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Abstract

In this contribution the frequency domain design of reduced
order H,, filters of order n-x is investigated for nth order
discrete time systems with m measurements of which k are
undisturbed. Starting from the known time domain results, the
polynomial matrices parameterizing reduced order a priori
and a posteriori H,, filters are derived. A simple example
demonstrates the proposed design procedure.

1 Introduction

The use of H,, filters, which estimate some linear combination
of the system states in the H,, norm minimization sense, is ap-
propriate when there is little knowledge of the statistics of the
driving and of the measurement noise signals. Compared to
minimum variance estimators (Kalman filters) they are less
sensitive to uncertainty in the system parameters [10].

The H,, filtering problem was first considered in [3] and in [9]
using a frequency domain approach. A solution of the H,, fil-
tering problem in the framework of the Riccati equation ap-
proach is given in [14]. The corresponding theory has also
been developed in the discrete time case (see e.g. [1], [13]).

This paper considers the frequency domain design of reduced
order H,, filters for discrete time systems, where k of the m
measurements yy of the nth order plant are not affected by
disturbances. The resulting filter is of order n-k, since it suf-
fices to build an (n-x)th order observer to reconstruct to
whole system state. The H,, filter is characterized by polyno-
mial matrices, parameterizing its discrete time transfer matrix.
The H,, estimation problem can be solved under various pat-
terns of information. In this contribution a priori and a pos-
teriori H,, filtering are considered. The a priori H,, filter uses
the measurements in a one step delay, whereas the a posteri-
ori H,, filter uses the current measurements in order to gener-
ate the desired estimate. As a consequence, the filter channels
related to the disturbed measurements are strictly proper in
the case of a priori estimates and proper in the case of a
posteriori estimates. When using such a posteriori H,, filters
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the H,, norm bound may be lower than the one obtained by a
priori H,, filters.

After introducing the system descriptions in the time and in
the frequency domain, the underlying H., estimation problems
are formulated in Section 2. This section aso contains the re-
duced order H,, filter schemes in the time domain both for the
a priori and the a posteriori estimation, forming the basis for
the frequency domain solution derived in Section 3. A simple
demonstrating example follows in Section 4.

2 Problem formulation and time domain results

Consider a time invariant, discrete time, linear system of
order n with m, unmeasurable outputs y,, m measurements
ym, @nd g = m disturbances w represented by
x(k+1) = Ax(k) + Gw(k) ,
Y. (K) =C,x(k)
_ya(® || G D,
0= 1100 =| & xto+| : fuco
=C,, x(k) + Dw(k)

x(0)=0

@

with Cy having full row rank, D,D; >0, and A invertible.

The output yy is subdivided such that y; contains the m-«k
disturbed measurements and y, the k perfect ones with 0 < «
< m. It is assumed that the pair (Cy, A) is detectable. In the
sequel, the composite matrix C will be used in different parti-
tions

C=[C] CuI"=[C] ¢ C]I" =[CT CIT' 2
The frequency domain description of system (1) is
y.(2) | _ =) 0
-] fowre gl o

and it is assumed that the strictly proper part of this transfer
matrix is represented in aleft coprime matrix fraction descrip-
tion

C(zl -A) *G =D *(2)N(2) (4)



with D(z) row reduced.

Given m measurements yy, find an H,, filter for the system
(1), (3) that generates an estimate y, (k) for the unmeasur-

able m, linear combinations y,(k) of the state x(k) in the H,,
norm minimization sense. With 1,[0,0) denoting the set of
real square summable functions on the interval [0,:), define
the (worst case) performance measure

Mo sup Pl
wigon |,
w=0

©)

when using the a priori estimate ¥, (k) , and in the case of an

a posteriori estimate ¥, (k) use

Y, — 9z+
L (6)

[,

M* = sup

wel,[0,x0)
w0

Two (suboptimal) filtering problems are considered

1) A priori H, filtering problem. Given ay > 0, find a stable
filter if it existssuch that M <.

2) A posteriori H,, filtering problem. Given ay > 0, find a
stable filter if it exists such that M* <.

The time domain solutions to these problems are presented in
[8]. In the sequel, however, other solutions are used, as they
are better suited for the frequency domain design of the H,,
filter.

Consider the system (1) with k perfect measurementsy, and a
reduced order filter of order n-k [2]

E(k+1) =T(A-FRC)OE(K) +

+TIFR, (A_Flcl)LPZ]Di((m )
giving the state estimate
e o]
Define the matrices
C 2[01} R, {"Vz'mz 0 } 9)
LG ' 0 DD
s, = opI]; R, =R, +CPCT (10)

P=APAT+GG"-L R,LT (11)

X =C,PC] (12)
Then the optimal filter gain matrices result from

L,=[L,, L,]=(APC+S,)R,™ (13)

¥, =PC;X ! (14)

and P=P" >0 is a stabilizing solution of the algebraic
Riccati equation (ARE)
P=APAT +GG™ - ¥, X¥] -L R,LT (15)

After solving TW, =0 with T having full row rank the matrix
® isobtained from

o 3]

The a priori estimate y,(k) is obtained from the above
resultswithF; = L4 as

(16)

¥, (K)=C,¥,y,(k)+C,0(k) 17)
where

~y21+C,PC! <0 (18)
must hold.

The a posteriori estimate ¥ (k) is obtained from the above
results with F; = AL, where

A =(A-L,C)ML, (19)
as
¥, (k) = ¥,(K) + C A, (v, (k) - Cx(k)) (20
(see (8)) where
—y214+C,[A,D,DIA] +(1-%,C,)P(I—CTAD)CI <0 (21)

must hold.

The above presented optimal solution differs from the one

presented in [8]. The matrix P used here is related to the
matrix P usedin[8] by

P=(I-¥,C,)P(I-CI¥]) (22



which has as a consequence

C,P=0 (23)

For more details see [6].

3 Frequency domain design of discrete time
H., filters

3.1 The polynomial matrix equation for the fictitious H,,
filter

The frequency domain design of the reduced order H,, filter is
based on the left coprime factorization (4) of the system (1).
As an intermediate result, the “fictitious” filter with

r

L=l U]

Ei(k+)=T(A-L,C)OE (k) +
Y. (k)
(A-L,C)¥;] y.1(k)
Y2(K)

+T[L, (24)

(with y, as an input) is considered and the “realizable” filter
(7) (case Fy = Ly) results for L, = 0.

Assumption 1. The factorization (4) is such that the highest

row degree coefficient matrix T, [D“ (z)] has full rank, with

5.

and I1{-} denoting taking the polynomial part. This can

always be assured by appropriate left unimodular operations
[12].

D*(2) = H{B(z){(') (25)

Assumption 2. The matrices Iir and X (see (10) and (12))

have full rank. They can be computed from the frequency
domain results (see below).

In [5] the relations between the time and the frequency
domain parameterizations of reduced order observers have
been presented. With D, (z) parameterizing the fictitious
filter (24) in the frequency domain, one has

0
0,

3

571(2)6f (2) =C(zl —A)’l[l_r \}12]+|:|m16m1< :| (26)
Theorem 1. With the system representation (4) such that

Assumptions 1 and 2 hold, the polynomial matrix D (z) par-

ameterizing the fictitious filter in the frequency domain solves
the polynomial matrix equation

0 X
+N@N" (2% + N@)[o D! oD (2 +
+D@ DI o Nz

b 2Jprey v ooren.

(@7)

Proof: Observing that

P-APAT =(zZI —A)P@z I-AT)+(zI —A)PAT +
+AP(z1-AT)

the ARE (15) can be written as

(I -A)PEZ 1 -AT)+(zZl —A)PAT + APz 11 -AT) +
+P,X¥] +L R, LT =GG’

Multiplying this with C(zl —A)™from the left and with

(zM1-=AT)'CT from the right (see (2)), then substituting
(see (10) and (13))

cﬁcTz[RrBRfr 8} and APC" =|L R -S, 0

where we have used C,¥, =1 following from (8) and (23),
and reordering the result gives

-y 5 ¢

{\I{‘Iﬂ(zll—AT)lcT+[é 8}}:{%" g} (28)

+C(zl -A)GGT(z N -AT)ICT +

+C(zl - A)*G[o D 0]+ (@ - Ay *clo D7 o))
which in view of (4) and (26) can be written as

5@ % 2oy -owfy Joe
+N@N" (2% + N(@)[o DI o5 (2 +
+D@ b o Nz

(29)

after the result has been multiplied by D(z) from the left and
by D" (z!) from the right. 1.

Since the matrix {%r )(()} in (29) is indefinite, one must use

J-spectral factorization [11] to obtain the (stable) spectral

factor |5(Z) of the known right hand side of (29), i.e.



Ol=1,1
O}D (ZH)+

+N@N'Y)+N@ b oD (2 Y+
+DE@p D] o N'(z?Y

B(2)ID"(z ) = 5(2)[R0”

(30)

where J is a diagonal matrix with entries 1 and —1 on the main

diagonal and det 5(2) has its roots inside the unit circle. The

factorization result for 5(2) may be such, that det 5(2)

contains p > 0 superfluous roots at z = 0 which is often the
case for discrete time systems [7]. These must be extracted by
right operations

B..(2)= D@)V.L(D) (31)

with det Veq(z) = 2" such that V1 (2)Vg, (zH) =J (for an
algorithm see [4]) to obtain a polynomial matrix ISred(z)

with deg[detD (z)] =n—x.
Inspection of (26) shows, that (see [5])

rr[ﬁf (z)] _ rr[BK(z)][CZ'Lr I‘j (32)

The time domain quantity C,L, can be obtained from the
frequency domain parameters. Using (29), (30) and (31) gives

Sred(z)ar:);d(z-lhﬁf(z){% Q}ﬁ: @) 39

If one knew the highest row degree coefficient matrix
l"r[Bf (2)] one could compute D, (z) as

D; (2) = D,y (T, *[D (I, [D; (2]

Substituting this and (32) in (33) one obtains
B (D7) =D (A DI [D )
K D HcR IRt
which after appropriate rearranging gives

o @] @ | 317 uta B @)
_ _ (34)

| R RLIC

{CZLR C,LR LTCZ+X}

rrerer

At the left hand side of (34) are known frequency domain
quantities, and from the right hand side the unknown quantity
C,L, follows as

[ | }z R, RLIC] R* (35)
CL ]l |CLR, CLRLCI+X]| O

Consequently, Assumption 2 can be verified using frequency
domain results. With C,L, from (35) the polynomial matrix

Sf (2) can be computed from E)red(z) via

oh

@-bu@r L@@l ] @

3.2 The a priori filtering case

Assumption 3. With ﬁr resulting from (34) [l 0]§,
[, 0]" <0 holds (this is the condition (18), assuring that
the a priori filtering problem is solvable for the chosen v).

In the realizable H,, filter (7), only the measurable outputs yy

are used. The polynomial matrix D(z) parameterizing the

realizable reduced order H, filter is related to the time
domain parameters (case F; = L;) by

D(2)D(2) = C(z -A)'o R ¥, ]+ ['mxamK ﬂ (37)

K

[5]. A comparison of (26) and (37) shows that ﬁ(z) is given
by

5)- B(z)[' m O }ﬁf (z)[ogz N } (38)
Using the results of [5] the quantity
5.@=ln, 0,5 @@, %, @

can be shown to represent the transfer behaviour of the
reduced order a priori H,, filter [6].

3.3 The a posteriori filtering case

Assumption 4. With ﬁr resulting from (33) and C,A,
computed below, the condition [I,, szl]ﬁr[lmz C, M7

<0 holds (this is exactly (21), assuring that the a posteriori
filtering problem is solvable for the chosen ).

Solve again the J-spectral factorization problem (30), and
compute D, (z) (see (36)) and D(z) (see (38)). The



polynomial matrix 6* (2) parameterizing the H,, filter in the
a posteriori case is related to the time domain filter
parameters by (37) for F; = AA4, namely

D(2)D" (2) = C(2 —-A)Yo Ax, WP, ]+ ['mzbm (? } (40)

To obtain the result (40) from (37), the gain matrix L; has to
be substituted by

AL =(I-L,C,A ™)L, (42)
(see (19)). Thisresults when adding the quantity

cz-A)[o Ly, 0] (42)
with

Loe=Ar, —L, =(1-L,C,AHIL,C,AIL, (43)
to the factorization (37). Introducing the factorization

C(zI-A)" =D (9N, () (44)

the polynomial matrix 6*(2) of the reduced order H,, filter
can be computed from

D*(2)=D(@)+N,@p L5 0] (45)

In order to get the (time domain) quantity (43) from the
frequency domain results consider the polynomial matrix

Hl(z)=ﬁf<z)—5<z)[g S}Nx(z)[u v (4)

If one knew the state space representation of the system, one
could compute the factorization (44) and consequently also
the gain matrices [Lr ‘Pz] from (46). This time domain
characterization of the system is not known, but one can
assume that there is an observable canonical redlization of the
system transfer matrix (4), giving rise to an (m,+m)xn poly-
nomial matrix N, (2) in (44) of the form

N, (2) =diag(o] ,...,o1) (47)

where the ¢!, v = 1,2,...k are row vectors of the form

[25""1 z 1] and the &
degrees §, [B(Z)J. The o! are only defined for such i = v,
where &, [5(2)]21. For all i where & [5(2)J=0 the corre-

sponding row of Nx (2) isazerorow.

i = 1,2,..m~+m are the row

r?

With the above N, (z), the entriesin [L, ¥, ]=[L, L, ¥,]
can be obtained from H,(z) by inspection. With this result
L

0 0D *O)N,(©)=-L,C,A* (48)

z

(see (44)) can be computed which gives LT, when substitu-

ted in (43) and finally D*(z) when substituted in (45).
Using the results of [5] for 6* (2) the quantity

9. @=lln, Opme On.l(-[0CH, 0O)
0 }(49)

D" (2)[D"(2)-B@]+[0Ch, 01}[yM )

can be shown to represent the transfer behaviour of the
reduced order a posteriori H,, filter [6].

The quantity CA; in the filter transfer behaviour of the re-
duced order a posteriori H,, filter can also be derived from the
frequency domain results. Inspection of (40) shows that

[0C1, CA™,] = -D4(0)D*(0) + [l g

0 } (50)

X

4 Example

Given a third order system with a (3,1) output vector
y' = [yZ 2 yz] and a (3,1) input disturbance vector w.

There is one disturbed (y;) and one perfect measurement (y-)
(i.e. m=2, x =1). Itsfrequency domain representation is

y(2) = {Bl(z)N(z) + [8}}W(z) with

_ 07071 -2.1213 0
N(z)=|-1.4142 -2.8284 0
0 0 O

-0.4714 —0.9428 14142z + 0.4714

0.4714z-0.4125 0.2357z-1.0017 0.2357z-+0.5893
0.5774 -0.5774 -0.5774

D(2) = {

and

001] .
D:[OO 0} ie D,=[0 0 1]

Since the measurement Y, is not disturbed, the reduced order
H., filter is of order n—k = 1.

To save space, we consider the a priori estimate only. The
infimal value of vy is yo = v35/6 [8]. For y = 2.41523 and



the above quantities, the right hand side of the polynomial
equation (30) can be computed.

By J-spectral factorization (The first author thanks Polyx©
for an o version of such a factorization program) one obtains

= -0583z+0.112 -0.908z-0.692 -1.675z—-0.122
D(z) =|-0.309z + 0.134 0.570z-0.828 —2.945z-0.146
2.062z-0.215 -0.171z+1.328 -0.916z+0.234

and
J=diag(-1.1.])

The determinant det 5(2) contains two superfluous roots at z
= 0 that can be extracted by

0.1611  0.9975  0.1760

0 0.1738z —-0.9848z

-1.0129z 0.1586z 0.0280z
Voo (2) =

which meets V1 (2)V o (z) = J, giving (see (31))

~ 07817 -1.2946z-0.6938 1.4913
D, (z)=| 0.3054 - 0.8297 2.9996
~2.0357 1.3315 0.8718

The determinant of this matrix has one root at z = 0.1429, (n-
k=1) which is the eigenvalue of the fictitious filter with input

y. Toget D, (2) parameterizing this fictitious filter, one must
compute C,L, via (34) and (35). With

_ 04714 02357 0
I[D'(z)]=| - 04714 -0.9428 14142 and
05774 -05774 0
= 0 -12046 O
I[D.(2)]=| 03054 -0.8297 2.999%
~20357 13315 0.8718

C,L, =[-0.1714 1] resultsgiving (via (36))

-0.7138 0.4714 1.4142

~ 0.4714z-0.6549 0.2357z+ 0.4125 0.8250
Di(2) =
f 0.5774 -0.5774 0

With [1,, O]Iir[lmz 0]" =-2.7e-06 the limit of condition
(18) is nearly reached. The realizable filter with input yy, is

parameterized by the polynomial matrix D(z) resulting from
(38) as

-0.4714 0.4714 1.4142

-~ 0.4714z-0.4125 0.2357z+0.4125 0.8250
D(2) =
0.5774 ~0.5774 0

The root of det S(z) isat z = 0, which is the eigenvalue of
the optimal filter [8].

5 Conclusions

Based on the time domain results a frequency domain
solution has been derived for the discrete time H,, estimation
problem for nth order plants in the presence of « perfect
measurements. The H,, filter of order n-x is parameterized by
a polynomia matrix resulting from J-spectral factorization.
Also a posteriori estimation can directly be handled in the
frequency domain. The design results cover all cases between
full-order and completely reduced order filters. A simple
example demonstrated the design procedure.
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