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$EVWUDFW
In this contribution the frequency domain design of reduced
order H �  filters of order n-k is investigated for nth order
discrete time systems with m measurements of which k are
undisturbed. Starting from the known time domain results, the
polynomial matrices parameterizing reduced order D� SULRUL
and D� SRVWHULRUL H �  filters are derived. A simple example
demonstrates the proposed design procedure.

���,QWURGXFWLRQ
The use of H �  filters, which estimate some linear combination
of the system states in the H �  norm minimization sense, is ap-
propriate when there is little knowledge of the statistics of the
driving and of the measurement noise signals. Compared to
minimum variance estimators (Kalman filters) they are less
sensitive to uncertainty in the system parameters [10].

The H �  filtering problem was first considered in [3] and in [9]
using a frequency domain approach. A solution of the H �  fil-
tering problem in the framework of the Riccati equation ap-
proach is given in [14]. The corresponding theory has also
been developed in the discrete time case (see e.g. [1], [13]).

This paper considers the frequency domain design of reduced
order H �  filters for discrete time systems, where k of the m
measurements yM of the nth order plant are not affected by
disturbances. The resulting filter is of order n-k, since it suf-
fices to build an (n-k)th order observer to reconstruct to
whole system state. The H �  filter is characterized by polyno-
mial matrices, parameterizing its discrete time transfer matrix.
The H �  estimation problem can be solved under various pat-
terns of information. In this contribution D�SULRUL and D�SRV�
WHULRUL H �  filtering are considered. The D�SULRUL H �  filter uses
the measurements in a one step delay, whereas the D�SRVWHUL�
RUL H �  filter uses the current measurements in order to gener-
ate the desired estimate. As a consequence, the filter channels
related to the disturbed measurements are strictly proper in
the case of D� SULRUL estimates and proper in the case of D
SRVWHULRUL estimates. When using such D�SRVWHULRUL H �  filters

the H �  norm bound may be lower than the one obtained by D
SULRUL H �  filters.

After introducing the system descriptions in the time and in
the frequency domain, the underlying H �  estimation problems
are formulated in Section 2. This section also contains the re-
duced order H �  filter schemes in the time domain both for the
D�SULRUL and the D�SRVWHULRUL estimation, forming the basis for
the frequency domain solution derived in Section 3. A simple
demonstrating example follows in Section 4.
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Consider a time invariant, discrete time, linear system of
order n with mz unmeasurable outputs yz, m measurements
yM, and q � m disturbances w represented by
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with CM having full row rank, 0DD T
11 > , and A invertible.

The output yM is subdivided such that y1 contains the m-k
disturbed measurements and y2 the k perfect ones with 0 � k
� m. It is assumed that the pair (CM, A) is detectable. In the
sequel, the composite matrix C will be used in different parti-
tions
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The frequency domain description of system (1) is
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and it is assumed that the strictly proper part of this transfer
matrix is represented in a left coprime matrix fraction descrip-
tion
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with )z(D  row reduced.

Given m measurements yM find an H �  filter for the system
(1), (3) that generates an estimate )k(ŷ z  for the unmeasur-

able mz linear combinations yz(k) of the state x(k) in the H �

norm minimization sense. With l2[0,�) denoting the set of
real square summable functions on the interval [0,�), define
the (worst case) performance measure
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when using the D�SULRUL estimate )k(ŷ z , and in the case of an

D�SRVWHULRUL estimate )k(ŷ z
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Two (suboptimal) filtering problems are considered

���$�SULRUL�+ � �ILOWHULQJ�SUREOHP. Given a g > 0, find a stable
filter if it exists such that M < g.
��� $� SRVWHULRUL� + � � ILOWHULQJ� SUREOHP. Given a g > 0, find a
stable filter if it exists such that M+ < g.
The time domain solutions to these problems are presented in
[8]. In the sequel, however, other solutions are used, as they
are better suited for the frequency domain design of the H �

filter.

Consider the system (1) with k perfect measurements y2 and a
reduced order filter of order n-k [2]
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Riccati equation (ARE)
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After solving 0T 2 =  with T having full row rank the matrix

Q is obtained from
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The D� SULRUL estimate )k(ŷ z  is obtained from the above

results with F1 = L1 as
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must hold.

The above presented optimal solution differs from the one

presented in [8]. The matrix P
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 used here is related to the
matrix P  used in [8] by
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which has as a consequence
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For more details see [6].
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The frequency domain design of the reduced order H �  filter is
based on the left coprime factorization (4) of the system (1).
As an intermediate result, the “fictitious” filter with

[ ]1zr LLL =
+xQ-=+x )k()CLA(T)1k( frrf

         ßßà
Þ

ÏÏÐ
ÎY-+

)k(y
)k(y
)k(y

])CLA(L[T

2

1

z

2rrr (24)

(with yz as an input) is considered and the “realizable” filter
(7) (case F1 = L1) results for Lz = 0.
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row degree coefficient matrix [ ])z(Dr
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and { }¼P  denoting taking the polynomial part. This can

always be assured by appropriate left unimodular operations
[12].

$VVXPSWLRQ��� The matrices rR
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 and X (see (10) and (12))

have full rank. They can be computed from the frequency
domain results (see below).

In [5] the relations between the time and the frequency
domain parameterizations of reduced order observers have

been presented. With )z(D
~

f  parameterizing the fictitious

filter (24) in the frequency domain, one has
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7KHRUHP� �. With the system representation (4) such that

Assumptions 1 and 2 hold, the polynomial matrix )z(D
~

f  par-

ameterizing the fictitious filter in the frequency domain solves
the polynomial matrix equation

[ ][ ] )z(N0D0)z(D

)z(D0D0)z(N)z(N)z(N

)z(D
00
0R

)z(D)z(D
~

X0
0R

~
)z(D

~

1TTT
1

1TT
1

1T

1Tfr1T
f

r
f

�

��

��

+
+++

+ßà
ÞÏÐ

Î=ßà
ÞÏÐ

Î
(27)

3URRI: Observing that
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the ARE (15) can be written as
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Multiplying this with 1)AzI(C
�- from the left and with

T1T1 C)AIz(
�� -  from the right (see (2)), then substituting

(see (10) and (13))
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which in view of (4) and (26) can be written as
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after the result has been multiplied by )z(D  from the left and

by )z(D 1T �  from the right. ./.
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J-spectral factorization [11] to obtain the (stable) spectral
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where J is a diagonal matrix with entries 1 and –1 on the main

diagonal and )z(D
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det  has its roots inside the unit circle. The

factorization result for )z(D
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 may be such, that )z(D
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contains m > 0 superfluous roots at z = 0 which is often the
case for discrete time systems [7]. These must be extracted by
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Inspection of (26) shows, that (see [5])
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The time domain quantity r2 LC  can be obtained from the

frequency domain parameters. Using (29), (30) and (31) gives
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If one knew the highest row degree coefficient matrix
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At the left hand side of (34) are known frequency domain
quantities, and from the right hand side the unknown quantity

r2 LC  follows as
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Consequently, Assumption 2 can be verified using frequency
domain results. With r2 LC  from (35) the polynomial matrix
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the D�SULRUL filtering problem is solvable for the chosen g).
In the realizable H 
  filter (7), only the measurable outputs yM

are used. The polynomial matrix )z(D
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 parameterizing the

realizable reduced order H 
  filter is related to the time
domain parameters (case F1 = L1) by
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Using the results of [5] the quantity
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can be shown to represent the transfer behaviour of the
reduced order D�SULRUL H 
  filter [6].
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 parameterizing the H 
  filter in the

D� SRVWHULRUL case is related to the time domain filter
parameters by (37) for F1 = Al1, namely
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can be shown to represent the transfer behaviour of the
reduced order D�SRVWHULRUL H �  filter [6].

The quantity Cl1 in the filter transfer behaviour of the re-
duced order a posteriori H �  filter can also be derived from the
frequency domain results. Inspection of (40) shows that
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Given a third order system with a (3,1) output vector[ ]21z

T yyyy =  and a (3,1) input disturbance vector w.

There is one disturbed (y1) and one perfect measurement (y2)
(i.e. m = 2, k = 1). Its frequency domain representation is
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Since the measurement y2 is not disturbed, the reduced order
H �  filter is of order n–k = 1.

To save space, we consider the D� SULRUL estimate only. The

infimal value of g is gopt = 6/35  [8]. For g = 2.41523 and



the above quantities, the right hand side of the polynomial
equation (30) can be computed.

By J-spectral factorization (The first author thanks Polyx¸
for an a version of such a factorization program) one obtains

���
�

���
�

����� ����� �������
234.0z916.0328.1z171.0215.0z062.2
146.0z945.2828.0z570.0134.0z309.0
122.0z675.1692.0z908.0112.0z583.0

)z(D
~~

and

)1,1,1(diagJ -=
The determinant )z(D

~~
det  contains two superfluous roots at z

= 0 that can be extracted by

ßßà
Þ

ÏÏÐ
Î

-
-=

z9848.0z1738.00
1760.09975.01611.0

z0280.0z1586.0z0129.1
)z(Vext

which meets J)z(JV)z(V 1T
ext

1
ext =			

, giving (see (31))

ßßà
Þ

ÏÏÐ
Î
- - --=

8718.03315.10357.2
9996.28297.03054.0
4913.16938.0z2946.17817.0

)z(D
~~

red

The determinant of this matrix has one root at z = 0.1429, (n-
k=1) which is the eigenvalue of the fictitious filter with input

y. To get )z(D
~

f  parameterizing this fictitious filter, one must

compute C2Lr via (34) and (35). With

ßßà
Þ

ÏÏÐ
Î

---=
05774.05774.0

4142.19428.04714.0
02357.04714.0

)]z(D[ 1
r

 and



�
�

�� � � ��
8718.03315.10357.2
9996.28297.03054.0
02946.10

)]z(D
~~

[ redr

]11714.0[LC r2 -=  results giving (via (36))
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4142.14714.07138.0
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With 06e7.2]0I[R
~

]0I[ T
mrm zz

--=  the limit of condition

(18) is nearly reached. The realizable filter with input yM  is

parameterized by the polynomial matrix )z(D
~

 resulting from

(38) as

ßßà
Þ

ÏÏÐ
Î

-- +-=
05774.05774.0

4142.14714.04714.0
8250.04125.0z2357.04125.0z4714.0

)z(D
~

The root of )z(D
~

det  is at z = 0, which is the eigenvalue of

the optimal filter [8].

���&RQFOXVLRQV
Based on the time domain results a frequency domain
solution has been derived for the discrete time H �  estimation
problem for nth order plants in the presence of k perfect
measurements. The H �  filter of order n-k is parameterized by
a polynomial matrix resulting from J-spectral factorization.
Also D� SRVWHULRUL estimation can directly be handled in the
frequency domain. The design results cover all cases between
full-order and completely reduced order filters. A simple
example demonstrated the design procedure.
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