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Abstract 
 
A new fast estimation algorithm is derived for identification 
of non-linear dynamic systems using radial basis function 
networks. The new algorithm is able to both select the 
hidden nodes and to compute weights of the output layer in 
the radial basis function neural networks (RBFN) 
simultaneously in a stepwise forward fashion. 

 

1 Introduction 
 
Radial basis function (RBF) neural networks 
[1,2,4,5,9,14,19,20,21,22,23] have been proved to have the 
capacity of approximating a wide range of multivariate 
functions to an arbitrary degree of accuracy under certain 
conditions [11,19]. RBF networks have also been applied in 
non-linear system identification and time series prediction 
[1,2,7,9,20,23].  
 
The theoretical basis of the RBF approach lies in the field of 
interpolation of multivariate functions. The RBF approach in 
interpolating a function say f is to use an 
interpolating function F which is a linear combination of 
basis functions: 
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where  • denotes the Euclidean norm,  are 
real numbers, are real valued function also called radial 
basis function. The most popular radial basis function is the 
Guassian basis functions 
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with peak at centre and decreasing as the distance 
from the centre increase. is a positive real number called 

the scaling parameter or the width of the radial basis 
functions. Other radial basis functions are 
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In this paper, Guassian basis function is used throughout. 
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The solution to exact interpolation is to use the same number 
of Gaussian functions as that of the data set, which is 
impractical for a number of reasons [21], such as sensitivity 
to noise, and immense computation burden for the solution. 
Instead, a practical procedure is used, i.e. to approximate the 
function using much less number of radial basis functions. 
This method of RBF approximation has been interpreted as a 
RBF neural network with one hidden layer by Broomhead 
and Lowe [4], where the activation functions for hidden 
nodes are RBFs. In this case, the function  can be 
represented by a RBFN as  
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where )x(ε is the modelling error. 
 
There are different training schemes for Radial basis function 
neural networks (RBFN) [21], they are one-, two, and three-
phase learning schemes. Two-phase learning is very 
commonly applied, where the training of the hidden layer and 
that of the output layer is performed separately. Two-phase 
training is not the optimal training scheme, and a three-phase 
training scheme by introducing another phase of back-
propagation-like training can be used to overcome the 
problem. Support vector learning [22] for RBFN can be 
considered as an one-phase method, where only a subset of 
the training data is used for centres of RBFs and the selection 
of the data points and the training of weights for output layers 
are integrated in an optimisation problem. Another training 
scheme can also be regarded as one-phase training scheme is 
the orthogonal-least-square method (OLS) [5,6,23], where the 
selection of hidden nodes and the training of weights for 
output layers are integrated in one algorithm. 



3) Perform QR decomposition on Φ , that is 
, where Q is an orthogonal matrix, R is 

an upper triangular with nonnegative diagonal elements, 
D is a diagonal with nonnegative diagonal elements, and 
U is a unit upper triangular. Householder transformations 
or modified Gram-Schmidt methods are the two examples 
for QR decomposition. 
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In this paper, a new fast one-phase training algorithm is 
proposed for identification of non-linear dynamic systems 
using RBFN, where the selection of hidden nodes and the 
training of weights for the output layer are integrated in one 
algorithm. Unlike the OLS method, the algorithm does not 
apply matrix transformation and decomposition, and it is also 
efficient in implementation.  
 4) Perform singular value decomposition (SVD) on Φ , i.e. 

, where U and V are orthogonal matrices, ΛΦ =VU T

Λ is a diagonal matrix whose diagonal elements are 
singular values for Φ . 

2 Review of the OLS method 
 
Given a data set of N samples, the RBFN in Equation (3) can 
be re-formulated as   

Various matrix decompositions methods (QR decomposition 
on Φ or LDU decomposition on ) have been widely 

used to solve the least-squares problem in signal processing 
and system identification [18,6]. Matrix decomposition 
methods can be used simultaneously for parameter estimation 
as well as for model selection [6] in a forward selection 
fashion [8]. In particular, QR decompositions on 
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Φ  that are 
numerically implemented by Householder transforms or the 
modified Gram-Schmidt method have resulted in orthogonal 
least squares method [6], which is summarized as follows. 
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The cost function is generally defined as 
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gives 

where  are the RBFN outputs. (5) can be re-
formulated more concisely in the matrix form, which gives 
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When Equation (9) is used to fit the two data sets 

{ }N21 x,...,x ,x=X and { N21 y,...,y ,y }=Y , the estimated 
parameters in Equation  (9) are given as follows 

 
The least squares method aims to find the estimates of Θ that 
minimizes the cost function, which is, according to Gauss’s 
theorem of least squares [3,12,15, 16,17] 
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information matrix and the minimal cost function is calculated 
as 

 TΦΦ

 
is an orthogonal regression matrix with the following 
properties  

 
YYY TTT ˆ)ˆ(E ΦΘΘ −=   (8) 













≠=ψψ







 ψψ=

ji,0)(

diag

j
T

i

2

2p
2
21

T LΨΨ

        (12) 
There are several numerical methods to solve  and in 
the least-squares problem [10, 12, 15, 18]: 
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Jordan elimination. 
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2) Perform decomposition of  with LDU 

decomposition, where L is a unit lower triangular, U is the 
unit triangular, and D is the diagonal. 
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is a unit upper triangular matrix, and the parameter estimates 
for Equation (7) can be recovered by  
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and the cost function is computed as  
 

∑
ψψ

ψ
−=

=

p

1i i
T
i

2
i

T
T

)(

)(
)ˆ(E

Y
YYΘ     (15) 

According to Equation (15), the contribution of an orthogonal 
term in decreasing the cost function is explicitly expressed 

as 
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regression model selection can be proposed [6]. However, in 
the orthogonal least-square algorithm the orthogonal terms in 

 has to be computed recursively based on Equations (11) 
and (13), coupled with the computation of elements in  and 

, which is summarised as follows 
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where ( )•  stands for the mean value. And the estimates of 
model parameters in Equation (4) can be computed as 
follows: 

pp
p

1ik
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The elegance of this algorithm is that the error reduction by 
introducing a new term into the model can be explicitly 
expressed. Meanwhile, once the last term is selected, the 
model parameter can be recursively computed in a back-
forward fashion. However, strictly speaking, this algorithm is 
not the right one for identifying the model terms and 
parameters simultaneous. Since the model selection and 
estimation of parameters are recursively performed in two 
opposite directions, i.e. model selection is done in forward 
fashion, while the parameter selection is done in a backward 
way. Moreover, the procedure of computing the error 
reduction  is complicated with the computation of 

elements in , A, and G .  
kEδ
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In this following, a fast algorithm is proposed for the 
identification of non-linear dynamic model using RBFN. This 
algorithm can select the hidden nodes and compute the 

weights of the output layer in the RBFNs simultaneously in 
one direction simultaneously, i.e. in the forward fashion. 
 
3 The fast algorithm 
 
Without losing generalization, all vectors in  in Equation 
(4) are normalised so that , and also that 
Y
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where , ,  are the matrices to 
be determined, then we have  
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Lemma 1 (Ljung [17]) Let A, B, C and D be matrices with 
appropriate dimensions, so that the product BCD, the sum 
A+BCD and the inverses of A, C exist, then the following is 
true: 
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(28) can be derived by substituting (26) into  and 
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Now by introducing  and submit 
(25) and (26) into (27), we have 
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The recursive algorithm to compute  and  according to 
(25), (26) and (27) is not intuitive and simplified formulas are 
required. Before introduce the simple non-orthogonal 
algorithm to compute 

Θ̂ E

E , the following theorem is 
introduced. 

Remark 1 (30) give a fast algorithm to compute the lost 
function as well as the estimates of model parameters. 
According to (30), the error reduction as a new term is added 
into the regression model is computed as 
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 where 

 is the only intermediate 
matrix to be recursively updated. Therefore it is simpler than 
the orthogonal least square method. Moreover, according to 
(30) the estimates of model parameters are simultaneously 
computed as a new term is added into the model.  
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Remark 2 There are various other recursive least square 
method, such as the fast recursive least square method (Ljung 
and Soderstrom, 1983). However, they are not applicable to 
regression model selection. 
 
4 Simulation example 
 
The RBFN approach for identification of a non-linear 
dynamic model is to select significant p hidden nodes for 
model (3) from a saturated model set of q terms (q>>p). 
When the orthogonal algorithm is used to select model 
structure, error reduction ration is introduced to select terms, 
which is defined as 
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To find p significant model terms from a saturated model 
term set, a step-wise procedure is applied. At each step the 
model term with maximal erri value from all of the remaining 
terms in the saturated model term set is selected. The 
selection procedure is terminated as the pth step when  
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reaches a desired tolerance or the reduction rate of cost 
function by introducing a new term is below certain 
value. The term selection procedure can be regarded as a 
series of steps to reduce the model residual or residual to 
output ratio.  
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Under the new developed fast algorithm for computing the 
cost function, ERRp is reformulated as follows 
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where •  is inner product of two vectors,  • denotes the 
Euclidean norm. And in each step, the model term, which 
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remaining terms in the saturated model term set, is selected. 
The estimates of weights for the RBFN output layer is 
automatically computed simultaneously according to (30). 
 
Example. Consider the following non-linear dynamic system 
from Haber and Unbehauen [13]. 
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where , )t(y )1t(y −  and are system outputs at time 
t, t-1, t-2 respectively; 

)2t(y −
)1t(u − , are system inputs in 

time t-1, t-2; e is white noise of range of [0, 0.01].  
)2t −(u
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By simulating (34) with uniformly generated within the 
range [-0.5, 0.5], a data set of 500 samples is acquired for 
model selection. The following set of variables is selected as 
the RBFN inputs 

)t(u

 ),1t )1t(y ),1t(y  ),2t(u(u −−−− . The 
width for the Gaussian basis functions is selected to 
be 45.0=σ .  
 
All 500 samples are used as centres in the RBFN, and both 
OLS and the proposed algorithm are then used to select the 
best RBF hidden nodes. Interestingly, the selection results are 
all the same by both algorithms. However the computation 
complexity is quite different. Matlab simulation shows that 
OLS takes flops to select the best 20 hidden nodes, 
while the fast algorithm takes flops to get the same 
result. The experimental tests show that the proposed 
algorithm outperforms OLS method. The selection results 
(the first 15 nodes) are listed in Table 1.  

81005.2 ×
71093.3 ×

 
Nodes 
Index 

kΕδ  kΕ  

208 0.5744 0.4256 
153 0.0764 0.3492 
328 0.0221 0.3271 
158 0.1049 0.2222 
79 0.0225 0.1997 

372 0.0153 0.1844 
353 0.0109 0.1735 
401 0.0165 0.1570 
330 0.0345 0.1225 
447 0.0265 0.0959 
87 0.0386 0.0573 

422 0.0102 0.0470 
459 0.0054 0.0416 
289 0.0044 0.0372 
90 0.0022 0.0350 

                                      
Table 1 The error reduction as the RBFN hidden nodes 

selection proceeds 
 



According to Table 1, when the 459th candidate node is 
selected, the decreased cost function is less than 0.01, 
therefore only the first 12 nodes are selected into the RBFN. 
Figure 1 illustrates the model prediction of RBFN in contrast 
the original system output, as well as the modelling error. 
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Fig. 1 RBFN prediction 

Solid – Prediction, dotted – actual, bottom- error 
 

 
5 Conclusion 
 
In this paper, a new fast estimation algorithm is derived for 
identification of non-linear dynamic systems using radial 
basis function networks. The new algorithm is able to both 
select the hidden nodes and compute the weights in the radial 
basis function neural networks (RBFN) simultaneously in a 
stepwise forward fashion. The practical simulation shows that 
it outperforms the OLS in terms of computation complexity. 
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