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Abstract Actually during the past two decades there has been exten-

] ) ) sive use of DFT - based algorithms, due to their computational
Two discrete Fourier transform based algorithms are proposgfheq and accuracy. Some remarkable examples, but not the

for the computation of the Moore-Penrose and Drazin inverggy ones of the use of DFT in linear algebra problems, are the
of @ multivariable polynomial matrix. calculation of the determinantal polynomial by [15], the com-
putation of the transfer function of generalized n-dimensional
1 Introduction systems by [10] and the solutions of polynomial matrix Dio-
phantine equations by [8].
Let R be the set of real numberR?>*™ be the set op x m _ i ) -
real matricesR[z1, zs, ..., 2] (resp.R(z1, 22, ..., z,)) denotes The main reason for the interest in these two specific inverses
the polynomials (resp. rational expressions) with real coeffit€ due to their applications in inverse systems, solution of Au-
cients in thez indeterminates , z, ..., z,. Thep xm matrices [ORegressive Moving Average representations [7], solution of
with elements iR [z1, zs, ..., zn] (resp. R(z1, 2o, ..., z,)) are Diophantine equations which gives rise to numerous applica-
denoted byR[z1, zo, ..., 2, [P*™ (resp. R(z1, 2o, ..., z,)P*™).  tions to the field of control system synthesis (see for example
By I, we denote the identity matrix of ordes, and by [_12] and _|ts r(_eferences) and in the _study_ of muIt|d|menS|o_naI
0, the p x m null matrix. By A (z1, 2, .. Zn)D (resp. fllters.wh|ch find numerous applications in image processing,
;’(21 20, 2n) ) we denote the Drazi;1 a,nd ,Moore-Penroselecmcal networks ywth varlable_ elements.etc. Note that_ln case
inverée (’)fA’ (Z’; 22r ) Sf square a_nd nonsingular maFrlces, both inverses comcuje with
P en the known inverse of the matrix. Therefore the computation of
The Moore-Penrose inverse has originally been defined by P#rese special inverses gives rise also to applications where the
rose [16], while later Decell [2] proposed a Leverrier-Faddeessual inverse of a matrix is required such as the computation of
algorithm for its computation. An extension of this algorithnthe transfer function of a matrix ([1], [10]).
to the one and two-variable polynomial matrices has been pro- , . . .
oosed by [9], [12], [13], [14]. A Leverrier-Faddeev algorith e main purpose of this work is to present a DFT-algorithm

; . oTr the evaluation of the generalized inverse and the Drazin
has also been proposed by Grevile [6] for the computation.Q S ; : .
. inverse of a multivariable polynomial matrix. More specif-

Eg?hlgeriiz_\'/g\;?gzzgj?#g:ﬁ;ig;ﬁl?ggﬁisj VETQ] extensqgaly- in section 2 we introdupe the. n-dimensional discrete

' ' Fourier transform, while later in section 3 and 4 we propose
The Leverrier algorithms have the advantage that are easio new DFT algorithms for the evaluation of the generalized
implemented in symbolic programming languages like Matland Drazin inverse respectively of a polynomial matrixim-
ematica, Maple etc. However, their main disadvantage, is tltterminates. The whole theory is illustrated via an illustrative
are not stable if they are implemented in other high level prexample coming from the field of control system synthesis.
gramming languages such as C++, Fortran etc. In order to over-

come these difficulties we may use other techniques suchzas Multidimensional Discrete Fourier Trans-
interpolation methods. Schuster and Hippe [17] for example,

use interpolation techniques in order to find the inverse of a form

polynomial matrix. However, if we need to increase the spegghnsider the finite sequence X (ki,...,k,) and
and robustness of our algorithms we may interested in finding, ... r.), k;,r, = 0,1,...,M;. In order for the se-
algorithms based on Discrete Fourier Transforms (DFT) or b@faence X (ki,...,k,) and X(r1,...,r,) to constitute an

ter Fast Fourier Transforms (FFT). The main advantages of {§gT pair the following relations should hold [4] :
DFT based algorithms are:

X(ri,.,rn) =
1. There are very efficient algorithms available both in soft- M, M, —kir —knr
= X (ky, .oy k)W 5t W
ware and hardware. 2iky=0 - 2ok, =0 X (K1, o k)W ! 1)
2. Parallel environment (through symmetric multiprocessing X(k1, ... kn) = @)
or other techniques) greatly benefits their speed. = % Zi‘f;o . Ziv,{":oX(Tl, ._’r")Wl’flTl WlffT



where ao(2) = 1, be the characteristic polynomial of(z) x A(z)T.

_ogm Letk such thata,(Z) = 0, ..., ar+1(Z) = 0 while ai(2) # 0,
Wi=eMat ¥i=1,2,3,...,n () anddefiner := {(2) € C" : a,(2) = 0}. Then the generalized
. i A(z)T of A(z) for z € C* — Ais given b
R H Mi+1) @ inverseA(z)* of A(z) for z € is given by
i= _ 1 _ _
] 1 AR = = =5 AE) B () @)
and X, X are discrete argument matrix-valued functions, with k ~
dimensiong x m. The computation of the multidimensional kalk(f)l = @)
DFT and its inverse can be also accomplished using fast Fourier = ao(z) [A(2)A(2)"]"  + -+ ar-1(2)1,

transform techniques. A very fast free implementation of FF'{ o

can be found in [5]. 0 is the largest integer such that;(z) # 0, then

A(z)* = 0. For thosez € A we can use the same algorithm
) o again.
3 Generalized Inverse of a Multivariable Poly-
nomial Matrix Proof. The theorem is easily proved using the logic in the proof

. . . ) f the corresponding theorem about constant matrices in2].
The generalized inverse of a constant matrix was defined %y P g 2]

Penrose in [16] Remark 3 The algorithm described in (2) is efficient using

symbolic programming languages. Its main advantages are
1) It consists of simple recursions.
ﬁ) No matrix inversion is required.

Definition 1 [16] For every matrixA € RP*", a unique ma-
trix AT ¢ R™*P, which is called generalized inverse, exist

satisfying 3)In the case thap > m we can compute the transpodéz)”

(i) AATA=A and computed(2)* = [A(2)*]" . The algorithm will be com-
(i) A*AAF = A+ pleted faster since it will neea rather thanp steps.

(iiiy (AAH)" = A4t In the following we will propose a new algorithm for the cal-

. T i culation of the generalized inverse which combines the above

(iv) (ATA)” =ATA . : - N
advantages with numerical stability and robustness by using in-

where AT denotes the transpose df In the special case that terpolation and discrete Fourier transforms.

the matrixA is square nonsingular matrix, the generalized in:

verse ofd is simply its inverse i.ed™ — A-1. g:/:;uinon of the generalized inverse4fz1, ..., z,)

. . o - _ Itis easily seen from (6), that the greatest powers o 1
Consider the polynomial matrix with real coefficients in the _,_ . y © g P (thel)
. . ) ) variables ima(s, z1, . .., z,) are
indeterminates,, z», ..., z,, (callednD polynomial matrix)

M, deg, (a(s,21,...,2n)) =p:=bg
A(Zlv"-;zn Z Z Akl K Zl n (5) degzl (G(S,Zh...,Zn)) < 2pM1 = bl
k1=0
where A(z1, ..., z,) € Rlz1,...,2a]"™, With Ay, . € deg., (a(s,z1,...,2,)) < 2pMy == by,
RP>™, andp not necessarily equal to.. In an analogous Thys, the polynomiak(s, 21, . . . , z,) can be written as
way we define the generalized inversgz,...,2,)" €
R (21,...,2,)" " of the polynomial matrix4(zy, ..., z,) € 3 N
R[z1,...,2,)7*" defined in (5) as the matrix which satisfies a(s, 21,52 Z Z kg, 821" 25 (9)

the properties (i)-(iv) of Definition (1). We will denote ko=0  kn=0

_ n and can be numerically computed via interpolation using the
z=(21,-.-,2n) ER . .
following R points

and with a slight abuse of notation o
ui(r;) =W, 7;i=0,...,nandr; =0,1,...,b;

a(z) =alz1,...,2n) € Rlz1,. .., 24) ' I/Vq;zebi% (10)
will denote anD polynomial. Following the steps of [13] weynere
have -
R = H(bz +1)

Theorem 2 Let A(2) = A(z1,...,2,) € Rlz1,..., 2, )7 " =0
asin (5) and In order, to evaluate the coefficients, , . ., define

a(s, 21, . . ) = det [sI, — A(2)A(2)"] ©) Grory...ry = detfug(ro) I, — A(ur(r1), . . ., tn (1)) (11)

= (ao(z )s” +otap1(2)s £ ap(2)) X [A(ur(r1), - un(ra))]']



From (9), (10), (11) we get

> Zalo

lo=0 I

Arory..ry =

) (werte )

(12)
Notice thatla; ;, ;. ] and[a,,r, ..., ] form a DFT pair and thus

using (2) we have

b
1 0
Aoty .. 0, = E g

7'0=0
wherel; = 0,...,b;.
Step 2. (Evaluatea(2))
Findk : ak+1(2) = ak+2(2) =

0
Step 3. (EvaluateC(z) = A(2)T By_1(%))

The greatest powers of in
C(z)= A(z)ijlBk,l(z) =
ao(2) [AR)AGZ)T]" 4+ 4+ ar-1(2)],

il
Wnn n

bn
~ rol
g Grg..ry W0 ..

75 =0

= ap(2) = 0andag(2) #

(13)

is

n; =max{2(k— 1)M; + M;,k=1,...,p} = (2p—1)M;

Using the previous observati@?(z) can be written as
=303 G, ()
11=0 In=0

We computeC(z) via interpolation using the following?
points

’LLZ'(TJ') :Wi_rj;i:].,...,

(14)

nandr; =0,1,...,n;

27 15
Wi = emitl ( )
where .
R=[[{@p— DM +1} (16)
i=1
To evaluate the coefficients;,...;, define
Cryovorr, = Clur(r1), - . . tn (1)) (a7)

Using (15), (16), (17) becomes

Mn

Tl T Z Z ClO an_Tlll T Wyjrnl"
11=0 l,=0
which through (2)
1 S o ~ ril ral,
Cio-otn = 3 S Crpn W W
11=0 1,=0
wherel; =0,...,n;.

Step 4. (Evaluation of the generalized inverse)

1 _
K(Z_)C(Z)

The complexity of the Moore-Penrose generalized inverse
gorithm is bounded by) (m*RL) whereR is the maximum

At = -

4 Drazin Inverse of a Multivariable Polynomial
Matrix

The Drazin inverse of a constant matrix was defined by Drazin
in [3].

Definition 4 For every matrixA € R™*™, there exists a
unique matrixA”? € R™*™, which is called Drazin inverse,
satisfying

(iy APAL = Ak for k
rank (AF) = rank (AF*1))
(i) APAAP = AP

(i) AAP = AP A

In the special case that the matrikis square and nonsingular

matrix, the Drazin inverse ol is simply its inverse i.ed” =
AL

= ind(4A) = min(k € N :

In an analogous way we define the Drazin inverse of polyno-
mial matrix A(zy,...,2,) € Rz1,...,2,]" "™ defined in

(5) as the matrix which satisfies the properties of Definition
(4). The following theorem proposes a new algorithm for the
computation of the Drazin inverse ofid polynomial matrix,
which generalizes the results in [18].

Theorem 5 Consider a nonregulamD polynomial matrix
A(Z). Assume that

= det [s],, — A(Z)]
Ct am— 1( )s+a ( ))

a(s, z1,. .. z,L)

= (ao (Z)Sm + - (18)

where
ap(z) =1,2€C
is the characteristic polynomial ofi(z). Also, consider the
following sequence of. x m polynomial matrices
Bj(2) = aog(2)A(2)7 + - aj—1(2) A(2) + a;(2) L,
. , (19)
ap(2)=1,7=0,...,m

Let
an(2)=0,...,
Define the following set:

at+1(2) =0, a:(2) # 0. (20)

A= {51' eC": at(z—) = 0}

Also, assume that
B, (2),...

andk =r —t. Inthe casez € C" —

inverse ofA(z) is given by

_p_ AE)FBi(2)H!
al- B ay(z)k+1
Bi_1(2) = ap(2)A(z) 1

Br(z) =0,B,-1(2) #0
A andk > 0, the Drazin

(21)

+- 4 at_Q(E)A(S) + at-l(z)lm

R occuring in the steps of the algorithm described above and

L = max { > log(b; + 1), > log(n; +
i=1

=0

1)}.

In the casez € C" — A andk = 0, we getA(z)” = O.
For z; € A we can use the same algorithm again.



Proof. The proof uses the same logic as the one in [18]. Fatherel; =0,...,b;.
the sake of brevity the interested reader is advised to read [1Bfep 2. (Evaluatea,(z) as in (20)

] Find ko a1(2) = aq2(2) = -+ = an(z) = 0 and
N . . zZ)#£0
\I,Ceorr]céeé:jt(t)hsehfg\:\l/otvr;ieggal(ranntqjlr?]\;arlable polynomial matrix is zergtelo 3Evaluate r > ¢ : By(3) = 0..B.(3) =
' 0 Br—l( ) 7é 0)
) ) Consider the polynomial matri>B (2). To check whether
Rlz1,...,2,]™*™ of degreegq; in respect with variables
z; is the zero polynomial matrix iff its value &t distinct points o
is the zero matrix where Ri = H)(ZMi +1)
R— ﬁ(%’ +1) interpolation points are needed. In order now to determine
o the value ofr > t which satisfy the property B,,(z) =

0,...B-(2) = 0,B,_1(z) # 0, R; we use the following short

In the following we suggest a computationally attractive algg/gorithm
rithm for the calculation of Drazin inverses based on mterpolQ0 WHILE (B;(z) = 0Vu(r))

tion techniques and DFT. i=i-1
_ o . ~_ Check through lemma (6) whethBg(z) =
(Evaluation of the Drazin inverse ofraD polynomial matrix) gND DO

Step 1 r=i
Itis easily seen from (18), that the greatest powers ofithel ) Step 4 (Evaluation ofC(z) = A(2)*B,_1(2)*)
variables ina(s, 21, . . ., z,) are The greatest powers of in
deg, (a(s, 21, -..,2n)) = m:= by C(z) = A(Z)FB,_1(2)F !
deg,, (a(s,z1,...,2n)) < mM;p := b
. where
deg., (a(s, 21, .., 2n)) < mMy = by, B 1(z) = aO(Z)A(Z)t_l + ot ar—2(2)A(s) + ar—1(2) I
So the polynomiak(s, z1, . . ., z,) can be written as is

ni = (t — 1)(k + 1)M; (26)

a(s; 21, 2n) = Using (26),C(z) can be written as

b‘VL k
_ Zko 0 Zkl —0- Zk":O (ak[)kl“'kn) (Skozll A Zﬁn) o B
(22) S0 ( Ly )
and can be numerically computed via interpolation using the lz_:o Z_:O forln
following R points ' o
We computeC(z) via interpolation using the following?

wi(ry)) =W, "5 =0,... ’2Zandrj =0,1,...,b; 23) points
W, = ebitl e
wi(r;) =W; 7;i=1,...,nandr; =0,1,...,n;
2w (27)
where . W; = emniit
k= H(b’i +1) where
=0
To evaluate the coefficients,,, .., define R= H {(n; + 1} (28)
Qrory...r, = det [ug(ro)Ip — A(ui(r1), ..., un(rn))] (24) To evaluate the coefficients,...;, define
From (22), (23), (24) we get Cryo, = Clur(r1), ... tn (1)) (29)

= Using (26), (27), (29) becomes

Qrory..ry =

Zl =0 Zz =0 - Z?nzo (ato1y..0,) Wo_mlo N A
0= 1 n

(25) T1 T Z Z Clo A, VV1 ril .Wn—7’nln
Notice that{a;;, .1, ] and[ay,, ...,,] form a DFT pair and thus h=0 1,=0
using the above equation and (2) we have which through (2)

bo by

bn, 1 ni Np
~ rol nln — S r1l Tnln
Aloly..l, = R E E E Qrgry ..oy Wo o0 oL W Ciool,, = = E E Cryooy, W W

ro=07r1=0 rrn=0 1,=0 1,=0



wherel; =0,...,n;.
Step 5(Evaluation ofc(z) = as(2)F*1)
The greatest power af appearing im,(z)*+! are

b =tM;(k+1)
s0c¢(z) can be written as
b1 br

c(z) = Z Z (Cy. k) (Zlfl Zﬁ)

k1=0 kn=0

5 Implementation

In this section some experimental results about the efficiency of
the algorithm on the computation of the Moore-Penrose gener-
alized inverse are presented. Similar results hold for the com-
putation of the Drazin inverse. We used rand2m polyno-

mial matrices up to dimensiorisx 5 and of polynomial de-
grees up tar. Note that the polynomials that appeared as el-
ements in the matrix had almost all their coefficients nonzero.
The algorithms were implemented using Mathematica 4.1 on a
Pentium 111 700Mhz with 128Mb of RAM. The default floating
point accuracy of Mathematica was used. The following figure

and can be numerically computed via interpolation using tREESents a comparison of the FFT based method (blue line) and

following R points

’U,i(Tj) = W-_Tj;i =0,... ,nandrj =0,1,...,b;

where
R=T]®:+1)
1=0
Define
by by,
G = > > (Chyon) (W;”ll o W,;Wn) (31)
11=0 1,=0

Using the above equation and (2) we have

b1 b,
c _ l ~ W""lll WTnln
1.y = R Criry, Wi - Wy
r1=0 =0

wherel; =0,...,b;.
Step 6 (Evaluation of the Drazin inverse)

o AGFBLE_0@)
AT T T @

The complexity of the Drazin inverse algorithm is bounde

by O (m*RL) where R is the maximum of theR and R;

the direct computation of the Moore-Penrose generalized in-
verse using theorem (2) (red line). Note that the horizontal axis
represents different random polynomial matrices as their de-
grees and dimensions increase, while the vertical axis the CPU
time in seconds returned by Mathematica’s funcflamingf].

Figure 1. Timing results.

The benefits of the FFT based algorithm are obvious as the
degrees and the dimension of the matrices increase. In order
to highlight the complicacy of the Moore-Penrose inverse, note
the simple fact that the denominator polynomial of the Moore-
Penrose inverse of a geneBak 4 2D polynomial matrix with
polynomial degrees$ is of degreel8 having361 terms, while
each of the elements of the numerator is of dedredaving

256 terms. The above procedure was applied for the algorithm
concerning the evaluation of the Drazin inverse with similar
rdasults.

arising in the steps of the algorithm as described above @d Conclusions

L = max {Ll,Lg, P ﬁm} where

L, = Zlog(b,; +1)
1=0
n
=1

Ly =" log(d; +1)

i=1

Li =) log(my+1),i=r—1,...,m
=0

In this paper two algorithms have been presented for determin-
ing the generalized and Drazin inversendd polynomial ma-
trices. The algorithms are based on the discrete Fourier trans-
form and therefore have the main advantages of speed and ro-
bustness in contrast to other known algorithms. The theoreti-
cal work is accompanied by an example that tackles the prob-
lem of model matching. Other applications of the theory intro-
duced, include the solution of multivariable Diophantine equa-
tions and its application to control system synthesis problems,
the computation of the transfer function matrix of multidimen-
sional systems, the solution of multidimensional AutoRegres-
sive representations etc. The above mentioned algorithms may
be easily extended in order to determine other kind of inverses



such as{2}, {1,2}, {1,2,3} and{1,2,4} inverses of multivari- [14] Karampetakis, N. P. and P. Tzekis: 2001, ‘On the compu-
able polynomial matrices by using the Leverrier-Faddeev algo- tation of the generalized inverse of a polynomial matrix’.
rithms presented in [19]. IMA J. Math. Control Inform18(1), 83-97.
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