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Abstract

This paper addresses the problem of path following control sys-
tem design for model-scale helicopters. The presented design
strategy builds on the definition of an adequate generalized er-
ror space for expressing the vehicle’s dynamics and kinematics.
The path following problem is cast and solved in the framework
of gain scheduling control theory, using the D-methodology.
The resulting control law ensures that: i) the path following
system achieves zero steady state tracking error about trim-
ming trajectories, and ii) the linearizations of the nonlinear gain
scheduled feedback system and the corresponding linear de-
signs present the same internal as well as input-output charac-
teristics. The controller performance is evaluated in simulation,
using a helicopter nonlinear dynamic model parameterized for
the Vario X-treme model-scale helicopter.

1 Introduction

Model-scale helicopters constitute one of the most versatile and
cost-effective unmanned air vehicle (UAV) platforms currently
used for the development and test of autonomous flight sys-
tems. The wide and valuable range of applications arising from
the helicopter’s maneuvering capabilities, allied to the increas-
ing availability of accurate, reliable, and miniaturized sensors,
justify the extensive research and development effort that is
being undertaken worldwide. Unlike fixed-wing aircraft, he-
licopters were designed to describe vertical flight trajectories,
including hovering and vertical take-off and landing (VTOL).
Moreover, despite their ability to perform extremely agile ma-
neuvers at high and low speeds, helicopters still provide good
flying qualities in fast forward flight. The trade-off for this
enhanced versatility is an inherent complexity that gives rise
to a highly nonlinear and unstable dynamical system. In this
context, the development of advanced guidance and control
systems, based on accurate modeling of the helicopter’s dy-
namics, is instrumental in bringing about high performance au-
tonomous systems.

In this paper, the problem of steering a model-scale helicopter

along predefined paths at a fixed speed is addressed. The so-
lution follows the methodology described in [9], where the au-
thors propose an integrated design of the guidance and control
systems for autonomous vehicles, and present an implemen-
tation for the case of autonomous underwater vehicles. This
methodology has two main advantages over traditional ones:
i) stability of the combined guidance and control systems is
guaranteed, and ii) the resulting path following system achieves
zero steady state tracking error about trimming paths.

The design method builds on three key results: i) the trim-
ming trajectories associated to trimming paths of helicopters
are helices parameterized by the vehicle’s linear speed, yaw
rate, and flight path angle (trimming vector); ii) steering the
vehicle along a trimming path at constant speed is equivalent
to driving a generalized tracking error to zero, and iii) the lin-
earization of the generalized error dynamics about any trim-
ming path is time-invariant. In view of these results, the prob-
lem of steering a vehicle along a piecewise continuous concate-
nation of trimming paths can be tackled using gain scheduling
[8]. The adopted methodology uses the D-methodology de-
scribed in [5], implementing a gain scheduled controller, which
ensures the equivalence between the linearization of the nonlin-
ear closed-loop system and the corresponding linear designs.

The paper is organized as follows. Section2 describes a gen-
eral dynamic model for a model-scale helicopter. Section3
introduces the concepts of trimming trajectories and paths and
defines a generalized error space for describing the vehicle’s
motion. Section4 describes the methodology for the design of
a gain scheduled path following controller and outlines its im-
plementation. Section5 presents simulation results for the path
following controller obtained with the helicopter nonlinear dy-
namic simulatorSimModHeli. Section6 concludes the paper
highlighting the main features of the proposed control system.

2 Helicopter dynamic model

The helicopter dynamic model presented hereafter was the ba-
sis for the development of a simulator, namedSimModHeli
[2], implemented in Matlab, using Simulink and C MEX-file
S-functions, that will be made freely available for the scien-
tific community. This simulator is completely parameterizable
and describes the dynamics of helicopters with any number of



blades, with or without a Hiller or Bell-Hiller stabilizing bar.
The simulation model is specially tailored for model-scale he-
licopters, such as the one depicted in Figure1, and includes the
rigid body, main rotor flapping, and stabilizing bar dynamics.
The dynamics of the helicopter can be described using a six

Figure 1:Vario X-Treme helicopter

degree of freedom rigid body model driven by forces and mo-
ments that explicitly include the effects of the main rotor, Bell-
Hiller stabilizing bar, tail rotor, fuselage, horizontal tailplane,
and vertical fin. To derive the equations of motion, the follow-
ing notation is required:

{U} - universal coordinate frame;
{B} - body-fixed coordinate frame, with origin at the ve-
hicle’s centre of mass;
p =

[
x y z

]T
- position of the vehicle’s center of mass,

expressed in{U};
λ =

[
φ θ ψ

]T
- Z-Y-X Euler angles that parameterize

locally the orientation of the vehicle relative to{U};
v =

[
u v w

]T
- body-fixed linear velocity vector;

ω =
[
p q r

]T
- body-fixed angular velocity vector.

Figure2 captures the general structure of the helicopter model
that can be written as





v̇ = Fv (v,ω, λ,u)
ω̇ = Fω (v, ω, λ,u)
ṗ = R (λ)v
λ̇ = Q (λ)ω

, (1)

with

Fv (v, ω, λ) = −ω × v + f (λ) /m, (2)

Fω (v, ω, λ) = −I−1 [ ω × Iω + n (v, ω,u) ] , (3)

wherem is the vehicle’s mass,I is the tensor of inertia about
the{B} frame,f andn are the vectors of external forces and
moments respectively along the same frame,fg is the gravi-
tational force also expressed in{B}, R is the rotation matrix
from {B} to {U}, andQ is the transformation from angular
speeds to Euler angle derivatives. The external force and mo-
ment vectors are functions of the vehicle velocities and of the
command vectoru =

[
δ0 δ1c δ1s δ0t

]T
that consists of the

main rotor collective inputδ0, main rotor and flybar cyclic in-
putsδ1c andδ1s, and tail rotor collective inputδ0t.

The following sections present mathematical models for the
main rotor and Bell-Hiller stabilizing bar. A comprehensive

Figure 2:Helicopter model - block diagram

study of helicopter dynamic modeling, including the remain-
ing helicopters components can be found in [3]. For in-depth
coverage of helicopter flight dynamics, the reader is referred to
[4, 6, 7].

2.1 Main rotor

In rotary-wing aircraft, the main rotor is not only the dominant
system, but also the most complex one. It is the primary source
of lift, which counteracts the body weight and sustains the heli-
copter in air. Additionally, the main rotor generates other forces
and moments that enable the control of the aircraft position,
orientation and velocity. This section presents a simplified ro-
tor dynamic model, whose main building blocks are depicted
in Figure3.

Figure 3:Main rotor block diagram

The model adopted to describe the rotor blades is standard and
assumes that these are rigid and linked to the hub through flap
hinge springs, with stiffnesskβ [6]. The dynamic behaviour
is thus confined to the flapping motion that can be described
by vectorβ =

[
β0 β1c β1s

]T
, whereβ0 denotes the collec-

tive mode (also called coning), andβ1c andβ1s the longitudi-
nal and lateral cyclic modes, respectively. This vector corre-
sponds to the constant and first-order harmonics of the Fourier
Series expansion of the flapping angleβ, expressed as function
of the blade azimuth angleψ = Ωt (Ω denotes the rotor angular
speed). The equations of motion for a flapping rotor, expressed
in the main rotor wind-aligned frame, can be approximated by
the following second-order system

β̈ + ΩAβ̇(µ)β̇ + Ω2Aβ(µ)β = Ω2Bθ(µ)




θ0

θ1c

θ1s


 +

Ω2Bω(µ)
[

p̄
q̄

]
+ Ω2Bλ(µ)




µz − λ0

λ1c

λ1s


 ,

(4)

where, according to standard notation in helicopter theory [6],



the helicopter velocities are normalized, withµ andµz denot-
ing the forward and vertical velocities, respectively, andp̄ and
q̄ the roll and pitch rates, respectively. The induced downwash
is also normalized and decomposed into constantλ0 and si-
nusoidal componentsλ1c and λ1s. It should be noted that,
for control system design purposes, the flapping motion as de-
scribed by (4) preserves a high degree of accuracy, while ren-
dering a much more tractable system. For instance, the coef-
ficient matrices in (4) depend solely on the helicopter forward
velocity.

Control of the blade aerodynamic loads, which ultimately de-
termines the main rotor force and moment contributions (fmr

andnmr), is obtained by changing the blade pitch angleθ as
function of the rotor command inputs. Without the Bell-Hiller
system and neglecting the servo actuator dynamics, the blade
pitch angle is given by

θ(ψ) = δ0 + δ1c cos(ψ) + δ1s sin(ψ). (5)

In systems equipped with the Bell-Hiller stabilizing bar, only
the collective inputδ0 is directly applied to the main rotor. The
cyclic inputsδ1c andδ1s are mixed with the motion of the bar
to determine the actual cyclic components (θ1c and θ1s) ap-
plied to blade pitch links. The equations of motion for these
components are presented in the next section.

Using either the dynamic or the steady-state solution for the
flapping equation (4), the main rotor forces and moments at the
hub can be written as

fmr =
n

2



−Y1s

−Y1c

2Z0


 +

n

2



−Z1c −Z0 0
Z1s 0 Z0

0 0 0






β0

β1c

β1s


, (6)

and

nmr = n




0
0

N0


 +

n

2



−N1c −N0 −kβ

N1s −kβ N0

0 0 0






β0

β1c

β1s


. (7)

TheY(.), Z(.), andN(.) terms, in (6) and (7), represent the force
and moment components generated by the blades. These quan-
tities are functions of the helicopter state variables and main
rotor inputs. Explicit expressions and a detailed description of
these terms can be found in [3].

2.2 Bell-Hiller stabilizing bar

The Bell-Hiller stabilizing bar, a mechanical blade pitch con-
trol system that improves helicopter stability, is currently a
standard component in model-scale helicopters. From a con-
trol point of view, the stabilizing bar can be interpreted as a dy-
namic feedback system for the roll and pitch rates. The system
consists of a so-called flybar (a teetering rotor placed at a90o

rotation interval from the main rotor blades and tipped on both
ends by aerodynamic paddles) and a mixing device that com-
bines the flybar flapping motion with the cyclic inputs to de-
termine the cyclic pitch angle applied to the main rotor blades.
The flybar and main rotor flapping motions are governed by

the same effects, namely the gyroscopic moments due the he-
licopter roll and pitch rates. However, unlike the main rotor,
the flybar is not responsible for providing lift or maneuvering
ability. Thus, it can be designed to have a slower response and
provide the desired stabilization effect.

The notation used to describe the Bell-Hiller system is pre-
sented in Figure4, where the mechanical arrangement for the
X-Treme helicopter is reproduced.

Figure 4:Bell-Hiller system with angular displacements

Due to the geometric constraint introduced by the mixing lever,
the flybar flapping and rotor blade pitching motions are effec-
tively combined. The equations of motion for the main rotor
blade pitching can be written as

[
θ̈1c

θ̈1s

]
+ ΩAθ̇

[
θ̇1c

θ̇1s

]
+ Ω2Aθ(µ)

[
θ1c

θ1s

]
=

Ω2Bδ(µ)
[

δ1c

δ1s

]
+ Ω2Bω

[
p̄
q̄

]
+ Ω2Bλ(µ)




µz − λ0

λ1c

λ1s


 .

(8)
The blade pitching motion, in particular its response to heli-
copter shaft rotations, depends on the physical parameters of
the Bell-Hiller system, namely the lever armsl1, and l2, the
flybar radiiR1 andR2, and the flybar Lock number defined as

γf = ρcfa0f

(
R4

2 −R4
1

)
/ Iβf

, (9)

whereρ is the air density,cf the paddle chord,a0f
the paddle

lift curve slope, andIβf
the flybar moment of inertia. There-

fore, there are several different means of adjusting the flybar
stabilizing effect. Changing the shape, weight or distance be-
tween the paddles or the ratio between the mixing lever armsl1
andl2 are all straightforward ways of achieving this variation
(see [1] for further details).



3 Generalized error dynamics

This section introduces the concepts of trimming trajectories
and paths for the helicopter model, presents a generalized er-
ror space to describe the helicopter’s motion about trimming
paths, and computes explicitly the helicopter dynamics in the
new error space.

Consider the helicopter equations of motion presented in (1),
and letvc, ωc, pc, λc, anduc denote the trimming values of
the state and input vectors. At trimming, these vectors satisfy

{
v̇c = Fv (vc,ωc,λc,uc) = 0
ω̇c = Fω (vc, ωc, λc,uc) = 0 , (10)

implying thatu̇c = 0, φ̇c = 0, andθ̇c = 0. Given the depen-
dence of the gravitational terms on the roll and pitch angles,
only the yaw angle can change without violating the equilib-
rium condition. However,ψc satisfies




0
0

ψ̇c


 = Q (λc)ωc, (11)

and thus the yaw rate,̇ψc, is constant. As shown in [9], trim-
ming trajectories correspond to helices that can be described
by

λ̇c =




0
0

ψ̇c


, ṗc =



Vc cos(γc) cos(ψ̇ct + ψ0)
Vc cos(γc) sin(ψ̇ct + ψ0)

−Vc sin(γc)


, (12)

whereVc = ‖vc‖ is the linear body speed,γc the flight-path
angle, andψ0 the helix initial condition. The helix can thus be
described by the following parameterization

ηc =
[
Vc γc ψ̇c ψ0

]T

. (13)

The time-independent 3D curve described by a vehicle that
is tracking a trimming trajectory is usually called a trimming
path, and is here denoted byΓc.

The definition of the error vector requires the introduction of
the following additional notation, which relates the vehicle’s
current state with the desired state on the trimming path.

d - Distance vector from the vehicle’s current positionp
to the closest pointpc on the path, expressed in{U}.
{T} - Tangent frame, whosex, y andz axes correspond to
the tangent, normal, and binormal to the curve atpc. Note
that the distance vector expressed in{T} takes the form
dT = [0, yd, zd].

{C} - Command frame, defined as coincident with the
body frame{B} when the vehicle follows the trimming
path. Notice that{C} is not necessarily aligned with{T}.

The graphical representation of these frames and vectors is pre-
sented in Figure5. Let the generalized error vector be given by

Figure 5:Path following notation





ve = v − vc

ωe = ω − ωc

dπ = ΠR−1d
λe = Q−1(λ− λc)

, (14)

whereΠ is the projection matrix

Π =
[

0 1 0
0 0 1

]
(15)

that selects the last two components of a vector. It should be
noted thatd is defined as the distance to the trimming path
and not to the trimming trajectory. It is easily shown that the
vehicle is following a pathΓc at a constant speedVc if and
only if the generalized error vector defined in (14) is zero [9].
This equivalence breaks down when the trimming velocity has
no forward component relative to the trimming path, i.e., when
vcT

= [0, vy, vz]
T . The type of trimming paths tackled in this

paper do not violate the referred validity condition. The rigid
body equations of motion, expressed in the new error space can
be written as





v̇e = v̇
ω̇e = ω̇

ḋπ = Fdπ (ve, ωe,dπ,λe)
λ̇e = Fλe(ve,ωe,λe)

, (16)

whereue = u − uc, andFdπ andFλe are obtained from (1)
and (14).

The following fundamental result arises from the definition of
the error space: the linearization of (16) about the zero solu-
tion, or equivalently, the linearization of the rigid body dynam-
ics about the trimming path, expressed in the generalized error
space, is time-invariant (see [9] for full details). The linearized
system can be written as





δv̇e = Av
vδve + Aω

v δωe + Aλ
vδλe + Bvδue

δω̇e = Av
ωδve + Aω

ωδωe + Aλ
ωδλe + Bωδue

δḋπ = Lc(C
TR, ωc) δdπ + Jc(C

TR) [−vc × δλe + δve]
δλ̇e = δωe − ωc × δλe

,

(17)



where the coefficient matrices for the dynamics are computed
at trimming according to

Ay
x =

∂

∂y
[Fx(.)]

∣∣∣∣
c

andBx =
∂

∂u
[Fx(.)]

∣∣∣∣
c

(18)

and the coefficients for the kinematics are functions ofC
TR the

constant rotation matrix from{T} to {C}, andvc andωc the
command velocities.

From this result, it follows that associated with each trimming
pathΓ(ηc) there is a linear time-invariant plant (17) for which
a linear controller can be designed.

4 Control system design and implementation

Following the methodology described in [5, 9], the result stated
in the previous section can be used to design a path following
controller based on gain scheduling. The controller design pro-
cedure can be described as follows:

• Select a finite set of trimming paths parameterized byηc.
• Linearize the corresponding generalized error plants about

the selected trimming paths.
• Design linear controllers with integral action on selected

states to achieve adequate performance for each of the lin-
ear plants.

• Implement a non-linear gain scheduled controller, using
the D-methodology [5].

The structure of the linear systems given in (17), can be rewrit-
ten in the more condensed form as

δẋe = A(ηc)δxe + B(ηc)δue, (19)

where
δxe = [δvT

e , δωT

e , δdT

π , δλT

e ]T ,

and the coefficients for the dynamics inA(ηc) andB(ηc) are
obtained from the linearization of the full nonlinear model
about the trimming path parameterized byηc.

In the design of the linear controllers, integrators are appended
to selected state variables to ensure zero steady state errors.
The structure of the linear controllers, which are synthesized
using the state feedback LQR synthesis technique, is given by

{
δẋc = Lxδxe

δue = Kl1(ηc)δxe + Kl2(ηc)δxc
, (20)

where matrixLx selects the variables to be integrated.

Given the set of linear controllers, the D-methodology can
be applied. This design method amounts to moving all inte-
grators to the plant input, adding derivators where needed to
preserve the transfer functions. Assuming thatKl2 is square
(dim(xc) = dim(u)) and invertible, the followinglineariza-
tion property is satisfied: the linearizations of the nonlinear
closed-loop system about trimming paths preserve the same in-
ternal as well as input-output properties of the corresponding
linear closed loop designs [9].

In the current implementation,̇xc comprisesue, ve, anddπ,
ensuring exact tracking of the trimming path. The resulting
nonlinear gain scheduled controller, depicted in Figure6, is
given by





ue = u− uc

ve = v − vc

dπ = ΠR−1(pc − p)
ẋc = K1(η)[v̇T ω̇T ḋT

πλ̇
T

e ]T + K2(η)[ue ve dT
π ]T

u = xc

, (21)

with ω − Q−1λ̇c replacingλ̇e, since both yield the same ex-
pression when linearized about the trimming path. In Figure6,
block E is responsible for the computation of the error state
variablesue, ve, anddπ, given the original state variablesv, p,
andλ, the desired pathΓc, and the forward velocityVc. The
gain matrixK(η) is selected according to the scheduling vari-
ableη = [V, γ, ψ].

Figure 6:Nonlinear path following controller

In addition to solving the path following problem for all trim-
ming paths and alongside the already stated linearization prop-
erty, the nonlinear control implementation has other impor-
tant properties, which are worthwhile emphasizing: i)auto-
trimming property- the controller automatically generates ade-
quate trimming values for the actuation signals and for the state
variables that are not required to track reference inputs; ii) the
implementation of anti-windup schemes is straightforward, due
to the placement of the integrators at the plant input.

5 Simulation results

This section presents the simulation results obtained with the
described path following controller. The closed loop sys-
tem was implemented using the helicopter nonlinear dynamic
model simulatorSimModHeli[2], parameterized for the Vario
X-Treme model-scale helicopter. The path to be followed was
defined about the reference speed of 2 m/s, and consists of: i)
keeping the helicopter in level flight along thex axis, ii) track-
ing a climbing helix, and iii) tracking a positive ramp in the
yoz plane, see Figure7. The parameters and initial position of
each of these stages are presented in Table1. The controller
was tested introducing a perturbation on the initial position of
the helicopter, which was set top0 = [0 −4 −2]T m. All other
state variables were set to the previously computed trimming
values. The path described by the helicopter and corresponding
actuation signals are illustrated in Figures7 and8, respectively.



Vc (m/s) γc (deg) ψ̇c (deg/s) ψ0 (deg) p0(m)
i) 2 0 0 0 [ 0 0 0 ]T

ii) 2 19.5 13.5 0 [20 0 0 ]T

iii) 2 10 0 270 [12 8 13.4]T

Table 1:Parameters for the reference path

At the beginning of the maneuver, the helicopter quickly con-
verges to the desired path through a combination roll and yaw
angular motions, mainly commanded by the longitudinal cyclic
δ1c and tail rotor collectiveδ0t. The aircraft continues on track
through the remainder of the maneuver, with only slight devia-
tions during the transition between stages.
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Figure 7:Path following simulation, 3D view
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6 Concluding remarks

The paper presented a new methodology for the design of path
following controllers for helicopters. The design method builds
on three key results: i) the trimming trajectories associated to
trimming paths of helicopters are helices parameterized by the
vehicle’s linear speed, yaw rate, and flight path angle (trim-
ming vector); ii) steering the vehicle along a trimming path at
constant speed is equivalent to driving a generalized tracking
error to zero, and iii) the linearization of the generalized error
dynamics about any trimming path is time-invariant. Based on
these results, the problem of path following system design was
cast and solved in the framework of gain scheduling control

theory.

A key feature of the controllers developed is their ability to
automatically generate the trimming values for the plant inputs
and for all state variables that are not required to track reference
inputs. This is in sharp contrast to traditional designs where
feedforwarding of these values is required. The new methodol-
ogy is simple to apply and leads to a nonlinear controller with
a structure similar to that of the original linear designs. The
performance of the controllers was assessed in simulation.
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