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Abstract

This paper deals with the general problem of the estimation of
physical parameters in the presence of nuisance parameters
for which an explicit characterisation of the uncertainty is
available. Within a bayesian context, the maximum a
posteriori estimation is used. The asymptotic confidence
ellipsoid is then determined. The projection of the latter onto
the parameter axes is used to obtain the confidence interval.
The method is illustrated on an example with actual data from
a measurement device in the context of thermo-physical
parameters identification.

1 Introduction
This paper is dedicated to the identification of physical
parameters when the experimental set-up is subject to
nuisance parameters with explicit characterisation of
uncertainties.

In the context of physical systems identification, such as
thermal processes for instance, the systems studied often
encompass, in addition to the unknown quantities to be
identified, some extra nuisance parameters usually assumed
known but in fact subject to some a priori known uncertainty.
In the following, it is assumed that there is no intrinsic
variability of these nuisance parameters. They are supposed
constant but with their actual true values remaining not well
known. For geometrical parameters, direct measurements are
often possible : a random normal error is usually associated to
the parameters. When the measurement is not possible, values
are taken from the literature and their prior dispersion law
must then be established.

Reducing the influence of nuisance parameters is a well-
known topic of parameter identification : optimal experiments
are often designed in order to diminish the effect of the
nuisance parameters uncertainty and improve the confidence
in the identification of the unknown parameters [6].

In this paper, a bayesian inference is used to identify both the
unknown quantities and the nuisance parameters while
accounting for the prior knowledge of the error in nuisance
parameters. In section 2, the most important topics of the
bayesian inference are presented. An illustration of the
methodology on a thermal experimental set-up is given in
section 3.

2 Bayesian inference
Assume a class MMMM(p) of models is built prior to any
measurement on the basis of the sole physical knowledge.
Assume there exists a true parameter vector p* such as actual
data satisfies

( )y M ε∗= +p (1)

where the error noise ε is assumed additive.

In the bayesian approach, the prior knowledge on the additive
errors acting on the model output ε and on the unknown
parameters p is translated to prior probability laws π(ε) and
π(p). Then, the Bayes rule makes it possible to determine the
posterior probability law of the unknown parameters [6].
Since

( ) ( ) ( ) ( )| |y y yπ π π π=p p p (2)

the posterior probability law for p when taking the data y into
account is given by
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The key issue in Bayesian approaches is then how to express
the prior probability laws. The law ( )|yπ p  stands for the
likelihood of the measurements y and its expression comes
from the information on the noise. The prior law ( )π p  is
either known or devised thanks to maximum entropy
approaches [3].



A point estimator can then be obtained for the unknown
parameters, by choosing the value of the maximum a
posteriori, i.e. which maximizes the posterior law as follows

( )ˆ arg max | yπ=p p (4)

which is equivalent to write

( )ˆ arg max MAPJ= −p p (5)

where the maximum a posteriori criterion is defined by

( ) ( ) ( )ln | lnMAPJ yπ π= +p p p (6)

The maximum a posteriori has the same asymptotic properties
than the maximum likelihood estimator. The asymptotic
distribution of the estimator p̂  is normal, as follows

( )( )1ˆ , b
−∈ ∗ ∗p p F pN (7)

where Fb is the bayesian Information matrix.

2.1 Normal prior laws

If the additive noise is assumed normal, centred and with a
constant variance σ2

noise, and if the prior parameter law is
assumed normal, as follows

 ( )0 ,N∈p p Ω (8)

then, the maximum a posteriori criterion writes as follows
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When the noise variance 2
noiseσ  is not precisely know, the

Morozov's discrepancy principle [4] can be used: the noise
variance is acting as a regularization parameter, it is chosen
such that it is equal to the posterior residual variance.

Finally, the bayesian Information matrix is given by

  ( ) ( ) 1
b

−∗ = ∗ +F p F p Ω (10)

where F is the Fisher Information matrix. In practice, the true
parameter vector being unknown, the maximum a posteriori
estimate is used instead. Finally, a 100(1-η)% confidence
ellipsoid for the parameter vector is given by the following set
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where the threshold η is chosen as say η = 0,05, fη is an
outcome of a Fisher-Snedecor law, np is the number of
parameters and nt, the number of samples [6].

In order to derive a confidence interval for each component of
the parameter vector, the authors suggest to project onto the
parameter axes the confidence ellipsoid defined by equation
(11). The so-derived intervals will then account for any
correlation between the identified parameters and thus,
constitute outer enclosures of the confidence intervals.

Now, one must note that an ellipsoid defined by

( ) ( ){ }t 1| 1, 0pn −∈ − − ≤ >p p q P p q PE !==== (12)

where q is the centre of E and P a definite positive matrix, is

also defined by  [1]

{ }| ,p pn nB∈ + ∈p q Vv vE !==== (13)

where pnB  is the unity ball of  pn!  and the matrix V satisfies
t=P VV (14)

The projection Πi(E)))) of    E onto the axis of the ith component

of the parameter vector is the interval defined by

( ) [ ], ,i i i i i i ip p q v q v Π = = − + E " " (15)

Denote Vi, the ith row of the V matrix, then the quantity iv"  is
given by non-linear constrained optimization, as follows
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Equations (15)-(16) will be used to derive a confidence
interval for the maximum a posteriori estimate defined by (5).

3 The experimental procedure
The experimental procedure under analysis hereafter is
devoted to the measurement of the thermal properties of
materials : the thermal diffusivity and the thermal
conductivity of a sample are measured simultaneously by
using a so-called periodic method, using multi-harmonic
heating signals.

3.1 The set-up

The experimental set-up is shown on figure 1. The sample
under study is fixed within a metallic rack, with a glue of very
large conductivity. The front side of the rack, made of brass,
is also fixed to a heating device. The rear side, made of
copper, is in contact with air at ambient temperature. To
reduce lateral heat losses, radiative shields are used. The
heating sequence is composed of 5 sinusoids, which
frequencies are the following: {0,781 ; 1,562 ; 3,125 ; 6,25
and 12,5 mHz } [5].

The temperatures of rear and front sides are measured at
100Hz sample rate with the thermocouples put as indicated in
figure 1. Data are then low-pass filtered and under-sampled at
0,4Hz sample rate. The temperature spectra, taken as the
Fourier transform of the time-history signals, are then used to
estimate the experimental frequency response, as follows
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The duration of each experiment is equal to 85 min and the
experiment is repeated 30 times.
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Figure 1: The set-up.

3.2 The model

The system under study is modelled with one-dimensional
quadrupoles (two-port transfer functions). The quadrupole
method is well known and extensively used in thermal
sciences [7].

For each layer of homogeneous material (see figure 2), the
law of energy conservation writes as follows
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(see Table 1 for the symbol nomenclature).

Define the following variables as boundary conditions  :
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Figure 2: Homogeneous material.

Thermal models
a =λ/ρcp thermal diffusivity (Ws/kgK)
cp specific heat (Ws/kgK)
e thickness (m)
h surface heat exchange coefficient (W/m2K)
R thermal resistance e/λ (Κ/W)
s Laplace variable
t time (s)
T0 front face temperature (K)
T1 rear face temperature (K)
x one-dimensionnal coordinate (m)
Z(.) thermal "quadrupole"
ϕ0 front face feat flux (W/m2)
ϕ1 rear face heat flux (W/m2)
λ thermal conductivity (W/mK)
ρ density (kg/m3)

Bayesian inference
pnB  unity ball of pn!

F(.) Fisher information matrix
fη outcome of a Fisher-Snedecor law
HS(.) experimental frequency response
np number of parameters
nt number of data samples
P ellipsoid shape and orientation
p parameter vector
p0 parameter vector prior mean
q ellipsoid centre
S(1-η) 100(1-η)% confidence ellipsoid

yk sample k of actual measured data
Πi(E)))) projection of    E onto the ith axis

2
noiseσ noise prior variance

σi nuisance parameters prior standard-error
ζi% confidence ratio
ΩΩΩΩ parameter vector prior variance

Table 1: Symbol nomenclature.

The Laplace transform of equation (18) is as follows :
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The boundary conditions becomes

( ) ( )00,T x s T s= = (24)

( ) ( )1,T x e s T s= = (25)
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The solution of equation (23) is given by

, 0 ,x x e∀ < <

( ) ( ) ( ) ( ) ( ), cosh sinhT x s A s s a x B s s a x= ⋅ ⋅ + ⋅ ⋅ (28)

Finally, using equations (24)-(27), one obtains the following
relationship between the rear face ‘temperature – heat flux’
couple  and the front face one :
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where the “quadrupole” Z(s) is defined by
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For the particular case of the glue layer, which is supposed
with no inertia, the relationship uses the resistance only and
becomes
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The model transfer function is then given by

( ) ( )
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where the front temperature is given by (the s symbol being
removed, for convenience)
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and the rear temperature is given by
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Although the use of a constant heat surface exchange
coefficient is common for modelling heat transfers at ambient
temperature, the value actually depends on several parameters
such as the sign of the flux, the flow velocity, or the surface
tilt angle. However, one does not know how to accurately
quantify this parameter when the surface temperature varies
as a sinusoidal function.

3.3 The model nuisance parameters

The thermo-physical parameters of brass and copper are taken
from the literature. The measurement of the thicknesses of the
brass and copper sheets are done with high accuracy.
However, the widths of the thermocouples used lead to large
uncertainty in the evaluation of the thermocouple  – interface
distances. The assumed values and uncertainties for the
nuisance parameters are given in table 2.

3.4 The experimental results

Prior to any identification procedure, one must check whether
this estimation is feasible. Several tools can then be used to
assess the parameters identifiability. In particular, the analysis
of the model derivatives can give some indications, at least
locally.

For the studied system, the analysis of the derivatives shows
that the whole parameter vector, including both the unknown
and nuisance parameters, is not fully identifiable with regard
to the information contained in the data. Consequently, the
extra information provided by the prior distributions assumed
for the nuisance parameters works as a device for bypassing
this loss of identifiability.

Furthermore, the projection formulas as defined by (15)-(16)
will serve as a tool for propagating the uncertainty in the
nuisance parameters into the values and the confidence

Material Parameters Scale Nominal
value

Standard
-error

Diffusivity, a 10-6 m2.s-1 34,0 0,50

Conductivity, λ W.m-1.K-1 105,0 2,50

Brass sheet

Brass thermocouple – PVC interface distance 10-3 m 3,0 0,50

Diffusivity, a 10-6 m2.s-1 114,0 0,50

Conductivity, λ W.m-1.K-1 400,0 1,00

Copper sheet

Copper thermocouple – PVC interface  distance 10-3 m 5,0 1,00

Glue Thermal resistance 10-6 K.m2.W-1 35,0 7,50

Convection Surface heat exchange coefficient W.m-2.K-1 7,5 1,25

Table 2: The nuisance parameters.



intervals derived for the unknown parameters.  Hence, for
emphasizing the effect of this uncertainty, the  confidence
intervals obtained with the maximum a posteriori estimation
are compared to the ones derived when the nuisance
parameters are assumed perfectly known. 

According to table 2, the maximum a posteriori criterion (4)
re-writes then as follows: 
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 −
= +  

 
∑p p (35)

Parameters Scale Method Identified
value

Confidence
ratio

Maximum likelihood 0,125 8,6%Diffusivity, a 10-6 m2.s-1

Maximum a posteriori 0,118 14,8%

Maximum likelihood 0,170 2,5%Conductivity, λ W.m-1.K-1

Maximum a posteriori 0,172 4,5%

Table 3: The identified sample thermo-physical parameters
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Figure 3: Experimental and models Nyquist plot
 (dots : experimental data, continuous line : maximum a posteriori, dash-dot : maximum likelihood).



where the maximum likelihood criterion corresponds to
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Note that no prior information is actually used for the
unknown parameters in equation (35).

Within the maximum a posteriori estimation, the prior noise
variance is derived through an iterative procedure: the value
of the prior noise variance is chosen such that the prior noise
variance matches the variance of the model residuals. It is
taken as 2 62,0810noiseσ −= .

The non-linear optimizations are performed with the
Levenberg-Marquardt method [6].

The trajectory plots of both models (maximum a posteriori
and maximum likelihood) are given along with experimental
data in figure 3. For the maximum likelihood, the posterior
residuals variance equals σ2 = 3,12 10-6.

The derived parameters for the two cases are given in table 3.
The confidence ratio is defined according to (15)–(16), by

% 100 i i
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c c
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The conclusions are :

! The derived figures for the unknown parameters are in
agreement with the rough prior values encountered in
the literature [2].

! When the nuisance parameters are assumed perfectly
known, the derived uncertainty is fairly large already.

! When the nuisance parameters are taken uncertain,
accounting for this uncertainty induces a significant
change of the estimated values and provokes an inflation
of the size of the confidence intervals. Indeed, when the
uncertainty in the nuisance parameters is accounted for,
the uncertainty in the identified parameters increases. In
addition, the derived posterior noise variances indicate
that the residuals derived for the maximum a posteriori
are smaller than the ones derived for the maximum
likelihood. This result is also clearly visible on the
trajectory plots of figure 3. The maximum a posteriori
derives then a much better fit to the actual data .

4 Conclusion and Perspectives
Bayesian inference makes it possible to account for the
uncertainty in any model nuisance parameter. When this
uncertainty is taken into account, the identified model
performs a better fit to the actual data but provokes an
increase of the size of the unknown parameters confidence
intervals, taken as the projection of the confidence ellipsoid
onto the unknown parameters axes.

This work will be continued in two ways : In a first step, the
estimation of the frequency response will be improved along
with a better evaluation of the measurement noise. In a
second step, more realistic prior laws will be investigated for
the nuisance parameters.
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