w?, 6dT, 6AT]" trimming property- the controller automatically generates ade-

o o quate trimming values for the actuation signals and for the state
and the coefficients for the dynamics 4t{1.) and B().) are \ariaples that are not required to track reference inputs; ii) the
obtained from the linearization of the full nonlinear model,jjementation of anti-windup schemes is straightforward, due
about the trimming path parameterizediy to the placement of the integrators at the plant input.

In the design of the linear controllers, integrators are appended

to selected state variables to ensure zero steady state er®rs.Simulation results

The structure of the linear controllers, which are synthesized

using the state feedback LQR synthesis technique, is given Bis section presents the simulation results obtained with the

described path following controller. The closed loop sys-
{ 0% = Ly0x, (20) tem was implemented using the helicopter nonlinear dynamic
due = Ki, (ne)0xe + Ky, (ne)0xc model simulatorSimModHeli2], parameterized for the Vario

X-Treme model-scale helicopter. The path to be followed was

defined about the reference speed of 2 m/s, and consists of: i)

Given the set of linear controllers, the D-methodology cédteeping the helicopter in level flight along theaxis, ii) track-

be applied. This design method amounts to moving all interg a climbing helix, and iii) tracking a positive ramp in the

grators to the plant input, adding derivators where neededyi®: plane, see Figuf@ The parameters and initial position of

preserve the transfer functions. Assuming thaj is square each of these stages are presented in Tabl&he controller

(dim(x.) = dim(u)) and invertible, the followindineariza- was tested introducing a perturbation on the initial position of

tion propertyis satisfied: the linearizations of the nonlineathe helicopter, which was settg = [0 —4 —2]” m. All other

closed-loop system about trimming paths preserve the samesitate variables were set to the previously computed trimming

ternal as well as input-output properties of the correspondinglues. The path described by the helicopter and corresponding

linear closed loop design8]f actuation signals are illustrated in Figui&asnd8, respectively.

where matrixL, selects the variables to be integrated.



Ve (m/s) 7. (deg) . (degls) 1o (deg) Po(m) theory.
i) 2 0 0 0 [00 0] . N
i 9 195 135 0 200 0] A key fgature of the control!ers .developed is their ab|I|_ty to
i) 9 10 0 970 [12 8 13.4)7 automatically generate the trimming values for the plant inputs

and for all state variables that are not required to track reference
inputs. This is in sharp contrast to traditional designs where
feedforwarding of these values is required. The new methodol-
ogy is simple to apply and leads to a nonlinear controller with
At the beginning of the maneuver, the helicopter quickly com structure similar to that of the original linear designs. The

Table 1:Parameters for the reference path

verges to the desired path through a combination roll and y@&rformance of the controllers was assessed in simulation.

angular motions, mainly commanded by the longitudinal cyclic

d1. and tail rotor collectively;. The aircraft continues on track Acknowledgements
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