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Abstract

This paper describes an unified new recursive identification
method in the prediction error method and model scheme for
three MISO Wiener and Hammerstein systems. It is also
extension of our earlier work for SISO cases. With the
estimation of intermediate variables by using the key term
separation principle, a MISO Wiener and Hammerstein
system can be approximately transformed into a pseudo-
linear MISO dynamic system. Using the adaptive recursive
pseudo-linear regressions (RPLR) for a linear MISO dynamic
system and smoothing and filtering techniques for estimation
of the intermediate variables, satisfied parameter estimates of
the MISO Wiener and Hammerstein system can be obtained
in the presence of a white or a coloured measurement noise
without parameter redundancy. The performance of the
developed method is both analysed theoretically and
illustrated by means of simulation results.

1. Instruction

Identification of nonlinear dynamic systems are widely
studied and applied in practice. A survey of the nonlinear
system model structures and identification methods are given
in [9]. A Wiener system or a Hammerstein system is
adequately to describe a nonlinear dynamic system. A Wiener
system is defined as a linear dynamic subsystem in cascade
with a nonlinear static subsystem (Fig. 1). A Hammerstein
system is defined as a nonlinear static subsystem followed by
a linear dynamic subsystem (Fig. 2), The steady-state
behaviour is determined completely by the static nonlinearity,
while the dynamic behaviour is determined by both the static
nonlinearity and the linear dynamic subsystem. Combinations
of the SISO Wiener and Hammerstein systems construct
MISO nonlinear dynamic systems (Figs. 3-5).

Figure 1  A Wiener system

Figure 2  A Hammerstein system

Till now, the identification algorithms in the literatures are
mainly for SISO Wiener and Hammerstein systems. An
identification algorithm for a Hammerstein system was
developed in [7] by estimating separately and sequentially the
linear and the nonlinear subsystems. A Hammerstein system
was identified in [3] by simplifying and transforming it into a
linear MISO system. In [10] a Wiener system and a
Hammerstein system were identified using a transfer function
for the linear dynamic subsystem and a polynomial for the
nonlinearity and with the estimation of internal variables. Our
earlier work [2] introduced an unified recursive identification
method for different SISO Wiener and Hammerstein systems.
In some literatures, a strong assumption was made that the
nonlinear block in a Wiener system was invertible or with the
known nonlinear blocks, see e.g. [4, 8]. A SISO Wiener and
Hammerstein system can be seen as a special case of a MISO
Wiener and Hammerstein system. Some of the identification
methods have been extended to identify a MISO Wiener and
Hammerstein system. An extended method for a MISO
Wiener and Hammerstein system was developed in [5] based
on the recursive prediction error method. In [1] two recursive
identification methods were extended to a MISO
Hammerstein system along the lines of the basic Kalman
filter.

To write out the description of the whole nonlinear system
analytically, it presents usually nonlinearities or redundancy
in parameters. And the relevant identification algorithms
would be also complicated and inefficient. There is an
implicit or explicit trade-off between the acceptable model
complexity, the identification algorithm complexity and how
well the model matches the data. It can be concluded from
the literatures that the most important attempt is trying to
reduce parameter redundancy by using special linear and
nonlinear model structures. Some other attempts are to select
a parameterisation and approximation or a relax algorithm to
simplify the computation procedure to fit the individual
nonlinear system to process data.



The purpose of this contribution is to develop an unified
identification method and strategies in the prediction error
method and model scheme to identify: a MISO Wiener
system (Figure 3), a MISO Hammerstein system (Figure 4)
and a mixed MISO Wiener and Hammerstein system (Figure
5). The rest of this paper is organised as follows: Section 2
introduces the system structures and identification strategies.
Section 3 derives the identification algorithm to each system.
Section 4 presents the simulation examples. Finally, section 5
gives a brief summary of the major results and conclusions.

2. System Statement

It is assumed that the MISO Wiener and Hammerstein
systems are all asymptotically stable.

Figure 3  A MISO Wiener system

Figure 4  A MISO Hammerstein system

Figure 5  A mixed MISO Wiener and Hammerstein system
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system inputs. )(ty  is the whole system output.
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Considering the thj −  branch for ij ,,1�=  in a MISO
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are coprime for ij ,,1 �= . Without losing generality, it is

assumed that the delay of the linear block is one. Eq. (3) can
be rewritten as,
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We consider the identification problem in a prediction error
method and model scheme. The parameter vector of an i -



inputs MISO Wiener and Hammerstein system is defined as
T],,[=ϑ . To identify the parameters, we compare the

predicted system output )/(ˆ ϑty  with the measured system

output )(ty  in the following prediction error criterion,
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A possible prediction model is ϑϑϑ ),()/(ˆ tty T= . The so

called pseudo-regression vector ),( ϑt  contains relevant

past data, partly reconstructed using the current model. The
parameter-dependent reconstructed elements are determined
in some recursive fashion and arrive at the recursive pseudo-
linear regressions (RPLR) estimates.  As pointed out in [6]:
no matter how ),( ϑt  is formed, it is the known data at

time t . It can contain arbitrary transformations of measured

data. We could rewrite ϑϑϑ ),()/(ˆ tty T=  as,
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with arbitrary functions ),( jj t ϑ  of past data for

sj �1= , where is > . Eq. (6) could be regarded as a

finite-dimensional parameterisation of a general, unknown
nonlinear predictor. The key is how to choose the functions

),( jj t ϑ  for sj �1= , and this is where physical insight

into the system is required. It can also be seen as a
transformed result from a s  pseudo linear and multiple
inputs system,
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To identify a MISO Wiener and Hammerstein system, one
problem is that a constant gain can be distributed arbitrarily
among the linear and nonlinear subsystems in each branch. In
order to get a unique solution, the gain of one subsystem
must be fixed. Without losing generality, a simpler solution is
just to fix one of the parameters of the linear or nonlinear
subsystem in each branch and let it be constant during the
minimisation.

Intermediate variables are unmeasurable variables among the
linear and nonlinear blocks in a MISO Wiener and
Hammerstein system. Generally, the unmeasurable
intermediate variables could be cancelled in the whole
analytical system, but it presents usually nonlinearities or
redundancy in parameters. According to the key term
separation and half-substitution principle, see e.g. [10], the
unmeasurable intermediate variable of each branch can be

individually separated as the key term which will be
substituted with its front expression. The non-key terms will
be calculated recursively from the corresponding subsystem
with the estimated parameters from last time instant.
Therefore, smoothing and filtering techniques in parameter
estimation are necessary, in order to mitigate the estimate
errors of intermediate variables and to avoid the possible
oscillations to achieve better convergence. These
intermediate variables could be seen as pseudo multiple
inputs to formulate a pseudo-linear MISO dynamic system.
Here, the pseudo multiple inputs become double-meaning:
they are pseudo multiple inputs of a nonlinear dynamic
system and they illustrate the nonlinear couplings between
the pseudo multiple inputs. With the system input, output
data and the estimated intermediate variables, every
subsystem can be reconstructed in other structure type or in
plot curve. In order to accelerate the convergence, we use the
forgetting factor approach with a variant forgetting factor,

λλλλ ∆⋅−−+−= ))1(1()1()( ttt  to adaptation and to

identify the parameters.

Therefore, the system identification process and assumptions
are as follows:

1. Each MISO Wiener and Hammerstein system (Figs. 3-5)
is asymptotically stable and the orders of all subsystems

jm , jn  for ij ,,1 �=  and dc nn ,  are known a

priori.

2. Defining the intermediate variables. Using the key term
principle to extract the key terms and half-substitute the
key terms. Then transforming the MISO Wiener and
Hammerstein system approximately into a pseudo-linear
MISO system.

3. The system inputs are persistent. The all multiple
pseudo-inputs and the interference signal )(tε  are

assumed to be independent. And the linear and nonlinear
blocks in one branch have no direct influence to the
blocks of different branches.

4. Fixing some parameters to obtain an unique
parameterisation. With the smoothing and filtering
techniques to estimate the intermediate variables
recursively and using adaptive recursive pseudo-linear
regressions (RPLR) to identify the parameters of the
transformed pseudo-linear MISO system.

3. Algorithms derivation

3.1. A MISO Wiener system

Considering the thj −  branch, ij ,,1 �= , of a MISO

Wiener system which consists of i  single Wiener system
branches (Figure 3). The nonlinear static and the linear
dynamic subsystems are defined as eq. (2) and eq. (3). Each
branch output is,
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Without losing generality, let 11 =jβ . And the first

corresponding term )(tw j
 is the key term in the thj −

branch. Half-substituting eq. (3) into the key term )(tw j
 in

eq. (8), the whole system output is,
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It is seen, a MISO Wiener system has been transformed into a

pseudo-linear MISO system which has ∑
=

i

j
jm
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 pseudo-inputs:

)(tu j , ),(),( 32 twtw jj
 )(, tw jm

j�  for ij ,,1 �= . All the

unknown parameters of the system are explicitly given. Using
the adaptive linear MISO system recursive identification
method, supplemented with parameters smoothing and
filtering techniques and with eq. (3) estimated unmeasurable
variables )(tw j

 for ij ,,1�= , the unknown parameters in

eq. (9) can be identified without parameter redundancy.

3.2. A MISO Hammerstein system

Considering the thj −  branch for ij ,,1�=  of a MISO

Hammerstein system (Figure 4) which consists of i  single
Hammerstein system branches. The nonlinear static and the
linear dynamic subsystems are defined as eq. (2) and eq. (4).
Each branch output is,
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Without losing generality, we let 11 =jb . Then the first term

)(tw j
 in eq. (10) is the key term in the thj −  branch. Half-

substituting eq. (2) into the key term )(tw j
, the whole

system output of a MISO Hammerstein system can be written
as,
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It is seen, a MISO Hammerstein system has been transformed

into a pseudo-linear MISO system which has ∑
=
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pseudo-inputs: ),(),( 2 tutu jj
 )(, tu jm

j�  and )(tw j
 for

ij ,,1 �= . All the unknown parameters of the system are

explicitly given. Using the adaptive linear MISO system
recursive identification method, supplemented with
parameters smoothing and filtering techniques and with eq.
(2) estimated unmeasurable variables )(tw j

 for ij ,,1 �= ,

the unknown parameters in eq. (11) can also be identified
without parameter redundancy.

3.3. A mixed MISO system

Considering a i -inputs MISO mixed Wiener and

Hammerstein system (Figure 5) which consists of a l -inputs
MISO Wiener subsystem and a p -inputs MISO

Hammerstein subsystem, ipl =+ . In the thj −  branch of

the MISO Wiener subsystem for lj ,,1 �= , we use the

identification analysis of a MISO Wiener system in section
3.1. And in the thj −  branch of the MISO Hammerstein

subsystem for ilj ,,1 �+= , we use the identification

analysis of a MISO Hammerstein system in section 3.2.
Defining and half-substituting the corresponding key terms,
the whole system output of a MISO mixed Wiener and
Hammerstein system can be written as,
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It is seen, a MISO mixed Wiener and Hammerstein system
has been transformed approximately into a pseudo-linear

MISO system which has ∑∑
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parameters of the system are explicitly given. Using the
adaptive linear MISO system recursive identification method,
supplemented with parameters smoothing and filtering
techniques, with eq. (3) estimated unmeasurable variables

)(tw j
, for lj ,,1 �=  and with eq. (2) estimated

unmeasurable variables )(tw j
, for ilj ,,1 �+= , the

unknown parameters in eq. (12) can be identified without
parameter redundancy.



4. Simulation examples

Two random numbers of zero mean are used as system

inputs, )(1 tu  and )(2 tu . Another independent random

numbers as white measurement noise )(te . The noise filter

for a coloured measurement noise is,

21

21
1

85.09.01

1.02.01
),( −−

−−
−

+−
++=

qq

qq
qH .              (13)

An average smoother using a moving window with fixed
length Mov  will be used to filter the estimated parameters to
calculate the unmeasurable intermediate variables, )(1 tw  and

)(2 tw . The Noise-Signal ratio is defined as,
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We consider each MISO Wiener and Hammerstein system
with non-noisy, with a N./S.=5% white measurement noise
(5% W. N.) and with a N./S.=10% coloured measurement
noise (10% C. N.), respectively. 2000 data points are
collected for each case. Applying the standard recursive
prediction errors method (RPEM) with forgetting factor
algorithms for linear MISO system in MATLAB. The
algorithm variable settings are 7.0)0( =λ , 01.0=∆λ  and

4=Mov . The initial estimates of the unknown parameters are
taken as zero.

4.1. The MISO Wiener system

A "standard" example of a MISO Wiener system is from [5]
which is composed of two branches,
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and
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Satisfied identification results are shown in Table 1. At the
same identification signals and noise level (N./S.=5% white
measurement noise), the identification process is convergent
quickly and the identification result is also better than that in
[5].

2000
11b 12b 11f 12f

10% C. N. 0.0450 0.0237 -1.3725 0.4420
5% W. N. 0.0450 0.0249 -1.3614 0.4321
N. N. 0.0431 0.0315 -1.3139 0.3886
Real 0.0431 0.0315 -1.3139 0.3886
2000

11β 12β 21β 22β
10% C. N. 4.3116 2.2480 2.8777 2.1427
5% W. N. 4.3113 2.1100 2.9061 2.0621
N. N. 4.0000 1.9999 3.0000 2.0000
Real 4.0000 2.0000 3.0000 2.0000
2000

21b 22b 21f 22f
10% C. N. 0.0256 0.0305 -1.5228 0.5789
5% W. N. 0.0316 0.0222 -1.5419 0.5952
N. N. 0.0305 0.0254 -1.5218 0.5778
Real 0.0305 0.0254 -1.5218 0.5778
2000

1c 2c 1d 2d
10% C. N. 0.2568 0.1943 -0.8703 0.8237
Real 0.2000 0.1000 -0.9000 0.8500

Table 1: Identification results of a MISO Wiener system

4.2. The MISO Hammerstein system

As an example, a MISO Hammerstein system consists of the
following two branches,
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and
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Note that the coefficients 111 ≠b  and 121 ≠b . Some

transformations are necessarily made in the corresponding
simulations. Satisfied identification results are shown in
Table 2.

4.3. The mixed MISO Wiener and Hammerstein system

The example is composed of the following two branches,
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and
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Satisfied identification results are shown in Table 3.

2000
11b 12b 11f 12f

10% C. N. 0.1144 0.0690 -1.4991 0.7010
5% W. N. 0.1418 0.0760 -1.5014 0.7028
N. N. 0.1321 0.0671 -1.5001 0.7000
Real 0.1333 0.0667 -1.5000 0.7000

11β 12β 13β 21β 22β
0.7637 3.1767 1.8290 0.4765 4.0301
1.1187 3.1384 1.2280 0.8803 4.0327
1.0005 3.0005 1.4995 0.9996 4.0006
1.0000 3.0000 1.5000 1.0000 4.0000

23β 21b 22b 21f 22f

3.2280 0.3677 0.2911 -0.9058 0.6028
2.0403 0.4013 0.2781 -0.9052 0.6077
2.0011 0.4002 0.2999 -0.9000 0.6000
2.0000 0.4000 0.3000 -0.9000 0.6000
2000

1c 2c 1d 2d
10% C. N. 0.2153 0.0901 -0.8484 0.0035
Real 0.2000 0.1000 -0.9000 0.8500

Table 2: Identification results of
a MISO Hammerstein system

2000
11b 12b 11f 12f

10% C. N. 0.3688 0.3642 -0.8977 0.5340
5% W. N. 0.3731 0.3710 -0.8505 0.5731

N. N. 0.4054 0.2927 -0.9082 0.6023
Real 0.4000 0.3000 -0.9000 0.6000

12β 13β 21β 22β 23β
3.6810 1.2669 1.1164 2.6320 1.3696
4.2533 2.1117 0.8998 3.1046 1.5872
3.9122 1.9183 1.0063 3.0335 1.5238
4.0000 2.0000 1.0000 3.0000 1.5000
2000

21b 22b 21f 22f
10% C. N. 0.2478 0.1195 -1.4665 0.6675
5% W. N. 0.0489 0.0708 -1.5165 0.7117

N. N. 0.0874 0.0926 -1.4995 0.7000
Real 0.1333 0.0667 -1.5000 0.7000
2000

1c 2c 1d 2d
10% C. N. 0.2883 0.0841 -0.8763 0.6439

Real 0.2000 0.1000 -0.9000 0.8500

Table 3: Identification results of a mixed MISO
Wiener and Hammerstein system

5. Conclusions

In the prediction error method scheme and under some
common assumptions, an unified new recursive identification
method for three MISO Wiener and Hammerstein systems is
proposed. After defining and  estimating the intermediate
variables recursively, a MISO Wiener and Hammerstein
system can be approximately transformed into a pseudo-
linear MISO system. With the recursive pseudo-linear
regressions (RPLR), the system parameters can be identified
in the presence of a white or a coloured measurement noise
without parameter redundancy. From the derivations and
simulations, it is seen that the new identification method and
strategies are clear and efficient. They can be extended easily
to identify other block-oriented MISO nonlinear dynamic
systems.
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