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Abstract:
Equation TA - FT = LC (F is stable) is
necessary and sufficient for the output

of a feedback compensator (F,L,Ky,K) to
converge to a state feedback (SF)
signal Kx(t) for a constant K, where
(A/B,C0) is the open loop system and

TB is the conpensator gain to the open
| oop systeminput. Thus equation TB = 0
is the defining condition for this
feedback conmpensator to be an output
f eedback conpensat or. Equation TB = 0

is also the necessary and sufficient
condition to fully realize the critical
loop transfer function and robust
properties of SF control if K is
systematically designed. Furthernore,
because B is conpatible to the open

| oop system gain to its unknown inputs
and its input failure signals, TB = 0
is also necessary for unknown input
observers and failure detection and
i sol ation systens. Fi nal |y, this
equation pair is the key condition of a
really systematic and explicit design
algorithm for eigestructure assignnent
by static output feedback control.
Thi s paper presents a general and exact
solution which is uniquely direct,
sinple, and decoupled, to this matrix
equation pair. An approximate solution
which is general and sinple, and which
can be sinply added to the exact
solution to increase the row dinension
of this solution, is also presented.

1 The Matrix Equation Pair and |Its
Appl i cations
Consi der the Ilinear time-invariant

i rreduci bl e system

d/dtx(t) = Ax(t) + Bu(t) ( 1.a)
y(t) = &(t) (1.b)
and its gener al l'i near f eedback
control |l er
d/dtz(t) = Fz(t) + Ly(t) + TBu(t)(2.a)
wt) = -Kez(t) + -Ky(t) (2.b)

where x, u,
di nensi onal

and z aren, p, m andr

ya
respectively.

tine signals,

It is well known that for z(t) O Tx(t)
for a constant T,

TA - FT = LC (F is stable) ( 3)
is t he necessary and suf fici ent
condition [1]. From (1.b) and (2. b) it
is obvious that (3) is also the

necessary and sufficient condition for

the controller output

Wt) O -[KzKI[T:C]"x(t) =
= -Kx(t)

-K C x(t)
(4)
that if (3)

t he feedback
t he

It is also proved in [2]
hol ds, then the poles of
system of (1-2) are formed by
el genval ues of F and A-BK

The main problem which has limted the
practical application of state space
control theory is that the |oop
transfer function Li(s) (=-K(sl-A) 'B)
and robustness properties of the state
feedback (SF) control of (4) cannot be
generally realized by the controller
(2) [3, 4]. The necessary and
sufficient condition to realize Li(S)
by (2) is Kgsl-F)'*TB = 0 s [5].
Because K; and K, of (4) nust be free
for any systematic design of K and
because (sl-F)'' is nonsingular, the
necessary and sufficient condition to
realize Li(s) (called "loop transfer
recovery, LTR') is [6-8]

TB=0 ( 5.a)
It is obvious that (5.a) is the
defining condition for the feedback
controller (2) to be an output feedback

conpensator (OFC). Thus only OFC can
realize fully the robustness property
of SF control (if that OFC can satisfy

(3) [13]).

In practice the plant system (1.a) is
usually nodeled wth additional but
undesirable input term (or terns) d(t),
where d(t) is an unknown tinme function.



The controller (2) which estimates x(t)

when d(t) # 0 is called an "unknown
i nput observer" (UOQ [9]. Fai lure
detection and isolation (FD) systens
need to detect and isolate the non-zero

occurrence of the failure signal d(t)
among a nunber of different terns of
d(t), and wusually need a band of
detectors of structure (2). It is
required that each detector has its
state z(t) O Tx(t) even though its
designated term of d(t) z O [10-11,
13]. Let wus assune wthout |ose of

generality that B is also the gain of
system (l.a) to d(t). Then it is
obvi ously necessary in both UOs and

FDI systens that in addition to (3)

B = 0. ( 5.b)
Finally, in the design of static output
feedback control (SCF, u(t) = -Ky(t)=
-KCx(t)) for ei genval ue/ vect or
assignment, a really systenatic design

al gorithm assigns n-m eigenvalues Anm
and their left eigenvectors Tnn, first

and then the renai ning m ei genval ues Am

and their right eigenvectors Vpn Mor e
explicitly, equation pair
Tn—nA - /\n—an-m =

LC and |[Tom:C1]|] # O
( 6.a)

is satisfied at the first step and then
[8, 18]

AVm = Vn'/\m = BK and Tn. me = O ( 6. b )
is satisfied at the second step. The
final answer is K, = K( CV,)'. The second
equations of (6.a) and (6.b) together
guarantee the existence of (CVyp) ' and
that all n eigenvectors are linearly
i ndependent . Wil e Equation (6.a) is
trivial because it is the sane
requi rement of exi sting state
observers, (6.b) is the exact dual of
equation pair (3) and (5) (if T,m of
(6.b) is replaced by C.

To summarize, matrix equation pair (3)
and (5) is the necessary and sufficient
condition for an OFC to generate an SF
control signal (4), the necessary and
sufficient condition to realize the
critical loop transfer function and
robust ness properties of SF control (4)
of all systematic design (LTR), the
necessary condition for an UO and an
FDI system and the only non-trivial
condition of the above eigenstructure
assi gnment  desi gn. Therefore this

equation pair is by far the nost

i mportant and nost fundament al
in state space control design.

equat i on

The purpose of this paper is to list
together for the first tine the above
wide range of basic and inportant
design applications under a single and
sinmpl e mat hemati cal requirenent t he
matrix equation pair (3) and (5).
Although a simlar effort was nade
befor on equation (3) alone [20], the
significance, necessity, and difficulty
of adding (5) to (3) are obvious.

2 The Existing Sol ution

Almost all existing solutions of (3)
and (5) also require | of (4) gz O.
However as shown in the entire Section
1, |9 # 0 is entirely unnecessary to
all listed applications. Because in
non-trivial cases p is much less n, a

desirable K can usually be satisfied by
K= KCwithout | # 0. Requiring |Q

# 0 actually inplies that the SF
control (K) is designed regardless of C
(= [T:C1"), regardl ess of t he
informati on  about the inplenenting
controller (with key paraneter T) and
about the system output (with Kkey
par anet er O, regardl ess of t he
information which is essential to the
realization of the SF control when x(t)
is not directly nmeasur abl e, and
regardl ess of the difference that x(t)
is directly neasurable or not. Hence
although this requirenent is preval ent
in the past four decades and is
essential to "separation principle"
[4], it is not really rational and it
causes a critical disadvantage that the

correspondi ng solution of (3) and (5)
cannot be valid for nost open |oop
system condi ti ons as shown bel ow.

Because | # 0 is also required, the
existing solution of (3) and (5)
requires the system (1) either has n-m
stable transnission zeros or satisfies
1). m ni mum phase (all transm ssion
zeros are stable); 2). rank(CB) = p;
and 3). m > p [16, 14]. Because
systems with m # p do not have
transm ssion zeros generically and
systems with m = p and rank(CB) = p
always have n-m transmission zeros
[17], t he second set of three
conditions is nore general than the

first condition.

However,
condi ti ons,

anmong this second set of three
both  m ni nrumphase and



rank(CB) = p conditions are very
restrictive. Because system (1) and
its transmission zeros are supposed to
be generally and randomy given, and
because the stable and unstabl e regions
are alnost equally sized, the chance
that not even a single transm ssion
zero anong the n - mtransm ssion zeros
(systems with m = p generically have
this many transmission zeros [17]) is
unstable (or mnimmphase) is very
small for non-trivial systens where n

>> m Condition rank(CB) = p is not
satisfied by nmany practical systens
such as airborne systens either. To

sunmari ze, the existing solution of (3)

and (5) (and |Qg # 0 ) does not exist
for nost systens.

Anong the applications listed in
Section 1, the LTR problem al so has an
asynptotically appr oxi nat e sol ution
[5]. This solution still is valid for
m ni num phase systens (1) only, and
requires asynptotic large gain L which
is neither analytical nor acceptable in
a robust control system][19].

For this reason, even though the SF
control (4) which is designed on the

condition | # O can itself be optinal

and ideal, its critical r obust ness
properties cannot be sufficiently
realized in nost of the actual feedback
syst ens.

The reason that condition |C # 0 has
been added to (3) and (5) is that

people did not study this equation pair

directly -- they sinply borrowed the
existing solution of state observers
(or (6.a), whose second part is | 2z
0) for the solution of this equation
pair. Another reason is that the
decoupl ed solution T of (3) is not used
to find the solution of (5). Wen T is
not decoupled, its nunber of rows nust
be fixed (= n if K=0 or n-mif Kz0)
and thus condition |C # 0 cannot be
el i m nat ed.

The only existing solution to this
equation pair without condition |§ # O
seems to be in a very mnor part
(Section 4) of [14], and in [12] and
[22], while none of these papers
offered any approxinmate solution. The
solution of [14] is valid for m > p
only which is less general than our

solution (see Theorem 1 and its proof).
The solution of [12] and [22] is the
state observer of sonme subsystens of a

decoupled simlarity transformation of

(1) called "special coordinated basis"
(s.c.b). Thus this solution is
indirect and coupled. Mre critically,

it is obvious and is accepted that the

conput ation of s.c.b is very
conplicated and ill-conditioned [22].

3 A Drect, Si npl e, Exact , and
Decoupl ed Sol ution

Before presenting a direct, sinple, and
exact solution of (3) and (5). Two
inmportant additional requirenments on
(3) and (5) should be nentioned.

The first is to nmaximze the row rank
of matrix C Equation (4) shows that
the higher this row rank, the Iless
constrained the corresponding control
of (4), the nmore the information Tx(t)
that is generated by controller (2),
and the better the achievenent of any

of the applications of Section 1.

The second is to
solution. Only for a decoupl ed sol ution
can the nunber of rows of this solution
be freely adjustable, and only then can
an approxinmate solution be added to it
and to incase rank(Q if the rank(C of
the exact solution is too | ow

have a decoupl ed

Therefore, we will set the initial
nunber (r) of rows of T to its naxinal
possible value n - m In case such a
correspondi ng high row rank of C (= n)
is not attainable (see section 2), the
value r wll be reduced because our
solution is uniquely decoupl ed.

Qur sol ution does not i npose
restrictions on the eigenvalues of
matrix F. This feature enables the
specified dynanmic performance of the

conpensator (2). However, each stable
transm ssion zero of system (1) should
be matched by one of the eigenval ues of

F. As will be proved in the next
section, this requirenent is necessary
for the existence of the solution of
(3) and (5) if m < p, and is also
necessary to achieve the naxinal

possi bl e row rank of C.

Once the eigenval ues of F are sel ected,
F will be set in Jordan formwth real
2x2 Jordan bl ock for conplex conjugate
ei genvalue pair and kxk Jordan bl ock

for eigenvalues of mltiplicity k.
Q her forns  of Fof the sane
ei genvalues are just a simlarity
transformation away from this F.

However, only the Jordan form enables



the conpl ete decoupling of the solution
of (3) and (5), corresponding to each
of the Jordan bl ocks [20].

For sinplicity of presentation, we wll
al so assune without loss of generality
that in (1), C=[C: 0] (]G] # 0).
Let (7)

T =|DFil ID

Otik O
be the i-th block of rows of matrix T

and corresponding to the i-th Jordan
block F with dimension k, then the
right n-m colums of (3) can be

expressed as [ 20]

[ tiy: tik |
[IkO(A® O-FR 0o 0d=0¢( 8a)
) n-n0 ) n-n0

where [ stands for the Kronecker
product and |y stands for a k-
di mensi onal identity matri x. For
exanple if k=1 and K = ), then (8.a)
becones

ti (A- N1DO O=0 (8b)
i n-nlJ
Because the matrix of (8.a) has

dinension kn x k(n-n) and because the
form of C and the observability of (1)

guarantee that this mtrix is full
colum rank, there are km |linear
i ndependent rows of [ ti1 : ... : tik ]
that can satisfy (8.a). These rows will

forma knxkn dinensional nmatrix O and

[ tiz ... tik ] = ciD

=ci[D Dl ( 9)
where D;OR™" (j=1,...,k) and is the
solution of the set of linear equations
(8.a), and paraneter ¢ R is
conpletely free as long as (3) is
concerned. Because (8.a) is conpletely
decoupled i, matrices D of (9) can be
conputed in conplete parallel 0.
Now substitute (9) into (5 (TiB =0
0i), we have
[tisB :...:tikB] = ci[DiB...:DkB] = 0

(10)

which will be satisfied by the free
par ameter c;.
If the solution ¢ of (10) is not
uni que, which is true when m > p+l,
then the remaining freedom of ¢; wll

be used to maximze the row rank of
resulting matrix C This can be
achi eved using the existing general and
systematic algorithms of [21] because

(9) shares the same fornulation of [21]

Once ¢i and nmatrix T of (7) and (9) are
determ ned, L equals

L=(TA- F oG
00

4 Analysis of This Exact
An Approxi mat e Sol ution

(11)

Sol ution and

Theorem 1: The non-zero solution of
Section 3 satisfies (3) and (5), and is
valid for any observable open |oop
system (1) if and only if it either has
nore outputs than inputs (m> p) or has

at | east one stable transm ssion zero.

Proof: It is obvious that based on the
form of C  satisfying (7) to (9)
inmplies that the right n-m colums of

(3) are satisfied, and satisfying (11)
implies that the left m colums of (3)
are satisfied. This solution does not

require any other conditions on (1)
except its observability, and has its
freedom explicitly expressed as
par ameter c;j.

It is obvious that if m> p, then the
di nensi on (km x kp) of matrix [DB: ...
:DkB] of (10) inplies that (10) and

therefore (5)
by a nonzero c;j.

can always be satisfied

If m< p and if (and only if) system
(1) has a stable transm ssion zero z;,
then there always exists a nonzero row
vector say [ti:l;] such that

BpOo=o0( 12)

[tiz-1i]@A - zil:

o C

Because z; is matched by an eigenval ue

A of matrix F, the left n colums of
(12) inply that [tizli] is the
respective i-th row of solution matrix
T and L of (3) corresponding to ). The
right p colums of (12) inply that t;
satisfies the i-th row of (5). Thi s
ar gunent al so denonstrat es t hat
matching eigenvalues of F with the
stable transnmission zeros of (1) is
necessary for the existence of the

solution to (3) and (5) if m< p.

Because our solution to (3) and (5) is
conpl etely decoupled 0O (corresponding



to each Jordan block F of F), the
above existence of the i-th row of
sol ution sufficiently implies t he

exi stence of the whol e sol ution.

The condition of at |east one stable
transm ssion zero when m < p is not

nentioned in [14]. The necessity of
this condition (at m < is
incorrectly questioned by [12], and is

not invalidated by the extrenely rare
situation of [12] (Exanple 1, where one
row of the 2x2 transfer function matrix
of (1) is zero -- so that every value
is atransmssion zero of (1)).

our solution of

have the strict
m ni mnum phase and
rank(CB)=p at all (see Section 2).
Because systens (1) wth m = p
generically have n - m transm ssion
zeros [17], the —chance that such
systems have at least one stable
transmssion zero is very high (see
Section 2). Hence the exact solution
of this paper is general for all
systems with m > p and alnost all
systens with m = p, and hence is
general for alnost all systens.

Theorem 1 inplies that
Section 3 does not
restrictions of

is obvious that besides the
t he

Caiml: It
ei genval ue sel ection freedom of F,
entire remaining freedom after (3) is
represented by paraneter c¢; [20, 21].
It is also obvious that ¢ is fully
used to satisfy (5 in the form of
(10), and is fully used to maxim ze the
row rank of resulting matrix C as
descri bed by t he par agr aph j ust
precedi ng equation (11).

Theorem 2:
1).

If the system (1) satisfies
m ni num phase, 2). rank(CB) = p,

and 3). m > p, then the solution of
Section 3 also satisfies | z 0 (or
rank(C = maximal n).

Proof : The above three conditions inply
t he exi stence of unknown i nput
observers which are identified by
conditions (3), (50 and rank(Q =
maxi mum n (see [16]). Because the
ei genvalues of F of our solution are

simlarly selected as in the unknown
i nput observer design [16], the proof
follows directly fromdaim1l. 0O

This theorem shows that
result of UO and exact LTR state
observers is only a special case of our
solution of Section 3 (when rank(C can
reach its maxi num val ue n).

the existing

Caim 2: Even if the system (1) does
not satisfy ei t her of t he two
conditions of Theorem 1, our solution

still satisfies (3) (see the first part
of the proof of Theorem 1). CQur
sol ution can al so satisfy (5)
approximately in least square sense

because both (5) (and (10)) are in the
formof a set of |inear equations.

This claiminplies that the approxi nate
solution of (3) and (5) of this paper
can be extended to all systens (unlike
the existing asynptotical LTR result
which is still limted to mni mum phase
systens). In addition, the nature of
the |least square problem of a set of
linear equations guarantees that this
appr oxi mat e sol ution is quite
analytical and has finite gain only
(unlike the existing asynptotic LTR
result described in Section 2).

This approximate solution
useful In case rank(Q of
solution is not hi gh  enough. As
nentioned at the beginning of Section
3, alowrank(Q of (4) inplies a weak
(nmore constrained) SF control and |ess
information Tx(t) which is generated by
the observer or failure detector [13].
For exanple arbitrary pole assignnent

is very
the exact

by this SF control is not possible if p
x rank(Q < n [23]. Because our
approximate solution T satisfies (3)
exactly and is decoupled, sone of its

rows (of T) can be sinply added to the

exact solution and to increase rank(Q.
This useful approximate solution is not
offered at all by [12], [14], and [22]
because of the indirect and coupled
nature of their solution.

5 Concl usi on

Equation pair (3) and (5) is necessary

and sufficient for an output feedback
conpensat or to generate a state
feedback control signal Kx(t) of (4),

and necessary and sufficient to realize
(when x(t) is not directly measurable)
the critical loop transfer function and
robust ness properties of systematically
designed state feedback control. This
equation pair is also necessary for the
basic result of unknown input observer,
for a failure detection and isolation
system and for a really systenmatic
ei genval ue/ vect or assi gnment design
algorithm for static output feedback.
Hence this matrix equation pair is
fundanmentally inportant in state space
control systens design theory.



this
and

Almost all existing solutions of
equation pair attach a difficult

unnecessary additional condition |Q 2z
0, and are invalid for nost systens.
O her existing solutions are indirect,
coupl ed, and very unreliable in
conput ati on. However , Section 3
presented a sinple, exact, direct, and
decoupled solution to this equation
pair which is general for nobst systens
(Theorem 1). It is proved in Theorem 2

that our solution also satisfies | #
0 whenever the solution exists. In
addi ti on, Gaim 2 shows that the
approxi mate version of our solution is
much nore general, analytical, and
practical than the existing ones. This
approxi mate solution also is, uniquely,
decoupl ed and satisfying (3) exactly.
These properties mnmake our approxinate
solution uniquely useful because this
solution can be sinply added to the
exact solution. The result of this
paper is based uniquely on a decoupled
solution of (3) [20].
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