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Abstract

This paper proposes a new applicaion of parameter
estimation for induction motors. Induction motor is
described by nontlinea differential equations and an
Extended Kalman Filter (EKF) estimates three parameters
needed for the mntrol (rotor resistance, stator resistance and
magnetising inductance). A Modified Random Optimisation
Method, MOAM, is used to optimize the covariance matrix
in Extended Kalman Filter, rotor and stator autoinductances,
friction fador and moment of inertia. It is used to achieve the
best performance in the Vector control. Simulation studies
on a field oriented controller (FOC), under different
variations on the parameter model, and experiments with 5.5
kW motor are presented.

1 Introduction

Nowadays, induction motors are widely used in industry
becaise they are deger than DC motors. Though
eledromagnetic conversion is described by nonlinea
equations this is not an inconvenience becaise the
mathematicad model of the AC motor iswell known [6,8,11]

Induction machines represent an aternative to synchronous
macdines in high performance servo-drive goplications.
Different configurations are used to implement field oriented
control. The rotor-flux-oriented control of induction machines
is presented in this case when a pulse-width-modulated
(PWM) voltage source inverter supplies the maching[14]. In
this case, an induction motor model is necessary for obtaining
good performance.

A model that consists of five state-variables. three measurable
variables (stator currents and speed) and two non-measurable

variables (rotor currents) has been used. The parameters need
to be estimated via a non-linea estimator. The Extended
Kaman Filter is a popular method to observe non-measurable
variables and estimate physicd parameters. [3,4,5,7,10,15].
Threevariables {Rs Rr y Lo} are therefore included in the
filter.

A large dass of optimization problems can be handled by
random seach techniques. These methods beome
competitive in some drcumstances, for instance when the
function charaderistics are difficult to compute or are highly
desirable to find the global minimum of a function having
many locd minima. In the problem we ae deding with, bath
circumstances are present. Since the system is in a dosed
loop, a more @nventional method would not be acarate
enough, or even feasible. Moreover, a global minimum is
always preferable becaise alocd minimum would not leed to
the desired solution.

These dgorithms alow the parameter estimation to be
improved. Other techniques, such as genetic dgorithms, have
been used in previous works, [12]. In this cese, the Moam
agorithm is used to opimise the process and noise
covariance matrix of the EKF, and parameters of the
induction motor.

In this paper, sedion 2 reviews the model of the induction
motor used for a FOC system. An EKF-based estimation is
presented in sedion 3. In sedion 4 simulation results are
shown with a deficient control due to regular parameter
estimation and sedion 5 shows the optimized EKF to achieve
a better identification. Experimental results in a motor bench
witha5.5. KW A.C. motor are presented in sedion 6.

2 State equations of the motor

A fourth-order state-space model defines the relationship
between stator and rotor currents and voltages. Thus, the
threephase system is linealy transformed into two
orthogonal axes (a,b) using atime-invariant matrix and stator-
fixed reference frame . Therefore, al variables are referred to



the stator. Finaly, the mechanical features of the motor are  T.: Mechanicd shaft torque,

represented by a second-order system. The state variables of
the induction motor are the rotor and stator currents (1), and
the speed. The inputs are the line voltages and torque (2).
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The model equations can be expressed as follows:

%Xl K\= RsLpX + LoReXs + LoLpXeXs + Ltz)xzxs +KLgl,
g = KR + LR~ LobaXos ~ Loxx J+ Kl
X = k( ReleXs = LleX,Xs + LoRsX, — Lol-sxzxs)_ kLo,
% k( ReLsX, + LgloXoXs + LoRx, + LsLoxlxs)_ klou,
B = k(%% = %)~ ko — kot

where:
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Where:

LeLg+lo

L,=L,;+Lo

L L, Stator and rotor inductance

Lg L,y Stator and rotor auto-inductance
Rs R, Stator and rotor resistance

Lo : Mutual inductance

J: Combined rotor and mechanicd load inertia.
w: Rotor angular spee.

Zp: number of pole-pairs

fr: friction factor

In this case, the system control model [14] is formulated in
the reference frame fixed to the rotor flux-linkage space
phasor. There ae many ways to oltain the stator voltage
equations in this reference frame. Rotor magnetizing-current
spacephasor (Imr) is obtained by dividing the rotor flux-
linkage spacephasor established in this reference frame (Yry)
by the mutual inductance (Lo). (5)

Uryr
Lo

Irm=
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Resolving rotor voltage equations formulated in this reference
frame, in its red and imaginary axis components, the
following two axis differential equations are obtained for the
stator currents. (6).

d‘lmr\
+‘Im r‘= Isx
_ Isy
Wm =W _
' +Tr -‘Imr‘ ©)
Tr :Lio
Rr

Isx, Isy, stator current formulated in the rotor flux oriented
referenceframe.

Wmr, rotor magnetizing current space phasor speed with
resped to the diredt axis of the stationary reference frame.

Tr rotor constant.

The epresdon for the dedricd torque in this reference
frameisshownin 7.
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Infigure 1, rotor flux-oriented control schematic of a voltage-
source inverter-fed induction machine is presented. The
function generation FG allows field wegkening to be adieved
and its output is the reference value of the flux controller. A
deooupling circuit is necessary, becaise there ae dead-time
components due to the delay of the inverter and signa
procesing. For simplicity, it is assumed that the total dead
time (T) is concentrated at the end of the signal process



Figure 1- Rotor flux oriented control schematic of a voltage-sourceinverter-fed induction machine and implementation of
Extended Kalman Filter

3 Onlineparameter estimation

The Extended Kaman Filter (EKF) is the most popular
algorithm for estimating physicd parameters together with
state variables. However, it is well known that in the
induction motor model it is not possble to identify all
parameters.[1].

It alows the state-vedor to be extended with three variables
(Rs, Rr and L0O). Therefore, it is not enough to oktain the
complete set of parameters.

Finally the state-vedor is formed by eight variables (8):
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The model must be lineaised with resped to the etimated
extended state (9).

R = F(R) R +W
Yier = N(X) R +V

Where the process W and measurements V noise vedor are
assumed to be gaussan and charaderised by mean nul.
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With&, =R — X, the estimation error and with the
foll owing jacmbean matrices Of y Ohy (10)
o, =9
0%,
(10)
_ oh(x,)
Ohy, =
0%,
the extended kalman filter equations are (11):
Xk = f()A(k_l,Uk,O)
P« =0f R-Of ' +Q,
Kk = Pk* 'thTk '(thk 'Pl: 'thTk + Rk )71
% =X« +K, |z —h(%'.0)
P = (1 = Ky -Ohyg }Rc (1

Where Q and R are the process and the measurements
covariance matrices respedively. Z, are the measurements
and | the identity matrix.

The Runge-kutta method [9] has been used to solve the
discrete-time model of the motor in the equation (10).

As the corred matrices Q and R cannot be chosen based on
clasdgcd theories, they are usualy tuned experimentally by a
trial-and-error method, which may not give acurate results.
The Moam agorithm is used for improving these values.
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Figure 2. Vector control with a good parameter estimation

4 Simulation

The system shown above has been simulated with MATLAB
53.0[2].

Some different simulations are made in order to show how a
bad parameter estimation effects to the control.

Figure 3 shows a deficient control because the parameters
used in the flux model are not precise enough. The parameters
used in the simulation are shown in table 1. Figure 3 presents
the response for a reference speed step when traditional test
parameters are used and figure 2 presents the same test for
EKF parameters.

Improving the identification of the motor parameter is the
main objective of this work. Estimation with EKF and its
optimization are used to achieve this.

5 Optimizing of EKF usinga MOAM algorithm

The method that has been used in this paper was proposed by
[13] and assures the convergence to a global minimum. The
convergence proof and the properties of the algorithm can be
found in [13]. In order to implement it, the algorithm has been
expressed as follows:

Let f(X) be the function to minimise and X the search
region. The procedures are outlined as follows:

Step 1

Choose an initial point x©0) and make K=0. Kis the
iteration counter and M isits limit.

Step 2
Generate a random gaussan vector & (K) =b(k)+F,
where B(0) =0 and F is a random gaussian vector. If

X(K) + f(k) 0 X goto Step 3, if not go to Step 4.
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Figure 3. Vector control with deficient parameter estimation

Step 3.

iy 1f f(X(k)+&(K)) < f(X(K)), then make
x(k +1) = X(K) + & (k) and

b(k +1) = 0.4 (k) +0.2b(K).

i 1f £ (X(k) + & (K)) = f(%(K)) and

f(X(K) = & (K)) < f (X(K)), then make

x(k +1) = X(K) =& (k) and

b(k +1) = b(k) - 0.4 (k).

If neither i) nor ii), applies then make X(K +1) = X(K) and
b(k +1) = 0.5b(Kk).

Step 4.

If K =M , theend of algorithm isreached. If K < M , make
k =k +1 and go to Step 2.

Note that the only way in which constraints can be set on X
isby sizingthe X search region.

In our case, the initial values are obtained with classical tests.
The function to minimise f(X) is the sum of the mean

sguared errors of the process covariance matrix elements for
the Rs, Rr and Lo variables

The X Search region is selected in ranges close to the initial
estimation of the parameters. (Rr, Rs, Lo, Lsl ,Lr1,j, fr),
because the classical test is a good approximation.

X(0) is computed for a 12 variable. (12)
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g1, 93,95,06,07,08 are process covariance values of the
current stator, rotor stator, angular speed, stator resistance,
rotor resistance and mutual inductance, respectively.

rl and r3, are noises measurement covariance values of the
current stator and angular speed.

Figure 3 shows the values f(x) after 500 iterations. The
minimum value for f(x) is found in the 465 iteration number.
These values are used as the new parameter estimation and a
better performance in our vector control can be observed.
Table 1 shows the initial parameters versus Moam parameter
estimation.

f(x) is minimized, value f(1) =0.0047, after using the Moam
algorithm f(465)= 1.0388e-010, therefore the algorithm used
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is a good method for obtaining a better parameter estimation,
improving the process and noise matrices values of an EKF.
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Figure 4. Vaues obtained with Moam a gorithm

6 Experimental results

The motor bench is composed by two AC motors of 5.5 Kw
placed one in front of the other with a elastic coupling.

The first of them is the motor which is used in our research
The second acts as the load. A commercial ABB inverter
controls this motor. The load torque can be selected in the
control panel of the inverter adding a chopper card and a
group of resistors that act as aloser of the absorbed energy of

the load motor that is working in the fourth quadrant (positive

speed and negative torque).
PARAMETER | TRADITIONAL TESTS | MOAM ALGORITHM
Rs 13 1.28
Rr 2.3 2.332
LO 0.0226 0.5787
Lsl 0.00149 0.00029071
Lrl 0.00149 0.000107089
F 0 1le12
J 0.068 0.66349

Table 1-. Parameter estimation Values with traditional test
and optimized-EKF.

The hardware used consists of a Real Time Control and
Acquisition Card DSPACE installed in a Pentium 11 450 MHz
personal computer. The sampling time is 0.0002 s.

This hardware is programmed via Simulink using the standard
simulink blocks and a special toolbox named RTI, which
includes special simulink blocks to manage input-output
channels, generate PWM, and manage encoder...

Figures 5 and 6 show some results for the vector control of
the induction motor. The first response has been obtained
using parameters calculated with a traditional test and the
second has been calculated with EKF and Moam algorithm.
Some tests with different values in load and speed have been
developed.. The best performance of the control is obtained
for FOC when the flux model uses optimised parameters.

The Moam parameters achieve better performance for
changes in speed reference. Figure 5 shows the time response
of the speed when the reference is set from 800 r.p.m to
1300r.p.m with the load being null.

Vector control with traditional parameters versus MOAM parameters
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Figure 5. Speed time response with a change in the speed
reference



Vector control with traditional parameters versus MOAM parameters
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reference

Figure 6 shows a load change at 800r.p.m., in this case the
reference torque is incremented up to 33% of the nominal
load.

In this case, both controls have difficulties to get the load
reference but it is the Moam algorithm makes the motor work
with less #ress becauise the reference torque changes of the
spacevedor control will be lower. The speed time resporse is
similar to that shown in figure 6.

Thus it can be seen that control using Moam optimised
parameters gives the best performance for the motors for both
speed and torque changes.

5 Conclusions

The dasdcd vedor space ontrols do not perform well
without the suitable set of parameters, and it has been shown
by means of simulation than the traditional techniques are not
good enough to oktain them. This paper follows a new
optimising methodfor parameter estimation in induction
motor. An Extended Kaman Filter has been used for
parameter estimation and the Moam algorithm is used for
improving this estimation. The method has been tested with a
red A.C. motor, and it has been validated for load and speel
changes.
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