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Abstract

In local modelling, function estimates are computed from ob-
servations in a local neighborhood of the point of interest. A
central question is how to choose the size of the neighborhood.
Often this question has been tackled using asymptotic (in the
number of observations) arguments. The recently introduced
direct weight optimization approach is a non-asymptotic ap-
proach, minimizing an upper bound on the mean squared er-
ror. In this paper the approach is extended to also take a priori
known bounds on the function and its derivative into account.
It is shown that the result will sometimes, but not always, be
improved by this information. The proposed approach can be
applied, e.g., to prediction of nonlinear dynamic systems and
model predictive control.

1 Introduction

Local modelling of different types have been of great interest
for a long time in system identification and statistics. A lo-
cal model or method for function approximation or prediction
computes the estimate using information from observations in
a local neighborhood of the point of interest. Many of the dif-
ferent nonlinear black-box methods are of this type, such as
radial basis neural networks, multiple-model approaches etc.
(see, e.g., [5, 11]). In statistics, local methods such as kernel
methods [6, 14], local polynomial modelling [3], and trees [2]
have been popular.

A central question in local modelling is thebandwidthques-
tion: how to select the size of the neighborhood. This becomes
a bias/variance trade-off, which has been studied extensively in
the statistics literature, and many solutions based on asymptotic
(in the number of observations) arguments have been proposed.

In this paper, adirect weight optimization(DWO) approach
is considered. This approach is a non-asymptotic approach,
where the weights of a linear (or affine) estimator are deter-
mined by minimizing a uniform upper bound on the mean
squared error (MSE) over function classes having a Lipschitz
boundL on the derivative. It turns out that the optimization
problem can be formulated as a quadratic program (QP) or a
second-order cone program (SOCP). The basic idea was pre-
sented in [8, 9] (see also [10] for an early contribution in the
same direction), where it was also shown that the approach has

several interesting properties:

• Outside a certain region in the regressor space, the weights
will automatically become zero. Hence, we automatically
get a finite bandwidth.

• Asymptotically (asN → ∞, N being the number of ob-
servations), the weights will (under certain assumptions)
converge to the weights obtained by local linear modelling
with an asymptotically optimal kernel function (see [3]).

• When the Lipschitz constantL = 0, i.e., when the true
system function is affine, the function estimates obtained
are the same as for a global “affine ARX” model.

Here, the approach is extended to also take a priori known
bounds on the function and its derivative into account. In prac-
tice, such bounds may be given by physical constraints, or by
practical experience and expert knowledge. It turns out that
the extension is very natural, and some theorems can be given
about when we actually benefit from the extra information.

In Section 2, the basic problem is presented for the univari-
ate case, and in Sections 3 and 4 the DWO approach is out-
lined. Section 5 deals with multivariate functions. An example
is given in Section 6, and conclusions in Section 7.

2 Basic problem

Let us consider the problem of estimating the valuef(ϕ0) of an
unknown functionf : R → R at a given pointϕ0, given a set
of input-output pairs{(ϕk, yk)}Nk=1, coming from the relation

yk = f(ϕk) + ek (1)

Assume that the functionf is continuously differentiable, and
that there are known positive constantsL, δ, ∆, and known
constantsa, b such that

|f ′(ϕ1)− f ′(ϕ2)| ≤ L|ϕ1 − ϕ2| ∀ϕ1, ϕ2 ∈ R (2)

|f(ϕ0)− a| ≤ δ , (3)

|f ′(ϕ0)− b| ≤ ∆ . (4)

wheref ′ is the derivative off . Denote the class of functions
satisfying these assumptions byF2(L, δ,∆)1.

1The function class also depends ona andb, but for notational convenience,
this dependency is not written out explicitly.



The noise termsek are independent random variables with
Eek = 0 andEe2

k = σ2
k whereσk are assumed to be positive

constants, given a priori. For simplicity, only constant variance
(i.e.,σ2

k = σ2) will be considered in this paper. We also assume
thatek andϕj are independent for allj, k. The notation

ϕ̃k = ϕk − ϕ0 (5)

andX = (ϕ1, . . . , ϕN ) will also be used.

There are some particular cases that deserve special attention:

• If δ → +∞ then the limit class

F2(L,∆) , F2(L,∞,∆) =
∞⋃
t=1

F2(L, δ,∆)|δ=t (6)

describes the situation where we have no direct a priori
information on function valuef(ϕ0).

• If both δ → +∞ and∆→ +∞ then the limit class

F2(L) , F2(L,∞) =
∞⋃
t=1

F2(L,∆)|∆=t (7)

represents a set of continuously differentiable functions
meeting the only condition (2). This case was studied pre-
viously in [8, 9].

A common approach for the given estimation problem is to use
a linear estimator

f̂(ϕ0) =
N∑
k=1

wkyk (8)

The problem then reduces to finding good weightswk, accord-
ing to some criterion. In the following, we will consider the
slightly more general class ofaffine estimators:

f̂(ϕ0) = w0 +
N∑
k=1

wkyk (9)

The performance of an estimator̂f(ϕ0) will be evaluated by
theworst-case mean squared error (MSE)defined by

V (F , w0, w) = sup
f∈F

MSE(f, w0, w) (10)

wherew =
(
w1 . . . wN

)T
and

MSE(f, w0, w) = E[(f̂(ϕ0)− f(ϕ0))2|X] (11)

In Section 3, upper bounds onV (F , w0, w) are given for the
different function classes defined above. As it turns out, these
upper bounds can then be minimized using quadratic program-
ming (QP), yielding optimal (in this sense) estimators.

3 The DWO approach

3.1 ClassF = F2(L, δ,∆)

Let us again consider the affine estimator (9) and the function
classF2(L, δ,∆) for finite δ, ∆. For this estimator and class,
the worst-case MSE (10) has the following upper bound:

V (F2(L, δ,∆), w0, w) ≤ U0(w0, w)

=

(∣∣∣∣∣w0 + a

(
N∑
k=1

wk − 1

)
+ b

N∑
k=1

wkϕ̃k

∣∣∣∣∣+ δ

∣∣∣∣∣
N∑
k=1

wk − 1

∣∣∣∣∣
+ ∆

∣∣∣∣∣
N∑
k=1

wkϕ̃k

∣∣∣∣∣+
L

2

N∑
k=1

|wk|ϕ̃2
k

)2

+ σ2
N∑
k=1

w2
k (12)

This is true, since for any functionf ∈ F2(L, δ,∆) the estima-
tion error may be represented as follows

f̂(ϕ0)− f(ϕ0) = w0 + a

(
N∑
k=1

wk − 1

)
+ b

N∑
k=1

wkϕ̃k

+ (f(ϕ0)− a)

(
N∑
k=1

wk − 1

)
+ (f ′(ϕ0)− b)

N∑
k=1

wkϕ̃k

+
N∑
k=1

wk(f(ϕk)− f(ϕ0)− f ′(ϕ0)ϕ̃k) +
N∑
k=1

wkek

(13)

Due to a well known lemma, the inequality

|f(ϕk)− f(ϕ0)− f ′(ϕ0)ϕ̃k| ≤
L

2
ϕ̃2
k (14)

follows from (2). Now, the MSE (11) satisfies

MSE(f, w0, w) ≤
(∣∣∣∣∣w0 + a

(
N∑
k=1

wk − 1

)
+ b

N∑
k=1

wkϕ̃k

∣∣∣∣∣
+ |f(ϕ0)− a| ·

∣∣∣∣∣
N∑
k=1

wk − 1

∣∣∣∣∣+ |f ′(ϕ0)− b| ·
∣∣∣∣∣
N∑
k=1

wkϕ̃k

∣∣∣∣∣
+

N∑
k=1

|wk| · |f(ϕk)− f(ϕ0)− f ′(ϕ0)ϕ̃k|
)2

+ σ2
N∑
k=1

w2
k

(15)

from which the upper bound (12) follows directly.

Note that the upper boundU0(w0, w) is easily minimized with
respect tow0 for anyw ∈ RN . Indeed,

arg min
w0

U0(w0, w) = −a
(

N∑
k=1

wk − 1

)
− b

N∑
k=1

wkϕ̃k (16)

Thus, we arrive at the following consequence: For the func-
tion classF2(L, δ,∆), the affine estimator (9) minimizing
U0(w0, w) may be sought among the estimators satisfying

f̂(ϕ0) =
N∑
k=1

wkyk−a
(

N∑
k=1

wk − 1

)
−b

N∑
k=1

wkϕ̃k , w ∈ RN

(17)



For this kind of estimators,V (F2(L, δ,∆), w0, w) has the fol-
lowing upper bound, which follows directly from (12) and (16):

V (F2(L, δ,∆), w0, w) ≤ U0(w)

=

(
δ

∣∣∣∣∣
N∑
k=1

wk − 1

∣∣∣∣∣+ ∆

∣∣∣∣∣
N∑
k=1

wkϕ̃k

∣∣∣∣∣+
L

2

N∑
k=1

|wk|ϕ̃2
k

)2

+ σ2
N∑
k=1

w2
k (18)

Let us take a closer look at (13), and particularly the term

(f(ϕ0)− a)

(
N∑
k=1

wk − 1

)
It is easy to see, that ifδ → ∞, this term is unbounded –
and hence the MSE might be arbitrarily large – unless we have∑N
k=1 wk = 1. In fact, we can show the following theorem:

Theorem 3.1. Assume that̃ϕk 6= 0, k = 1, . . . , N . Given
a, b ∈ R andL,∆ ∈ (0,+∞), there exists aδ0 ∈ (0,+∞)
such that for anyδ > δ0, the minimum of the upper bound
U0(w) given by(18)with respect tow ∈ RN is attained on the
subspace

N∑
k=1

wk = 1 (19)

and does not depend ona or δ. In other words, given a suffi-
ciently largeδ, the affine estimator(9) minimizingU0(w0, w)
can be found in the form

f̂(ϕ0) =
N∑
k=1

wkyk − b
N∑
k=1

wkϕ̃k ,

N∑
k=1

wk = 1 (20)

with the weights(w1, . . . , wN ) minimizing the simpler upper
bound

U1(w) =

(
∆

∣∣∣∣∣
N∑
k=1

wkϕ̃k

∣∣∣∣∣+
L

2

N∑
k=1

|wk|ϕ̃2
k

)2

+ σ2
N∑
k=1

w2
k

(21)
subject to the constraint(19).

Proof. The proof is found in [7], and is based on assuming that
(19) is not satisfied. Under this assumption, one can explicitly
construct aδ0, such that for anyδ > δ0, the minimal value of
(18) is strictly larger than the minimum of (21) subject to the
constraint (19).

3.2 ClassF = F2(L,∆)

Let us now turn to classF2(L,∆), i.e., the caseδ →∞. From
the remark just before Theorem 3.1, it follows that the MSE
cannot be bounded above unless

∑N
k=1 wk = 1. On the other

hand, if this requirement is satisfied, we get the following up-
per bound on the worst-case MSE, which can be shown analo-
gously to (12):

V (F2(L,∆), w0, w) ≤ U1(w0, w)

=

(∣∣∣∣∣w0 + b

N∑
k=1

wkϕ̃k

∣∣∣∣∣+ ∆

∣∣∣∣∣
N∑
k=1

wkϕ̃k

∣∣∣∣∣+
L

2

N∑
k=1

|wk|ϕ̃2
k

)2

+ σ2
N∑
k=1

w2
k (22)

By minimizing the upper bound with respect tow0, it can be
seen that the minimizing estimator will be in the form (20), and
thatw can be found by minimizing (21) under assumption (19).

Analogously to Theorem 3.1, we can study what happens when
∆ is large.

Theorem 3.2. Suppose that̃ϕk 6= 0, k = 1, . . . , N , and that
there are two indicesk1 andk2 such thatϕ̃k1 6= ϕ̃k2 . Given
b ∈ R andL ∈ (0,+∞), there exists a∆0 ∈ (0,+∞) such
that for any∆ > ∆0, the minimum of the upper boundU1(w)
given by(21), subject to the constraint(19), is attained on the
subspace

N∑
k=1

wk = 1 ,
N∑
k=1

wkϕ̃k = 0 (23)

and does not depend onb or ∆. In other words, given a suffi-
ciently large∆, the affine estimator(9) minimizingU1(w0, w)
can be found in the form(8) by minimizing the upper bound

U2(w) =

(
L

2

N∑
k=1

|wk|ϕ̃2
k

)2

+ σ2
N∑
k=1

w2
k (24)

subject to constraints(23).

Proof. Similar to the proof of Theorem 3.1. See [7].

3.3 ClassF = F2(L)

For classF2(L), following a similar line of argument as for
F2(L,∆), we can see that a finite MSE can be guaranteed only
if the weightsw satisfy (23). Under this requirement, on the
other hand, we get the following upper bound on the worst-
case MSE:

V (F2(L), w0, w) ≤ U2(w0, w)

=

(
|w0|+

L

2

N∑
k=1

|wk|ϕ̃2
k

)2

+ σ2
N∑
k=1

w2
k

(25)

Hence, by minimizing the upper bound with respect tow0, we
will obtain a minimizing estimator in the form (8), wherew can
be found by minimizing (24) subject to the constraints (23).

4 QP formulation

In Section 3, it was pointed out how the weightsw0 andwk
of the affine estimator (9) could be chosen by minimizing dif-
ferent expressions, in order to get estimators with a guaranteed
upper bound on the worst-case MSE. In this section we will
show that these minimization problems can be formulated as
convex quadratic programs (QP)(see [1]).



To begin with, let us consider the function classF2(L, δ,∆)
and the problem of finding the affine estimator minimizing
(18).

Theorem 4.1.Given the positive numbersδ,∆, L, consider the
following minimization problem:

min
w,s

(
δsa + ∆sb +

L

2

N∑
k=1

ϕ̃2
ksk

)2

+ σ2
N∑
k=1

s2
k

subj. to sa ≥ ±
(

N∑
k=1

wk − 1

)

sb ≥ ±
N∑
k=1

wkϕ̃k

sk ≥ ±wk, k = 1, . . . , N

(26)

wherew = (w1, . . . , wN ) ands = (sa, sb, s1, . . . , sN ). Then
w∗ is a minimizer of(18) if and only if there is a vectors∗ such
that (w∗, s∗) is a minimizer of(26).

Proof. Given a feasible solutionw to (18), we can get a feasible
solution to (26) with the same value of the objective function
by using the samew and

sa =

∣∣∣∣∣
N∑
k=1

wk − 1

∣∣∣∣∣
sb =

∣∣∣∣∣
N∑
k=1

wkϕ̃k

∣∣∣∣∣
sk = |wk|, k = 1, . . . , N

(27)

Hence (26) is a relaxation of (18), and it suffices to show that
for a minimizer(w∗, s∗) of (26), (27) will hold. Suppose, e.g.,
that s∗1 > |w∗1 |. Then, without changing any other variables,
the value of the objective function can be reduced by decreas-
ing s∗1. This can be seen by observing that the coefficient before
s∗1 is non-negative in the first sum of the objective function, and
positive in the second sum of the objective function, so decreas-
ing s∗1 will decrease at least one of these sums, and hence the
objective function. Hence,s∗1 = |w∗1 |. By similar arguments,
one can show that the other equalities of (27) will also hold at
the optimum, and the theorem is proven.

Remark 4.1. Note that (26) is a convex QP and can therefore
be solved efficiently.

Starting from Theorem 4.1, we can now formulate QP:s for all
the other cases mentioned in Section 3. Since the constraints
(19) and (23) are all linear inw, they can just be added to the
QP.

5 Estimating multivariate functions

In this paper, we have so far assumed that the function to be
estimated has a scalar argument. In most applications, in par-
ticular to dynamic systems, the regressors will have a higher

dimension. The extension to this case is immediate. In this
section, we will describe some of the aspects of this kind of ex-
tension. In the following,‖ · ‖ will denote the Euclidean norm,
andbT denotes the transpose ofb.

We now consider the problem of estimating the valuef(ϕ0) of
an unknown multivariate, continuously differentiable function
f : Rn → R at a given pointϕ0, given a set of input-output
pairs{(ϕk, yk)}Nk=1, coming from the relation

yk = f(ϕk) + ek (28)

Instead of the assumptions (2)-(4), we make the following as-
sumptions:

‖∇f(ϕ1)−∇f(ϕ2)‖ ≤ L‖ϕ1 − ϕ2‖ ∀ϕ1, ϕ2 ∈ Rn (29)

|f(ϕ0)− a| ≤ δ , (30)

‖∇f(ϕ0)− b‖ ≤ ∆ . (31)

With some abuse of notation, we letF2(L, δ,∆), F2(L,∆),
andF2(L) denote also their multivariate counterparts. For
F2(L, δ,∆) and an affine estimator (9), the worst-case MSE
(10) has the following upper bound, which is similar to the uni-
variate case:

V (F2(L, δ,∆), w0, w) ≤ U0(w0, w)

=

(∣∣∣∣∣w0 + a

(
N∑
k=1

wk − 1

)
+ bT

N∑
k=1

wkϕ̃k

∣∣∣∣∣
+ δ

∣∣∣∣∣
N∑
k=1

wk − 1

∣∣∣∣∣+ ∆

∥∥∥∥∥
N∑
k=1

wkϕ̃k

∥∥∥∥∥+
L

2

N∑
k=1

|wk|‖ϕ̃k‖2
)2

+ σ2
N∑
k=1

w2
k (32)

As in the univariate case, we can immediately eliminatew0

by minimizing (32) for an arbitraryw, giving that the affine
estimator minimizingV (F2(L, δ,∆), w0, w) may be sought
among the estimators satisfying

f̂(ϕ0) =
N∑
k=1

wkyk − a
(

N∑
k=1

wk − 1

)
− bT

N∑
k=1

wkϕ̃k (33)

For this kind of estimators, the worst-case MSE (10) over the
classF2(L, δ,∆) has the following upper bound:

V (F2(L, δ,∆), w0, w) ≤ U0(w)

=

(
δ

∣∣∣∣∣
N∑
k=1

wk − 1

∣∣∣∣∣+ ∆

∥∥∥∥∥
N∑
k=1

wkϕ̃k

∥∥∥∥∥+
L

2

N∑
k=1

|wk|‖ϕ̃k‖2
)2

+ σ2
N∑
k=1

w2
k (34)

So far, the differences to the univariate case have been small
and obvious. However, when trying to transform the problem



of minimizing (34) into a standard convex optimization prob-
lem, it turns out that it is impossible to formulate it as a QP
problem. What prohibits this is the term

∆

∥∥∥∥∥
N∑
k=1

wkϕ̃k

∥∥∥∥∥ (35)

which is the norm of a linear combination of vectors. Instead,
we can formulate the problem as asecond-order cone program
(SOCP), which is another standard class of convex optimiza-
tion problems (see [1]). To do this, we introduce some slack
variabless = (s1 . . . sN )T andt = (ta tb tc)T , and get

min
w,s,t

tc

subj. to

(
δta + ∆tb +

L

2

N∑
k=1

‖ϕ̃k‖2sk

)2

+ σ2
N∑
k=1

s2
k ≤ tc∣∣∣∣∣

N∑
k=1

wk − 1

∣∣∣∣∣ ≤ ta∥∥∥∥∥
N∑
k=1

wkϕ̃k

∥∥∥∥∥ ≤ tb (36)

|wk| ≤ sk, k = 1, . . . , N

This problem is in standard SOCP form, except for the first,
quadratic constraint. However, straightforward calculations
show that this constraint is equivalent to∥∥∥∥∥∥∥

2
(
δta + ∆tb + L

2

∑N
k=1 ‖ϕ̃k‖2sk

)
2σs

1− tc


∥∥∥∥∥∥∥ ≤ 1 + tc (37)

thus completing the problem reformulation.

For the other function classes,F2(L,∆) andF2(L), the exten-
sion to the multivariate case is done completely similarly. The
minimization problem forF2(L,∆) will also yield a SOCP,
while the minimization problem forF2(L) will still be possi-
ble to express as a QP, since the term (35) vanishes.

6 Example

The following simple example illustrates the fact that the infor-
mation about bounds on the function value and derivatives can
be useful, but only if the bounds are tight enough.

Let us consider the simple nonlinear system (withf : R2 → R)

yk = f(ϕk) + ek

f(ϕk) = 5(ϕ2
k1 + ϕ2

k2) + 5ϕk1 + 10ϕk2 + 15
(38)

whereek ∈ N(0, 1). Suppose that we would like to estimate

y for ϕ0 =
(
0 0

)T
, given onlyN = 20 data samples taken

from the distributionϕk ∈ N(0, I). We assume that we know
that (29) is satisfied forL = 10 (this is, of course, the best
possibleL), and that we also know some approximate valuesa

andb of the functionf(ϕ0) and∇f(ϕ0), respectively, and the
boundsδ and∆ according to (30) and (31). For simplicity, let
a andb be the true values,a = f(ϕ0) andb = ∇f(ϕ0).

Now we can use the estimator in (33), for which the appropri-
ate weights are obtained by solving the SOCP given by (36)
and (37). Solving the SOCP can be done using YALMIP [4]
and SEDUMI [13]. Naturally, differentδ and∆ values should
give different estimates. Figure 1(a) showsf̂(ϕ0) for some dif-
ferent values ofδ and∆. In Figure 1(b) the part of the estimate
coming from the a priori knowledge of the function value (i.e.,
the second term of (33)) is plotted. As we can see, for small
values ofδ, the estimate is based entirely on this information,
while for large values, the a priori knowledge is not used at all,
in agreement with Theorem 3.1. In Figure 1(c), the part of the
f̂(ϕ0) coming from the knowledge of∇f(ϕ0) (the third term
of (33)) is used. For this example, we can see that this informa-
tion is not used very much, but that it gives a certain contribu-
tion for small values of∆ (as long asδ is large enough, so that
we do not only use the information aboutf(ϕ0)).

Finally, Figure 2 shows the optimal value of the criterion func-
tion, which decreases both with decreasingδ and ∆, just as
should be expected.

7 Conclusions

In this paper, a direct weight optimization approach for local
modelling has been presented. It was shown that the approach
is easily extended to the case when a priori bounds on the func-
tion and its derivative are known. Theorems 3.1 and 3.2 how-
ever showed that when the bounds are very wide, the extra in-
formation may not be enough to improve the solution.

The application of these methods to dynamical systems with
the regressorsϕk being built up by past inputs and outputs
is straightforward. The method can be used as an alterna-
tive to building non-linear black-box models in a “Model-On-
Demand” fashion and applied to, for example, model predictive
control. See [12] for such ideas.
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Figure 1: Estimates off(ϕ0) in the example for different val-
ues ofδ and∆.
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Figure 2: The optimal value of the criterion function in the
example.
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