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Abstract

Two discrete Fourier transform based algorithms are proposed
for the computation of the Moore-Penrose and Drazin inverse
of a multivariable polynomial matrix.

1 Introduction

Let R be the set of real numbers,Rp×m be the set ofp × m
real matrices,R[z1, z2, ..., zn] (resp.R(z1, z2, ..., zn)) denotes
the polynomials (resp. rational expressions) with real coeffi-
cients in then indeterminatesz1, z2, ..., zn. Thep×m matrices
with elements inR[z1, z2, ..., zn] (resp. R(z1, z2, ..., zn)) are
denoted byR[z1, z2, ..., zn]p×m (resp. R(z1, z2, ..., zn)p×m).
By Ip we denote the identity matrix of orderp, and by
0p,m the p × m null matrix. By A (z1, z2, ..., zn)D (resp.
A (z1, z2, ..., zn)+) we denote the Drazin and Moore-Penrose
inverse ofA (z1, z2, ..., zn).

The Moore-Penrose inverse has originally been defined by Pen-
rose [16], while later Decell [2] proposed a Leverrier-Faddeev
algorithm for its computation. An extension of this algorithm
to the one and two-variable polynomial matrices has been pro-
posed by [9], [12], [13], [14]. A Leverrier-Faddeev algorithm
has also been proposed by Grevile [6] for the computation of
the Drazin inverse of square constant matrices with extensions
to the one-variable polynomial matrices by [11], [18].

The Leverrier algorithms have the advantage that are easily
implemented in symbolic programming languages like Math-
ematica, Maple etc. However, their main disadvantage, is that
are not stable if they are implemented in other high level pro-
gramming languages such as C++, Fortran etc. In order to over-
come these difficulties we may use other techniques such as
interpolation methods. Schuster and Hippe [17] for example,
use interpolation techniques in order to find the inverse of a
polynomial matrix. However, if we need to increase the speed
and robustness of our algorithms we may interested in finding
algorithms based on Discrete Fourier Transforms (DFT) or bet-
ter Fast Fourier Transforms (FFT). The main advantages of the
DFT based algorithms are:

1. There are very efficient algorithms available both in soft-
ware and hardware.

2. Parallel environment (through symmetric multiprocessing
or other techniques) greatly benefits their speed.

Actually during the past two decades there has been exten-
sive use of DFT - based algorithms, due to their computational
speed and accuracy. Some remarkable examples, but not the
only ones of the use of DFT in linear algebra problems, are the
calculation of the determinantal polynomial by [15], the com-
putation of the transfer function of generalized n-dimensional
systems by [10] and the solutions of polynomial matrix Dio-
phantine equations by [8].

The main reason for the interest in these two specific inverses
are due to their applications in inverse systems, solution of Au-
toRegressive Moving Average representations [7], solution of
Diophantine equations which gives rise to numerous applica-
tions to the field of control system synthesis (see for example
[12] and its references) and in the study of multidimensional
filters which find numerous applications in image processing,
electrical networks with variable elements etc. Note that in case
of square and nonsingular matrices, both inverses coincide with
the known inverse of the matrix. Therefore the computation of
these special inverses gives rise also to applications where the
usual inverse of a matrix is required such as the computation of
the transfer function of a matrix ([1], [10]).

The main purpose of this work is to present a DFT-algorithm
for the evaluation of the generalized inverse and the Drazin
inverse of a multivariable polynomial matrix. More specif-
ically in section 2 we introduce the n-dimensional discrete
Fourier transform, while later in section 3 and 4 we propose
two new DFT algorithms for the evaluation of the generalized
and Drazin inverse respectively of a polynomial matrix inn in-
determinates. The whole theory is illustrated via an illustrative
example coming from the field of control system synthesis.

2 Multidimensional Discrete Fourier Trans-
form

Consider the finite sequenceX(k1, . . . , kn) and
X̃(r1, . . . , rn), ki, ri = 0, 1, ..., Mi. In order for the se-
quenceX(k1, . . . , kn) and X̃(r1, . . . , rn) to constitute an
DFT pair the following relations should hold [4] :

X̃(r1, .., rn) =
=

∑M1
k1=0 . . .

∑Mn

kn=0 X(k1, .., kn)W−k1r1
1 · · ·W−knrn

1

(1)
X(k1, .., kn) =

= 1
R

∑M1
r1=0 . . .

∑Mn

rn=0 X̃(r1, .., rn)W k1r1
1 · · ·W knrn

1

(2)



where

Wi = e
2πj

Mi+1 ∀i = 1, 2, 3, ..., n (3)

R =
n∏

i=1

(Mi + 1) (4)

andX, X̃ are discrete argument matrix-valued functions, with
dimensionsp ×m. The computation of the multidimensional
DFT and its inverse can be also accomplished using fast Fourier
transform techniques. A very fast free implementation of FFT
can be found in [5].

3 Generalized Inverse of a Multivariable Poly-
nomial Matrix

The generalized inverse of a constant matrix was defined by
Penrose in [16].

Definition 1 [16] For every matrixA ∈ Rp×m, a unique ma-
trix A+ ∈ Rm×p, which is called generalized inverse, exists
satisfying

(i) AA+A = A

(ii) A+AA+ = A+

(iii) (AA+)T = AA+

(iv) (A+A)T = A+A

whereAT denotes the transpose ofA. In the special case that
the matrixA is square nonsingular matrix, the generalized in-
verse ofA is simply its inverse i.e.A+ = A−1.

Consider the polynomial matrix with real coefficients in then
indeterminatesz1, z2, ..., zn (callednD polynomial matrix)

A(z1, . . . , zn) =
M1∑

k1=0

. . .

Mn∑

kn=0

Ak1...knzk1
1 . . . zkn

n (5)

whereA(z1, . . . , zn) ∈ R [z1, . . . , zn]p×m
, with Ak1...kn ∈

Rp×m, and p not necessarily equal tom. In an analogous
way we define the generalized inverseA(z1, . . . , zn)+ ∈
R (z1, . . . , zn)m×p of the polynomial matrixA(z1, . . . , zn) ∈
R [z1, . . . , zn]p×m defined in (5) as the matrix which satisfies
the properties (i)-(iv) of Definition (1). We will denote

z̄ = (z1, . . . , zn) ∈ Rn

and with a slight abuse of notation

a(z̄) ≡ a(z1, . . . , zn) ∈ R[z1, . . . , zn]

will denote anD polynomial. Following the steps of [13] we
have

Theorem 2 Let A(z̄) = A(z1, . . . , zn) ∈ R [z1, . . . , zn]p×m

as in (5) and

a(s, z1, . . . , zn) = det
[
sIp −A(z̄)A(z̄)T

]
= (a0(z̄)sp + · · ·+ ap−1(z̄)s + ap(z̄)) (6)

a0(z̄) = 1, be the characteristic polynomial ofA(z̄)× A(z̄)T .
Let k such thatap(z̄) ≡ 0, ..., ak+1(z̄) ≡ 0 while ak(z̄) 6= 0,
and defineΛ := {(z̄) ∈ Cn : ak(z̄) = 0}. Then the generalized
inverseA(z̄)+ of A(z̄) for z̄ ∈ Cn − Λ is given by

A(z̄)+ = − 1
ak(z̄)

A(z̄)T Bk−1(z̄) (7)

Bk−1(z̄) =
= a0(z̄)

[
A(z̄)A(z̄)T

]k−1 + · · ·+ ak−1(z̄)Ip
(8)

If k = 0 is the largest integer such thatak(z̄) 6= 0, then
A(z̄)+ = 0. For thosez̄ ∈ Λ we can use the same algorithm
again.

Proof. The theorem is easily proved using the logic in the proof
of the corresponding theorem about constant matrices in [2].

Remark 3 The algorithm described in (2) is efficient using
symbolic programming languages. Its main advantages are
1) It consists of simple recursions.
2) No matrix inversion is required.
3)In the case thatp > m we can compute the transposeA(z̄)T

and computeA(z̄)+ = [A(z̄)+]T . The algorithm will be com-
pleted faster since it will needm rather thanp steps.

In the following we will propose a new algorithm for the cal-
culation of the generalized inverse which combines the above
advantages with numerical stability and robustness by using in-
terpolation and discrete Fourier transforms.

Evaluation of the generalized inverse ofA(z1, . . . , zn)
Step 1.
It is easily seen from (6), that the greatest powers of the(n+1)
variables ina(s, z1, . . . , zn) are

degs (a(s, z1, . . . , zn)) = p := b0

degz1
(a(s, z1, . . . , zn)) ≤ 2pM1 := b1

...
degzn

(a(s, z1, . . . , zn)) ≤ 2pMn := bn

Thus, the polynomiala(s, z1, . . . , zn) can be written as

a(s, z1, . . . , zn) =
b0∑

k0=0

. . .

bn∑

kn=0

ak0...knsk0zk1
1 . . . zkn

n (9)

and can be numerically computed via interpolation using the
following R points

ui(rj) = W
−rj

i ; i = 0, . . . , n andrj = 0, 1, ..., bi

Wi = e
2πj

bi+1
(10)

where

R =
n∏

i=0

(bi + 1)

In order, to evaluate the coefficientsak0k1...kn define

ãr0r1...rn = det[u0(r0)Ip −A(u1(r1), . . . , un(rn))
× [A(u1(r1), . . . , un(rn))]T ]

(11)



From (9), (10), (11) we get

ãr0r1...rn =
b0∑

l0=0

. . .

bn∑

ln=0

(al0...ln)
(
W−r0l0

0 . . . W−rnln
n

)

(12)
Notice that[al0l1...ln ] and[ãr0r1...rn ] form a DFT pair and thus
using (2) we have

al0l1...ln =
1
R

b0∑
r0=0

. . .

bn∑
rn=0

ãr0...rnW r0l0
0 . . .W rnln

n

whereli = 0, . . . , bi.
Step 2. (Evaluateak(z̄))
Find k : ak+1(z̄) = ak+2(z̄) = · · · = ap(z̄) = 0 andak(z̄) 6=
0
Step 3. (EvaluateC(z̄) = A(z̄)T Bk−1(z̄))
The greatest powers ofzi in

C(z̄) = A(z̄)T Bk−1(z̄) =
= a0(z̄)

[
A(z̄)A(z̄)T

]k−1 + · · ·+ ak−1(z̄)Ip
(13)

is

ni = max {2(k − 1)Mi + Mi, k = 1, . . . , p} = (2p− 1)Mi

Using the previous observationC(z̄) can be written as

C(z̄) =
n1∑

l1=0

. . .

nn∑

ln=0

Cl0···ln
(
zl1
1 · · · zln

n

)
(14)

We computeC(z̄) via interpolation using the followingR
points

ui(rj) = W
−rj

i ; i = 1, . . . , n andrj = 0, 1, ..., ni

Wi = e
2πj

ni+1
(15)

where

R =
n∏

i=1

{(2p− 1)Mi + 1} (16)

To evaluate the coefficientsCl0···ln define

C̃r1···rn = C(u1(r1), . . . un(rn)) (17)

Using (15), (16), (17) becomes

C̃r1···rn =
n1∑

l1=0

. . .

nn∑

ln=0

Cl0···lnW−r1l1
1 · · ·W−rnln

n

which through (2)

Cl0···ln =
1
R

n1∑

l1=0

. . .

nn∑

ln=0

C̃r1···rnW r1l1
1 · · ·W rnln

n

whereli = 0, . . . , ni.
Step 4. (Evaluation of the generalized inverse)

A(z̄)+ = − 1
ak(z̄)

C(z̄)

The complexity of the Moore-Penrose generalized inverse al-
gorithm is bounded byO (

m4RL
)

whereR is the maximum
R occuring in the steps of the algorithm described above and

L = max
{

n∑
i=0

log(bi + 1),
n∑

i=1

log(ni + 1)
}

.

4 Drazin Inverse of a Multivariable Polynomial
Matrix

The Drazin inverse of a constant matrix was defined by Drazin
in [3].

Definition 4 For every matrixA ∈ Rm×m, there exists a
unique matrixAD ∈ Rm×m, which is called Drazin inverse,
satisfying

(i) ADAk+1 = Ak for k = ind(A) = min(k ∈ N :
rank

(
Ak

)
= rank

(
Ak+1

)
)

(ii) ADAAD = AD

(iii) AAD = ADA

In the special case that the matrixA is square and nonsingular
matrix, the Drazin inverse ofA is simply its inverse i.e.AD =
A−1.

In an analogous way we define the Drazin inverse of polyno-
mial matrix A(z1, . . . , zn) ∈ R [z1, . . . , zn]m×m defined in
(5) as the matrix which satisfies the properties of Definition
(4). The following theorem proposes a new algorithm for the
computation of the Drazin inverse of anD polynomial matrix,
which generalizes the results in [18].

Theorem 5 Consider a nonregularnD polynomial matrix
A(z̄). Assume that

a(s, z1, . . . , zn) = det [sIm −A(z̄)]
= (a0(z̄)sm + · · ·+ am−1(z̄)s + am(z̄)) (18)

where
a0(z̄) ≡ 1, z ∈ C

is the characteristic polynomial ofA(z̄). Also, consider the
following sequence ofm×m polynomial matrices

Bj(z̄) = a0(z̄)A(z̄)j + · · · aj−1(z̄)A(z̄) + aj(z̄)Im,
a0(z̄) = 1, j = 0, . . . ,m

(19)

Let
am(z̄) ≡ 0, . . . , at+1(z̄) ≡ 0, at(z̄) 6= 0. (20)

Define the following set:

Λ = {z̄i ∈ Cn : at(z̄i) = 0}
Also, assume that

Bm(z̄),...,Br(z̄) = 0, Br−1(z̄) 6= 0

andk = r − t. In the casēz ∈ Cn − Λ andk > 0, the Drazin
inverse ofA(z̄) is given by

A(z̄)D =
A(z̄)kBt−1(z̄)k+1

at(z̄)k+1
(21)

Bt−1(z̄) = a0(z̄)A(z̄)t−1 +· · ·+ at−2(z̄)A(s) + at−1(z̄)Im

In the casēz ∈ Cn − Λ andk = 0, we getA(z̄)D = O.
For z̄i ∈ Λ we can use the same algorithm again.



Proof. The proof uses the same logic as the one in [18]. For
the sake of brevity the interested reader is advised to read [18].

In order to show that a multivariable polynomial matrix is zero
we need the following lemma.

Lemma 6 A polynomial matrix B(z1, . . . , zn) ∈
R[z1, . . . , zn]m×m of degree qi in respect with variables
zi is the zero polynomial matrix iff its value atR distinct points
is the zero matrix where

R =
n∏

i=0

(qi + 1)

In the following we suggest a computationally attractive algo-
rithm for the calculation of Drazin inverses based on interpola-
tion techniques and DFT.

(Evaluation of the Drazin inverse of anD polynomial matrix)
Step 1
It is easily seen from (18), that the greatest powers of the(n+1)
variables ina(s, z1, . . . , zn) are

degs (a(s, z1, . . . , zn)) = m := b0

degz1
(a(s, z1, . . . , zn)) ≤ mM1 := b1

...
degzn

(a(s, z1, . . . , zn)) ≤ mMn := bn

So the polynomiala(s, z1, . . . , zn) can be written as

a(s, z1, . . . , zn) =
=

∑b0
k0=0

∑b1
k1=0 . . .

∑bn

kn=0 (ak0k1...kn)
(
sk0zk1

1 . . . zkn
n

)

(22)
and can be numerically computed via interpolation using the
following R points

ui(rj) = W
−rj

i ; i = 0, . . . , n andrj = 0, 1, ..., bi

Wi = e
2πj

bi+1
(23)

where

R =
n∏

i=0

(bi + 1)

To evaluate the coefficientsak0k1...kn define

ãr0r1...rn = det [u0(r0)Ip −A(u1(r1), . . . , un(rn))] (24)

From (22), (23), (24) we get

ãr0r1...rn =
=

∑b0
l0=0

∑b1
l1=0 . . .

∑bn

ln=0 (al0l1...ln)
(
W−r0l0

0 . . .W−rnln
n

)

(25)
Notice that[al0l1...ln ] and[ãr0r1...rn ] form a DFT pair and thus
using the above equation and (2) we have

al0l1...ln =
1
R

b0∑
r0=0

b1∑
r1=0

. . .

bn∑
rn=0

ãr0r1...rnW r0l0
0 . . . W rnln

n

whereli = 0, . . . , bi.
Step 2.(Evaluateat(z̄) as in (20))
Find k : at+1(z̄) = at+2(z̄) = · · · = am(z̄) = 0 and
at(z̄) 6= 0
Step 3.(Evaluate r ≥ t : Bm(z̄) ≡ 0,...,Br(z̄) ≡
0, Br−1(z̄) 6= 0)
Consider the polynomial matrixBi(z̄). To check whether
Bi(z̄) is the zero matrix using lemma (6),

Ri =
n∏

i=0

(iMi + 1)

interpolation points are needed. In order now to determine
the value ofr ≥ t which satisfy the property :Bm(z̄) ≡
0,...,Br(z̄) ≡ 0, Br−1(z̄) 6= 0, Ri we use the following short
algorithm
Do WHILE (Bi(z̄) = 0 ∀u(r))
i=i-1
Check through lemma (6) whetherBi(z̄) = 0
END DO
r = i
Step 4. (Evaluation ofC(z̄) = A(z̄)kBt−1(z̄)k+1)
The greatest powers ofzi in

C(z̄) = A(z̄)kBt−1(z̄)k+1

where

Bt−1(z̄) = a0(z̄)A(z̄)t−1 + · · ·+ at−2(z̄)A(s) + at−1(z̄)Im

is
ni = (t− 1)(k + 1)Mi (26)

Using (26),C(z̄) can be written as

C(z̄) =
n1∑

l1=0

. . .

nn∑

ln=0

Cl0···ln
(
zl1
1 · · · zln

n

)

We computeC(z̄) via interpolation using the followingR
points

ui(rj) = W
−rj

i ; i = 1, . . . , n andrj = 0, 1, ..., ni

Wi = e
2πj

ni+1
(27)

where

R =
n∏

i=1

{(ni + 1} (28)

To evaluate the coefficientsCl0···ln define

C̃r1···rn = C(u1(r1), . . . un(rn)) (29)

Using (26), (27), (29) becomes

C̃r1···rn =
n1∑

l1=0

. . .

nn∑

ln=0

Cl0···lnW−r1l1
1 · · ·W−rnln

n

which through (2)

Cl0···ln =
1
R

n1∑

l1=0

. . .

nn∑

ln=0

C̃r1···rnW r1l1
1 · · ·W rnln

n



whereli = 0, . . . , ni.
Step 5.(Evaluation ofc(z̄) = at(z̄)k+1)
The greatest power ofzi appearing inat(z̄)k+1 are

bi = tMi(k + 1)

soc(z̄) can be written as

c(z̄) =
b1∑

k1=0

. . .

bn∑

kn=0

(ck1...kn)
(
zk1
1 . . . zkn

n

)

and can be numerically computed via interpolation using the
following R points

ui(rj) = W
−rj

i ; i = 0, . . . , n andrj = 0, 1, ..., bi

Wi = e
2πj

bi+1
(30)

where

R =
n∏

i=0

(bi + 1)

Define

c̃r1...rn =
b1∑

l1=0

. . .

bn∑

ln=0

(ck1...kn)
(
W−r1l1

1 . . .W−rnln
n

)
(31)

Using the above equation and (2) we have

cl1...ln =
1
R

b1∑
r1=0

. . .

bn∑
rn=0

c̃r1...rnW r1l1
1 . . .W rnln

n

whereli = 0, . . . , bi.
Step 6. (Evaluation of the Drazin inverse)

A(z̄)D =
A(z̄)kBt−1(z̄)k+1

at(z̄)k+1
=

C(z̄)
c(z̄)

The complexity of the Drazin inverse algorithm is bounded
by O (

m4RL
)

where R is the maximum of theR and Ri

arising in the steps of the algorithm as described above and

L = max
{

L1, L2, L3, L̂r−1, ..., L̂m

}
where

L1 =
n∑

i=0

log(bi + 1)

L2 =
n∑

i=1

log(ni + 1)

L3 =
n∑

i=1

log(di + 1)

L̂i =
n∑

i=0

log(mij + 1), i = r − 1, ...,m

5 Implementation

In this section some experimental results about the efficiency of
the algorithm on the computation of the Moore-Penrose gener-
alized inverse are presented. Similar results hold for the com-
putation of the Drazin inverse. We used random2D polyno-
mial matrices up to dimensions5 × 5 and of polynomial de-
grees up to7. Note that the polynomials that appeared as el-
ements in the matrix had almost all their coefficients nonzero.
The algorithms were implemented using Mathematica 4.1 on a
Pentium III 700Mhz with 128Mb of RAM. The default floating
point accuracy of Mathematica was used. The following figure
presents a comparison of the FFT based method (blue line) and
the direct computation of the Moore-Penrose generalized in-
verse using theorem (2) (red line). Note that the horizontal axis
represents different random polynomial matrices as their de-
grees and dimensions increase, while the vertical axis the CPU
time in seconds returned by Mathematica’s functionTiming[].
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Figure 1. Timing results.

The benefits of the FFT based algorithm are obvious as the
degrees and the dimension of the matrices increase. In order
to highlight the complicacy of the Moore-Penrose inverse, note
the simple fact that the denominator polynomial of the Moore-
Penrose inverse of a general3× 4 2D polynomial matrix with
polynomial degrees3 is of degree18 having361 terms, while
each of the elements of the numerator is of degree15 having
256 terms. The above procedure was applied for the algorithm
concerning the evaluation of the Drazin inverse with similar
results.

6 Conclusions

In this paper two algorithms have been presented for determin-
ing the generalized and Drazin inverse ofnD polynomial ma-
trices. The algorithms are based on the discrete Fourier trans-
form and therefore have the main advantages of speed and ro-
bustness in contrast to other known algorithms. The theoreti-
cal work is accompanied by an example that tackles the prob-
lem of model matching. Other applications of the theory intro-
duced, include the solution of multivariable Diophantine equa-
tions and its application to control system synthesis problems,
the computation of the transfer function matrix of multidimen-
sional systems, the solution of multidimensional AutoRegres-
sive representations etc. The above mentioned algorithms may
be easily extended in order to determine other kind of inverses



such as{2}, {1,2}, {1,2,3} and{1,2,4} inverses of multivari-
able polynomial matrices by using the Leverrier-Faddeev algo-
rithms presented in [19].
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