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Abstract

A new approach to identification of Wiener systems by using
the instrumental variables method is presented. In this ap-
proach, an inverse characteristic of the nonlinear element is
represented by a polynomial of a known order. It is shown
that parameters of a modified series-parallel Wiener model es-
timated with the least squares method are non-consistent. To
obtain consistent parameter estimates, the instrumental varia-
bles method is used. The instrumental variables are generated
by filtering the system input with the linear dynamic model
obtained with the least squares method. In this paper, the
known least squares identification method, based on the modi-
fied series-parallel model, is also extended to Wiener systems
with inverse nonlinear characteristics, which polynomial repre-
sentation does not contain the first order term. Two simulation
examples are also included to show the effectiveness and prac-
tical feasibility of the presented approach.

1 Introduction

Various approaches to the Wiener system identification, which
have been proposed in a few last decades, are based on corre-
lation analysis [2, 3], non-parametric regression [5, 6], linear
regression [9, 10, 11, 12, 13, 14], and nonlinear optimization
[1, 7, 8, 15, 16]. Wigren proposed two recursive identification
algorithms based on the prediction error method in which the
characteristic of the nonlinear element is piecewise linearized
[15] or assumed known [16]. In these algorithms, parameter
estimation is formulated as a nonlinear optimization problem
and solved by the Gauss-Newton method. An alternative to
the above approaches is identification of the inverse Wiener
system [14]. The inverse Wiener model is the Hammerstein
model, which is more convenient for identification, but not all
Wiener systems are invertible. Moreover, if an inverse parallel
model is employed, the linear dynamic system should be mini-
mum phase. Kalafatiset al. [11] considered the least squares
identification of Wiener systems using a frequency sampling
filter model of the linear dynamic system and a power series
approximation of the inverse nonlinear element. The identifi-
cation of the linear dynamic system with the steady-state gain

of the linear dynamic model constrained to one, was conside-
red by Pearsonet al. [14]. Assuming that the inverse non-
linear steady-state characteristic is known, they proposed the
weighted least squares approach to identification of the linear
dynamic system. With the least squares algorithm of Janczak
[9, 10], a polynomial model of the inverse nonlinear element
and a non-inverted model of the linear dynamic system can be
obtained. In this approach, the class of identified systems is
restricted by an assumption that the inverse nonlinear element
contains the first order term. The same assumption is also ne-
cessary in the adaptive least squares parameter estimation me-
thod proposed by Marciaket al. [13]. Their approach is based
on replacing the ARX model used in [9, 10] with an orthonor-
mal basis functions-based one.
The motivation of this work is to extend the class of identi-
fied Wiener systems by replacing this assumption with another
one of a non-zero second order term. The main contribution of
the paper is a new identification algorithm for Wiener systems
that extends the least squares based approach [9, 10] to systems
with inverse nonlinear characteristics, which polynomial repre-
sentations do not contain the first order term. To solve the pro-
blem of parameter estimates non-consistency, an instrumental
variables (IV) method, with instrumental variables generated
via filtering the system input through a linear dynamic model
obtained with the least squares method, is used.
The paper is organized as follows. The identification problem
is formulated in Section 2. Then a modified definition of iden-
tification error is introduced in Section 3. Section 3 contains
also the details of the least squares and instrumental variables
parameter estimation. The effectiveness of the approach is il-
lustrated with two simulation examples in Section 4. Finally, a
few conclusions are presented in Section 5.

2 Problem Formulation

Consider a SISO Wiener system (Figure 1) composed of a li-
near dynamic system followed by a static nonlinear element.
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Figure 1: The Wiener system.



The outputyi to the inputui at timei is

yi = f

[
B(q−1)
A(q−1)

ui + εi

]
, (1)

where

A(q−1) = 1 + a1q
−1 + · · ·+ anaq−na, (2)

B(q−1) = b1q
−1 + · · ·+ bnbq

−nb, (3)

andf(·) is the nonlinear element characteristic,q−1 is the bac-
kward shift operator,a1,. . ., ana, b1,. . ., bnb, are the unknown
parameters of the linear dynamic system, andεi is the distur-
bance. The following assumptions are made about the system:

1. The linear dynamic system is asymptotically stable.

2. The nonlinear functionf(·) is invertible and its inverse
nonlinear functionf−1(·) can be expressed by the poly-
nomial of the orderr

f−1(yi) = γ0 + γ1yi + γ2y
2
i + · · ·+ γry

r
i . (4)

3. The polynomial ordersr, na andnb are known.

The identification problem can be formulated as follows. Given
the sequence of the Wiener system input and output measure-
ments{ui, yi}, i = 1, . . . , N, estimate parameters of the linear
dynamic system and the inverse nonlinear element minimizing
the following criterion

JN =
1
2

N∑
j=1

e2
i , (5)

whereei is the one step prediction error of the system ouptut.

3 Least squares approach to identification of
Wiener systems

For Wiener systems, both the parallel and series-parallel po-
lynomial models are nonlinear functions of model parameters.
Moreover, the series-parallel model contains not only a model
of the nonlinear element but also its inverse [7].
Consider the parallel model of the Wiener system given by

ŷi = f̂

[
B̂(q−1)
Â(q−1)

ui

]
, (6)

with

Â(q−1) = 1 + â1q
−1 + · · ·+ ânaq−na, (7)

B̂(q−1) = b̂1q
−1 + · · ·+ b̂nbq

−nb, (8)

where the estimated nonlinear functionf(·), the estimated po-
lynomialsA(q−1), B(q−1) and the estimated parameters of the
linear dynamic system are denoted with the hat symbol. Iff̂(·)
is invertible, (6) can be written as

f̂−1(ŷi) =
B̂(q−1)
Â(q−1)

ui. (9)

Assume that the function̂f−1(·) has the form of a polynomial
of the orderr

f̂−1(ŷi) = γ̂0 + γ̂1ŷi + γ̂2ŷ
2
i + · · ·+ γ̂rŷ

r
i . (10)

Assume also that̂γ1 6= 0. Then combining (9) and (10), the
output of the model can be expressed as

ŷi =
1
γ̂1

[
B̂(q−1)
Â(q−1)

ui −∆f̂−1(ŷi)
]
, (11)

where

∆f̂−1(ŷi) = γ̂0 + γ̂2ŷ
2
i + γ̂3ŷ

3
i + · · ·+ γ̂rŷ

r
i . (12)

The model (11) can be written as

ŷi =
[
1− Â(q−1)

]
ŷi +

1
γ̂1

[
B̂(q−1)ui

− Â(q−1)∆f̂−1(ŷi)
]
.

(13)

Replacinĝyi by yi on the r.h.s. of(13), the following modified
series-parallel model can be obtained [9]

ŷi =
[
1− Â(q−1)

]
yi +

1
γ̂1

[
B̂(q−1)ui

− Â(q−1)∆f̂−1(yi)
]
.

(14)

The modified series-parallel model (Figure 2) differs from both
the series-parallel model, which contains the model of the non-
linear element and its inverse, and the inverse series parallel
model [10]. Applying (14), the following definition of the pre-
diction error can be introduced

ei = yi − ŷi

= Â(q−1)yi −
1
γ̂1

[
B̂(q−1)ui − Â(q−1)∆f̂−1(yi)

]
.

(15)
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Figure 2: Identification error definition for Wiener systems
with the first order term.



3.1 Wiener system with the first order term

Assuming that the identified Wiener system has an invertible
inverse nonlinear characteristic withγ1 6= 0, we will formulate
the identification problem as a linear in-parameters one. The
model (14) can be written in the following linear in-parameters
form

ŷi = xT
i θ, (16)

with the parameter vectorθ and the regression vectorxi

θ =
[
â1 . . . âna β̂1 . . . β̂nb α̂0,0 α̂2,0 . . . α̂r,na

]T
, (17)

xi =
[
− yi−1 . . .− yi−na ui−1 . . . ui−nb 1

− y2
i . . .− yr

i−na

]T
,

(18)

where

β̂k =
b̂k

γ̂1
, k = 1, . . . , nb, (19)

α̂j,k =


γ̂j

γ̂1
, k = 0, j = 0, 2, 3, . . . , r,

âk
γ̂j

γ̂1
, k = 1, . . . , na, j = 0, 2, 3, . . . , r.

(20)

Minimizing (5), the parameter vectorθ can be obtained with
the least squares (LS) method. Note that the number of para-
meters in (14) isna + nb + r(na + 1) while the number of
parameters of̂A(q−1), B̂(q−1), andf̂(·) is na + nb + r + 1.
Therefore, to obtain a unique solution, methods similar to these
proposed for identification of Hammerstein systems by Eskinat
et al. [4] can be employed.

3.2 Wiener system without the first order term

Consider a Wiener system that fulfills the following conditions:

1. The functionf(·) is invertible on the interval[a, b].
2. γ1 = 0.

3. γ2 6= 0.

In this case, the following modified series-parallel model can
be defined

ŷ2
i =

[
1− Â(q−1)

]
y2

i +
1
γ̂2

[
B̂(q−1)ui

− Â(q−1)∆f̂−1(yi)
]
,

(21)

where

∆f̂−1(ŷi) = γ̂0 + γ̂3ŷ
3
i + γ̂4ŷ

4
i + · · ·+ γ̂rŷ

r
i , (22)

and the definition of the prediction error (Figure 3) has the form

ei = y2
i − ŷ2

i

= Â(q−1)y2
i −

1
γ̂2

[
B̂(q−1)ui − Â(q−1)∆f̂−1(yi)

]
.

(23)
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Figure 3: Identification error definition for Wiener systems
without the first order term.

Then (21) can be written in the linear in-parameters form (16)
with the parameter vectorθ and the regression vectorxi defi-
ned as

θ =
[
â1 . . . âna β̂1 . . . β̂nb α̂0,0 α̂3,0 . . . α̂r,na

]T
, (24)

xi =
[
− y2

i−1 . . .− y2
i−na ui−1 . . . ui−nb 1

− y3
i . . .− yr

i−na

]T
,

(25)

where

β̂k =
b̂k

γ̂2
, k = 1, . . . , nb, (26)

α̂j,k =


γ̂j

γ̂2
, k = 0, j = 0, 3, 4, . . . , r,

âk
γ̂j

γ̂2
, k = 1, . . . , na, j = 0, 3, 4, . . . , r.

(27)

As in the previous case, the parameter vectorθ can be obtained
minimizing (5) with the LS method.

3.3 Asymptotic bias error of parameter estimates

Consider the polynomial Wiener system (1) containing the li-
near term, i.e.,γ1 6= 0, and its modified series-parallel Wiener
model (16). We will show now that the parameter estimates of
the modified series-parallel Wiener model obtained with the LS
method are non-consistent, i.e., asymptotically biased, even if
the additive disturbanceεi is

εi =
εi

A(q−1)
, (28)

whereεi is the discrete white noise.

Theorem 1. Let θ denote the vector of parameter estima-
tes, defined by (17) andθ0 is the corresponding true parameter
vector of the Wiener system. Then the the LS estimate ofθ0 is
asymptotically biased, i.e.,θ does not converge (with probabi-
lity 1) to true parameter vectorθ0.



Proof: The outputyi of the Wiener system, defined by (1), (4)
and (28) is

yi =
[
1−A(q−1)

]
yi +

1
γ1

[
B(q−1)ui

−A(q−1)∆f−1(yi) + εi

]
,

(29)

where∆f−1(yi) = f−1(yi)− γ1yi. Introducing the true para-
meter vectorθ0,

θ0 =
[
a1 . . . ana β1 . . . βnb α0,0 α2,0 . . . αr,na

]T
, (30)

where

βk =
bk

γ1
, k = 1, . . . , nb, (31)

αj,k =


γj

γ1
, k = 0, j = 0, 2, 3, . . . , r,

ak
γj

γ1
, k = 1, . . . , na, j = 0, 2, 3, . . . , r,

(32)

the system output can be expressed as

yi = xT
i θ0 +

1
γ1

εi. (33)

The solution to the LS estimation problem is given by

θ =

[
1
N

N∑
i=1

xixT
i

]−1[
1
N

N∑
i=1

xiyi

]
. (34)

From (33) and (34), it follows that the difference between the
estimated and the true parameter vectors∆θ = θ − θ0 is

∆θ =

[
1
N

N∑
i=1

xixT
i

]−1[
1
N

N∑
i=1

xiyi −
(

1
N

N∑
i=1

xixT
i

)
θ0

]

=
1
γ1

[
1
N

N∑
i=1

xixT
i

]−1[
1
N

N∑
i=1

xiεi

]
.

Therefore, ifN →∞

θ − θ0 →
1
γ1

[
E

(
xixT

i

)]−1[E(
xiεi

)]
6= 0,

asE
[
y2

i εi

]
6= 0,. . . ,E

[
yr

i εi

]
6= 0, and thusE

[
xiεi

]
6= 0.

3.4 Instrumental variables method

To obtain asymptotically unbiased parameter estimates, the re-
gression vectorxi should be be uncorrelated with the system
disturbancesεi. That is not the case if we use the modified
series-parallel model. Instrumental variables methods are the
well-known remedy for such a situation. Applying an instru-
mental variables method, the parameter estimation can be per-
formed according to the following scheme:

1. Estimate parameters with the LS method.
2. Simulate the linear dynamic model.
3. Estimate parameters using the IV method with the instru-

mental variableszi.

The choice of instrumental variables is a vital design problem
in any instrumental variables approach. Clearly, the best cho-
ice would be the undisturbed system outputs, but these are not
available for measurement. Instead, we can employ the out-
putsŝi of the linear model obtained with the LS, and define the
instrumental variables as

zi =
[
− ŝi−1 . . .− ŝi−na ui−1 . . . ui−nb 1

− ŝ2
i . . .− ŝr

i−na

]T
.

(35)

in the case of Wiener systems with the linear term or

zi =
[
− ŝ2

i−1 . . .− ŝ2
i−na ui−1 . . . ui−nb 1

− ŝ3
i . . .− ŝr

i−na

]T
.

(36)

in the case of Wiener systems without the linear term. The
instrumental variableszi are uncorrelated with the system di-
sturbances, i.e.E[ziεi] = 0.

4 Simulation examples

Example 1. The Wiener system with the first order term,
γ1 6= 0. The following Wiener system composed of the linear
dynamic system

B(q−1)
A(q−1)

=
0.125q−1 − 0.025q−2

1− 1.75q−1 + 0.85q−2
, (37)

and the nonlinear element given byf(si) = arcsin(si), |si| 6
1, was used in the simulation study. The input sequence{ui}
consisted of50000 pseudo-random numbers uniformly distri-
buted in(−0.6125, 0.6125) and the additive system disturban-
ces were given byεi = [1/A(q−1)]εi with {εi} – a pseudo-
random sequence, uniformly distributed in(−0.025, 0.025).
Both the LS and IV parameter estimation was performed as-
sumingγ̂1 = 1 andr = 7. The identification results, given in
Tables 1 and 2 and illustrated in Figures 4 and 5, show a consi-
derable improvement of the IV parameter estimates in compa-
rison with the LS ones.
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Figure 4: Wiener system with the first order term. The true
f−1(yi) and estimated̂f−1(yi) inverse nonlinear functions.
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Figure 5: Wiener system with the first order term. The
estimation errorf−1(yi)− f̂−1(yi).

Parameter True LS IV

â1 0.1250 0.1174 0.1249
â2 −0.0250 −0.0235 −0.0252
b̂1 −1.7500 −1.7143 −1.7526
b̂2 0.8500 0.8308 0.8517
γ̂1 1.0000 1.0000 1.0000
γ̂2 0.0000 0.0252 0.0069
γ̂3 −0.1667 −0.7992 −0.1792
γ̂4 0.0000 −0.1487 −0.0299
γ̂5 0.0083 1.2778 0.0495
γ̂6 0.0000 0.1649 0.0252
γ̂7 −0.0002 −0.7438 −0.0339

Table 1: Parameter estimates.

Performance index LS IV

1
4

2∑
j=1

[
(aj−âj)2+(bj−b̂j)2

]
4.27× 10−4 2.45× 10−6

1
6

7∑
j=2

(γj − γ̂j)2 4.36× 10−1 7.60× 10−4

1
50

50∑
i=1

[
f−1(yi)−f̂−1(yi)

]2 1.01× 10−2 3.83× 10−5

Table 2: Comparison of estimation accuracy.

Example 2. The Wiener system without the first order term,
γ1 = 0 andγ2 6= 0. The linear dynamical system (37) along
with the nonlinear functionf(si) =

√√
si + 0.5, si > 0

were used in the example of a Wiener system with the second
order term and without the first order term. The inverse non-
linear functionf−1(yi) = 0.25 − y2

i + y4
i is invertible for

yi >
√

0.5. The input sequence{ui} contained50000 pseudo-
random numbers uniformly distributed in(1.5, 5.25). The ad-
ditive system disturbances were given byεi = [1/A(q−1)]εi

with {εi} – a pseudo-random sequence, uniformly distributed
in (−0.025, 0.025). As in Example 1, the LS and IV parameter
estimation was performed assumingγ̂2 = 1, γ̂3 = 0 andr = 4.
The identification results, given in Tables 3 and 4 and illustra-
ted in Figures 6 and 7, confirm the practical feasibility of the
proposed approach.
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Figure 6: Wiener system without the first order term. The true
f−1(yi) and estimated̂f−1(yi) inverse nonlinear functions.
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Figure 7: Wiener system without the first order term. The
estimation errorf−1(yi)− f̂−1(yi).



Parameter True LS IV

â1 0.1250 −0.0068 0.1238
â2 −0.0250 0.0013 −0.0247
b̂1 −1.7500 −1.4988 −1.7655
b̂2 0.8500 0.6972 0.8725
γ̂0 0.2500 2.2297 0.3435
γ̂2 1.0000 1.0000 1.0000
γ̂4 1.0000 0.2590 0.9925

Table 3: Parameter estimates.

Performance index LS IV

1
4

2∑
j=1

[
(aj−âj)2+(bj−b̂j)2

]
2.52× 10−2 1.87× 10−4

1
2

[
(γ0 − γ̂0)2 + (γ4 − γ̂4)2

]
2.23× 100 4.40× 10−3

1
50

50∑
i=1

[
f−1(yi)−f̂−1(yi)

]2 6.94× 101 5.28× 10−3

Table 4: Comparison of estimation accuracy.

5 Conclusions

This paper describes a combined least squares and instrumen-
tal variables approach to identification of polynomial Wiener
systems. It is assumed that the inverse nonlinear element is de-
scribed by a single-valued smooth function that can be approxi-
mated by a polynomial. Assuming that the linear dynamic sys-
tem is modelled by the ARX model, a modified series parallel
Wiener model is introduced. It is also shown that least squ-
ares parameter estimates of the polynomial Wiener model are
non-consistent. To avoid the consistency problem, two identi-
fication procedures for systems with and without the first order
term are considered. Both these procedures employ a model
of the linear dynamic system obtained with the least squares
method to generate instrumental variables. Although, only one
technique of instrumental variables generation is discussed in
the paper, the other known techniques can also be considered.
Two simulation examples included in the paper illustrate prac-
tical effectiveness of the proposed identification procedures.
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MMAR’95, Miȩdzyzdroje, Poland, pp. 697–702, (1995).

[8] A. Janczak. “Recurrent neural network models for iden-
tification of Wiener systems”,Proc. CESA’98 IMACS
Multiconference, Nabeul-Hammamet, Tunisia, pp. 965–
970, (1998).

[9] A. Janczak. “Least squares identification of Wiener sys-
tems”,Proc. 6th Int. Conf. Methods and Models in Au-
tomation and Robotics MMAR’2000, Miȩdzyzdroje, Po-
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