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Abstract:  
Equation TA - FT = LC (F is stable) is 
necessary and sufficient for the output 
of a feedback compensator (F,L,KZ,Ky) to 
converge to a state feedback (SF) 
signal Kx(t) for a constant K, where 
(A,B,C,0) is the open loop system and 
TB is the compensator gain to the open 
loop system input. Thus equation TB = 0 
is the defining condition for this 
feedback compensator to be an output 
feedback compensator.  Equation TB = 0 
is also the necessary and sufficient 
condition to fully realize the critical 
loop transfer function and robust 
properties of SF control if K is 
systematically designed. Furthermore, 
because B is compatible to the open 
loop system gain to its unknown inputs 
and its input failure signals, TB = 0 
is also necessary for unknown input 
observers and failure detection and 
isolation systems. Finally, this 
equation pair is the key condition of a 
really systematic and explicit design 
algorithm for eigestructure assignment 
by static output feedback control.  
This paper presents a general and exact 
solution which is uniquely direct, 
simple, and decoupled, to this matrix 
equation pair. An approximate solution 
which is general and simple, and which 
can be simply added to the exact 
solution to increase the row dimension 
of this solution, is also presented. 
 
 
1 The Matrix Equation Pair and Its 
Applications 
      
Consider the linear time-invariant 
irreducible system 
         
     d/dtx(t) = Ax(t) + Bu(t)   ( 1.a ) 
         y(t) = Cx(t)           ( 1.b ) 
 
and its general linear feedback 
controller 
          
d/dtz(t) = Fz(t) + Ly(t) + TBu(t)(2.a ) 
    w(t) = -KZz(t) + -Kyy(t)    ( 2.b ) 

where x, u, y, and z are n, p, m, and r 
dimensional time signals, respectively. 
      
It is well known that for z(t) ⇒  Tx(t) 
for a constant T, 
  
      TA - FT = LC (F is stable)  ( 3 ) 
 
is the necessary and sufficient 
condition [1]. From (1.b) and (2.b) it 
is obvious that (3) is also the 
necessary and sufficient condition for 
the controller output 
           

w(t) ⇒  -[KZ:Ky][T':C']'x(t) ≡ -K C x(t) 
     ≡ -Kx(t)                    ( 4 ) 
 
It is also proved in [2] that if (3) 
holds, then the poles of the feedback 
system of (1-2) are formed by the 
eigenvalues of F and A-BK. 
      
The main problem which has limited the 
practical application of state space 
control theory is that the loop 
transfer function  LKx(s) (=-K(sI-A)

-1B) 
and robustness properties of the state 
feedback (SF) control of (4) cannot be 
generally realized by the controller 
(2) [3, 4].  The necessary and 
sufficient condition to realize LKx(s) 
by (2) is KZ(sI-F)

-1TB = 0 ∀ s [5].  
Because KZ and Ky of (4) must be free 
for any systematic design of K, and 
because (sI-F)-1 is nonsingular, the 
necessary and sufficient condition to 
realize LKx(s) (called "loop transfer 
recovery, LTR") is [6-8]  
 
          TB = 0                ( 5.a ) 
 
It is obvious that (5.a) is the 
defining condition for the feedback 
controller (2) to be an output feedback 
compensator (OFC).  Thus only OFC can 
realize fully the robustness property 
of SF control (if that OFC can satisfy 
(3) [15]). 
       
In practice the plant system (1.a) is 
usually modeled with additional but 
undesirable input term (or terms) d(t), 
where d(t) is an unknown time function. 



    

The controller (2) which estimates x(t) 
when d(t) ≠ 0 is called an "unknown 
input observer" (UIO) [9].  Failure 
detection and isolation (FDI) systems 
need to detect and isolate the non-zero 
occurrence of the failure signal d(t) 
among a number of different terms of 
d(t), and usually need a band of 
detectors of structure (2). It is 
required that each detector has its 
state z(t) ⇒  Tx(t) even though its 
designated term of d(t) ≠ 0 [10-11, 
13]. Let us assume without lose of 
generality that B is also the gain of 
system (1.a) to d(t).  Then it is 
obviously necessary in both UIO's and 
FDI systems that in addition to (3) 
 
          TB = 0.               ( 5.b ) 
 
Finally, in the design of static output 
feedback control (SOF, u(t) = -Kyy(t)= 
-KyCx(t)) for eigenvalue/vector 
assignment, a really systematic design 
algorithm assigns n-m eigenvalues Λn-m 
and their left eigenvectors Tn-m first 
and then the remaining m eigenvalues Λm 
and their right eigenvectors Vm.  More 
explicitly, equation pair 
           
Tn-mA - Λn-mTn-m = LC and |[Tn-m':C']| ≠ 0 
                                ( 6.a ) 
 
is satisfied at the first step and then 
[8, 18] 
AVm - VmΛm  = BK and Tn-mVm = 0   ( 6.b ) 
 
is satisfied at the second step. The 
final answer is Ky = K(CVm)

-1. The second 
equations of (6.a) and (6.b) together 
guarantee the existence of (CVm)

-1 and 
that all n eigenvectors are linearly 
independent.  While Equation (6.a) is 
trivial because it is the same 
requirement of existing state 
observers,(6.b) is the exact dual of 
equation pair (3) and (5) (if Tn-m of 
(6.b) is replaced by C). 
      
To summarize, matrix equation pair (3) 
and (5) is the necessary and sufficient 
condition for an OFC to generate an SF 
control signal (4), the necessary and 
sufficient condition to realize the 
critical loop transfer function and 
robustness properties of SF control (4) 
of all systematic design (LTR), the 
necessary condition for an UIO and an 
FDI system, and the only non-trivial 
condition of the above eigenstructure 
assignment design.  Therefore this 
equation pair is by far the most 

important and most fundamental equation 
in state space control design. 
      
The purpose of this paper is to list 
together for the first time the above 
wide range of basic and important 
design applications under a single and 
simple mathematical requirement -- the 
matrix equation pair (3) and (5).  
Although a similar effort was made 
befor on equation (3) alone [20], the 
significance, necessity, and difficulty 
of adding (5) to (3) are obvious.  
 
2 The Existing Solution 
      
Almost all existing solutions of (3) 
and (5) also require |C| of (4) ≠ 0. 
However as shown in the entire Section 
1, |C| ≠ 0 is entirely unnecessary to 
all listed applications.  Because in 
non-trivial cases p is much less n, a 
desirable K can usually be satisfied by 
K = KC without |C| ≠ 0.  Requiring |C| 
≠ 0 actually implies that the SF 
control (K) is designed regardless of C 
(≡ [T':C']'), regardless of the 
information about the implementing 
controller (with key parameter T) and 
about the system output (with key 
parameter C), regardless of the 
information which is essential to the 
realization of the SF control when x(t) 
is not directly measurable, and 
regardless of the difference that x(t) 
is directly measurable or not.  Hence 
although this requirement is prevalent 
in the past four decades and is 
essential to "separation principle" 
[4], it is not really rational and it 
causes a critical disadvantage that the 
corresponding solution of (3) and (5) 
cannot be valid for most open loop 
system conditions as shown below. 
      
Because |C| ≠ 0 is also required, the 
existing solution of (3) and (5) 
requires the system (1) either has n-m 
stable transmission zeros or satisfies 
1). minimum-phase (all transmission 
zeros are stable); 2). rank(CB) = p; 
and 3). m ≥ p [16, 14].  Because 
systems with m ≠ p do not have 
transmission zeros generically and 
systems with m = p and rank(CB) = p 
always have n-m transmission zeros 
[17], the second set of three 
conditions is more general than the 
first condition. 
      
However, among this second set of three 
conditions, both minimum-phase and 



    

rank(CB) = p conditions are very 
restrictive.  Because system (1) and 
its transmission zeros are supposed to 
be generally and randomly given, and 
because the stable and unstable regions 
are almost equally sized, the chance 
that not even a single transmission 
zero among the n - m transmission zeros 
(systems with m = p generically have 
this many transmission zeros [17]) is 
unstable (or minimum-phase) is very 
small for non-trivial systems where n 
>> m. Condition rank(CB) = p is not 
satisfied by many practical systems 
such as airborne systems either.  To 
summarize, the existing solution of (3) 
and (5) (and |C| ≠ 0 ) does not exist 
for most systems. 
      
Among the applications listed in 
Section 1, the LTR problem also has an 
asymptotically approximate solution 
[5].  This solution still is valid for 
minimum-phase systems (1) only, and 
requires asymptotic large gain L which 
is neither analytical nor acceptable in 
a robust control system [19]. 
      
For this reason, even though the SF 
control (4) which is designed on the 
condition |C| ≠ 0 can itself be optimal 
and ideal, its critical robustness 
properties cannot be sufficiently 
realized in most of the actual feedback 
systems. 
      
The reason that condition |C| ≠ 0 has 
been added to (3) and (5) is that 
people did not study this equation pair 
directly -- they simply borrowed the 
existing solution of state observers 
(or (6.a), whose second part is |C| ≠ 
0) for the solution of this equation 
pair.  Another reason is that the 
decoupled solution T of (3) is not used 
to find the solution of (5).  When T is 
not decoupled, its number of rows must 
be fixed (= n if Ky=0 or n-m if Ky≠0) 
and thus condition |C| ≠ 0 cannot be 
eliminated. 
      
The only existing solution to this 
equation pair without condition |C| ≠ 0 
seems to be in a very minor part 
(Section 4) of [14], and in [12] and 
[22], while none of these papers 
offered any approximate solution. The 
solution of [14] is valid for m > p 
only which is less general than our 
solution (see Theorem 1 and its proof). 
The solution of [12] and [22] is the 
state observer of some subsystems of a 

decoupled similarity transformation of 
(1) called "special coordinated basis" 
(s.c.b).  Thus this solution is 
indirect and coupled. More critically, 
it is obvious and is accepted that the 
computation of s.c.b is very 
complicated and ill-conditioned [22].  
 
3 A Direct, Simple, Exact, and 
Decoupled Solution 
      
Before presenting a direct, simple, and 
exact solution of (3) and (5).  Two 
important additional requirements on 
(3) and (5) should be mentioned.  
 
The first is to maximize the row rank 
of matrix C.  Equation (4) shows that 
the higher this row rank, the less 
constrained the corresponding control 
of (4), the more the information Tx(t) 
that is generated by controller (2), 
and the better the achievement of any 
of the applications of Section 1. 
      
The second is to have a decoupled 
solution. Only for a decoupled solution 
can the number of rows of this solution 
be freely adjustable, and only then can 
an approximate solution be added to it 
and to incase rank(C) if the rank(C) of 
the exact solution is too low. 
 
Therefore, we will set the initial 
number (r) of rows of T to its maximal 
possible value n - m.  In case such a 
corresponding high row rank of C (= n) 
is not attainable (see section 2), the 
value r will be reduced because our 
solution is uniquely decoupled. 
      
Our solution does not impose 
restrictions on the eigenvalues of 
matrix F. This feature enables the 
specified dynamic performance of the 
compensator (2).  However, each stable 
transmission zero of system (1) should 
be matched by one of the eigenvalues of 
F.  As will be proved in the next 
section, this requirement is necessary 
for the existence of the solution of 
(3) and (5) if m ≤ p, and is also 
necessary to achieve the maximal 
possible row rank of C. 
      
Once the eigenvalues of F are selected, 
F will be set in Jordan form with real 
2x2 Jordan block for complex conjugate 
eigenvalue pair and kxk Jordan block 
for eigenvalues of multiplicity k.  
Other forms of F of the same 
eigenvalues are just a similarity 
transformation away from this F.  
However, only the Jordan form enables 



    

the complete decoupling of the solution 
of (3) and (5), corresponding to each 
of the Jordan blocks [20]. 
      
For simplicity of presentation, we will 
also assume without loss of generality 
that in (1), C = [C1: 0 ]  (|C1| ≠ 0).  
        
 Let      Ti =  ti1               ( 7 ) 
               | :   | 
                tik  
be the i-th block of rows of matrix T 
and corresponding to the i-th Jordan 
block Fi with dimension k, then the 
right n-m columns of (3) can be 
expressed as [20] 
      
[ ti1 : ... : tik ] 
[Ik ⊗  (A 0    - Fi' ⊗  0   ] = 0 ( 8.a ) 
            In-m          In-m 
where ⊗  stands for the Kronecker 
product and Ik stands for a k-
dimensional identity matrix. For 
example if k=1 and Fi = λi, then (8.a) 
becomes 
 
     ti (A - λiI)0    = 0       ( 8.b ) 
                 In-m 
Because the matrix of (8.a) has 
dimension kn x k(n-m) and because the 
form of C and the observability of (1) 
guarantee that this matrix is full 
column rank, there are km linear 
independent rows of [ ti1 : ... : tik ] 
that can satisfy (8.a). These rows will 
form a kmxkn dimensional matrix Di and 
       
[ ti1 :...: tik ] = ciDi  
                 ≡ ci[Di1: ... :Dik]( 9 ) 
 
where Dij∈ Rkmxn (j=1,...,k) and is the 
solution of the set of linear equations 
(8.a), and parameter ci∈ R1xkm is 
completely free as long as (3) is 
concerned.  Because (8.a) is completely 
decoupled ∀ i, matrices Di of (9) can be 
computed in complete parallel ∀ i. 
      
Now substitute (9) into (5) (TiB = 0 

∀ i), we have 
        
[ti1B :...:tikB] = ci[Di1B:...:DikB] = 0  
                                 ( 10 ) 
 
which will be satisfied by the free 
parameter ci. 
      
If the solution ci of (10) is not 
unique, which is true when m > p+1, 
then the remaining freedom of ci will 

be used to maximize the row rank of 
resulting matrix C.  This can be 
achieved using the existing general and 
systematic algorithms of [21] because 
(9) shares the same formulation of [21] 
     
Once ci and matrix T of (7) and (9) are 
determined, L equals 
 
          L = (TA - FT)ImC1-1    ( 11 ) 
                       0  
 
4 Analysis of This Exact Solution and 
An Approximate Solution 
 
Theorem 1: The non-zero solution of 
Section 3 satisfies (3) and (5), and is 
valid for any observable open loop 
system (1) if and only if it either has 
more outputs than inputs (m > p) or has 
at least one stable transmission zero. 
 
Proof: It is obvious that based on the 
form of C, satisfying (7) to (9) 
implies that the right n-m columns of 
(3) are satisfied, and satisfying (11) 
implies that the left m columns of (3) 
are satisfied.  This solution does not 
require any other conditions on (1) 
except its observability, and has its 
freedom explicitly expressed as 
parameter ci. 
      
It is obvious that if m > p, then the 
dimension (km x kp) of matrix [Di1B: ... 
:DikB] of (10) implies that (10) and 
therefore (5) can always be satisfied 
by a nonzero ci. 
      
If m ≤ p and if (and only if) system 
(1) has a stable transmission zero zi, 
then there always exists a nonzero row 
vector say [ti:li] such that 
 
          [ti:-li]A - ziI: B  = 0( 12 ) 
                    C    : 0         
 
Because zi is matched by an eigenvalue 

λi of matrix F, the left n columns of 
(12) imply that [ti:li] is the 
respective i-th row of solution matrix 
T and L of (3) corresponding to λi. The 
right p columns of (12) imply that ti 
satisfies the i-th row of (5).  This 
argument also demonstrates that 
matching eigenvalues of F with the 
stable transmission zeros of (1) is 
necessary for the existence of the 
solution to (3) and (5) if m ≤ p.  
      
Because our solution to (3) and (5) is 
completely decoupled ∀ i (corresponding 



    

to each Jordan block Fi of F), the 
above existence of the i-th row of 
solution sufficiently implies the 
existence of the whole solution.     
      
The condition of at least one stable 
transmission zero when m ≤ p is not 
mentioned in [14]. The necessity of 
this condition (at m ≤ p) is 
incorrectly questioned by [12], and is 
not invalidated by the extremely rare 
situation of [12] (Example 1, where one 
row of the 2x2 transfer function matrix 
of (1) is zero -- so that every value 
is a transmission zero of (1)). 
  
Theorem 1 implies that our solution of 
Section 3 does not have the strict 
restrictions of minimum-phase and 
rank(CB)=p at all (see Section 2).  
Because systems (1) with m = p 
generically have n - m transmission 
zeros [17], the chance that such 
systems have at least one stable 
transmission zero is very high (see 
Section 2).  Hence the exact solution 
of this paper is general for all 
systems with m > p and almost all 
systems with m = p, and hence is 
general for almost all systems. 
 
Claim 1: It is obvious that besides the 
eigenvalue selection freedom of F, the 
entire remaining freedom after (3) is 
represented by parameter ci [20, 21].  
It is also obvious that ci is fully 
used to satisfy (5) in the form of 
(10), and is fully used to maximize the 
row rank of resulting matrix C as 
described by the paragraph just 
preceding equation (11). 
 
Theorem 2: If the system (1) satisfies 
1). minimum-phase, 2). rank(CB) = p, 
and 3). m ≥ p, then the solution of 
Section 3 also satisfies |C| ≠ 0 (or 
rank(C) = maximal n). 
 
Proof: The above three conditions imply 
the existence of unknown input 
observers which are identified by 
conditions (3), (5) and rank(C) = 
maximum n (see [16]).  Because the 
eigenvalues of F of our solution are 
similarly selected as in the unknown 
input observer design [16], the proof 
follows directly from Claim 1.   
      
This theorem shows that the existing 
result of UIO and exact LTR state 
observers is only a special case of our 
solution of Section 3 (when rank(C) can 
reach its maximum value n). 

 
Claim 2: Even if the system (1) does 
not satisfy either of the two 
conditions of Theorem 1, our solution 
still satisfies (3) (see the first part 
of the proof of Theorem 1). Our 
solution can also satisfy (5) 
approximately in least square sense 
because both (5) (and (10)) are in the 
form of a set of linear equations.  
      
This claim implies that the approximate 
solution of (3) and (5) of this paper 
can be extended to all systems (unlike 
the existing asymptotical LTR result 
which is still limited to minimum-phase 
systems). In addition, the nature of 
the least square problem of a set of 
linear equations guarantees that this 
approximate solution is quite 
analytical and has finite gain only 
(unlike the existing asymptotic LTR 
result described in Section 2). 
      
This approximate solution is very 
useful in case rank(C) of the exact 
solution is not high enough. As 
mentioned at the beginning of Section 
3, a low rank(C) of (4) implies a weak 
(more constrained) SF control and less 
information Tx(t) which is generated by 
the observer or failure detector [13]. 
 For example arbitrary pole assignment 
by this SF control is not possible if p 
x rank(C) ≤ n [23]. Because our 
approximate solution T satisfies (3) 
exactly and is decoupled, some of its 
rows (of T) can be simply added to the 
exact solution and to increase rank(C). 
This useful approximate solution is not 
offered at all by [12], [14], and [22] 
because of the indirect and coupled 
nature of their solution.  
 
5 Conclusion 
      
Equation pair (3) and (5) is necessary 
and sufficient for an output feedback 
compensator to generate a state 
feedback control signal Kx(t) of (4), 
and necessary and sufficient to realize 
(when x(t) is not directly measurable) 
the critical loop transfer function and 
robustness properties of systematically 
designed state feedback control. This 
equation pair is also necessary for the 
basic result of unknown input observer, 
for a failure detection and isolation 
system, and for a really systematic 
eigenvalue/vector assignment design 
algorithm for static output feedback. 
Hence this matrix equation pair is 
fundamentally important in state space 
control systems design theory. 



    

Almost all existing solutions of this 
equation pair attach a difficult and 
unnecessary additional condition |C| ≠ 
0, and are invalid for most systems. 
Other existing solutions are indirect, 
coupled, and very unreliable in 
computation. However, Section 3 
presented a simple, exact, direct, and 
decoupled solution to this equation 
pair which is general for most systems 
(Theorem 1).  It is proved in Theorem 2 
that our solution also satisfies |C| ≠ 
0 whenever the solution exists. In 
addition, Claim 2 shows that the 
approximate version of our solution is 
much more general, analytical, and 
practical than the existing ones. This 
approximate solution also is, uniquely, 
decoupled and satisfying (3) exactly.  
These properties make our approximate 
solution uniquely useful because this 
solution can be simply added to the 
exact solution. The result of this 
paper is based uniquely on a decoupled 
solution of (3) [20]. 
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