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Abstract p) = po(x) + > (kin +0k;) pi(x), z€R™  (4)
i=1

In this paper the robust positivity of polynomials under Coerﬂlherekm denotes the known nominal value of the i-th parame-

ficient pe_rturbation is investigated. This robust pqsitivity 0rfer andik; represents the uncertainty at the i-th parameter. The
polynor_mals can be used for polyno_mlal systems in order itr(K/estigations in this paper are necessary, for example, when
determine the robust a;ymptotlc S.tabl|lt)_/ of Fhe system. We alyzing global asymptotical stability of polynomial dynam-
sume that the polynomials under investigation depend I|neaf M| systems [4], [10]. In this paper we will use the theorem

on sorge'param.eters. o;:r aim if) tofdete;mir:\ehthe F:""ram‘_%}feléhlich and Zeller [3] and develop an algorithm in order to
_pertlulr) ?lt'on region as a yphercrL]J €, orv]\c/ Iﬁl' th € de ynl?ml mpute the maximum domain as a hypercube in the parame-
IS %_O a )r/]_pos_|t|ve.r:/_Ve rl:set et eot;Iem of E Ichan ﬁe er rt‘ér space for which a given polynomial is globally positive. We
achieve this aim. This theorem enables us to give conditions g« this region of the parameter space as follows.

the parameter space for global positivity. These conditions are

linear inequalities. By means of these inequalities we calculat@ := {0k | —e < 0k; < e, i=1,...,r}, 0k e€R" (5)
inner and outer approximations to the relevant perturbation re- . . . .

) o o wheree is a positive number anf is a hypercube in the pa-
gion which is a hypercube. One nontrivial example ConCIUd?ésmeter space for which the polynomialz) (4) is globall
the paper and shows the effectiveness of the presented methlg)(cjtls.i five P poly v 9 y

_ p(x) >0 Ve e R™, ViokeQ (6)
1 Introduction We introduce first the theorem of Ehlich and Zeller and then
In this paper the problem of global positivity of polynomial§liscuss polynomial homogenization which is necessary for the

depending linearly on uncertain parameters [1], [2], [6], [APPlication of thisnfheorem. By means of homogenization we
will be dealt with. Generally a polynomial can be written as reduce the whol&™-space { is the number of the variables in
the polynomial) into a hyperrectangle in tR& ! space. If the

) homogenized polynomial is positive on a subset of the bound-
ary of the hyperrectangle, the original polynomial is globally
B positive. We will prove this property and use it in order to de-
wherez*: =[]/, 7" is the i-th monomial of the polynomial termine the parameter regidd for which the polynomial is
p(x), pa, is the coefficient of the i-th monomial andis the glopally positive. We present our algorithm and show an ex-

number of the monomials in the polynomial. We define th@mple. Conclusions and an outlook will finish the paper.
degree of the i-th monomial and the degree of the polynomial

S
p(z) = Zpai %, v eR™
i=1

as .
ple) 2 Theorem of Ehlich and Zeller
la; | = Z Qij (2) Inthis section we will closely follow the corresponding section
j=1 in [3], [8], [9]. In the following, J = [a, b] denotes a nonempty
degp(x) = maz|a;|, i=1,...,s (3) compact real interval witth C R. We define the set of Cheby-

. L . . chev points inJ for a given natural numbe¥ > 0b
respectively, wherey;; is either a positive entire number or P 9 y

zero. Such a polynomial that depends linearly on some pa- (N, J) = {1, 22, ecy, Tiy ooy, TN } @)



N 1 o (KT

where p;{max < 2{(K+1)pfn(¢]1\2u,) - (K_]')pngz]:i“])} (17)
— 2t —1

T; = a+b+b acos(<Z >7T> (8)

2 2 2N with

m
For a continuous function defined on a sef we define the K = C (11\1;) (18)
norm i=1 i

I .
IRll" = max |h(z)] ©®)  under the conditionsV; > n;, i = 1,...,m, are valid. We use
which is the usual maximum norm. Lgt, be the set of poly- and apply the theorem of Ehlich and Zeller in the next section.

nomialsp in one variable withieg p = n. Then the following We will show that if a homogenized polynomial is positive on a
inequality subset of the boundary of the hyperrectangle, the original poly-

b’ < C (g) || (10) nomial is globally positive. By means of this property the un-
P - N/ P certain parameter regidn for which the polynomiap(x) (4)
with N > n and is globally positive can be determined.
—1
Clq) = [COS(qg)} , 0<g<1, (11) 3 Approximation Method

is valid for everyp € p,, and every nonempty compact intervairhe theorem of Ehlich and Zeller helps us analyzing the posi-

J. Inequality (10) is remarkable because the ndjpti(V-7) tivity of polynomials on finite intervals. Investigating the pos-
on the right hand side of (10) depends on the valugsaifthe tVity Of & polynomialp(x) onR™ is our goal and we have to

Chebychev points only. This result was given by Ehlich arflp some calculations in order to apply the theorem of Ehlich
Zeller in [3]. Using (10) the following inequalities and Zeller in this case. The main tool is homogenization, i.e.

for every polynomialp(x) we introduce the polynomigl(x)

1 n z(N, which is defined according to the following expression.
Jos C n (N.J)
pnw,n — 2 { (C<N) +1)pmzn " "
~ — deg p(z) 1 m
Lo, ..y Ty) = X — ..., —) ,(19
<C<]T\L])—1)pﬁ§é\§;”}, (12) p(zo ) 0 P(xo 1?0) 19)
plz) = Do, %, x € R™H (20)
thee < 2L (C(Z)+1)pn 2
max — 2 N max
(C (ﬁ) B 1) 2(N,J) (13) Each monomial of the polynomiglx) has the same degree
N mn
|&; | = degp(z), i=1,...,s. (21)

which are valid for every € p, and N > n are given by
Gartel in [5]. In the inequalitieg;,;, := min,csp(z) and Here| & | represents the degree of the i-th monomial in the
Pihax 1= MaXzey p(x) are the minimum and maximum pfin - polynomialj(x). The positivity ofp(z) andp(z) is related by

the setJ respectively. Similarlypil(fz"]) := minge,(n,s) p(x) the following implication.
andp‘ﬁ@(ﬁg” = MaXyeq(n,s) P(x) are the minimum and max-
rex 5 ~ ) m+1 .
imum of p in the set of Chebychev points respectively. For P(&) > 0 Vz € R with 29 > 0 =
trigonometric polynomials and for rational functions similar in- p(z) > 0 Vo eR™ (22)

equalities are given by &tel [5].

: " _ _ .. Thus, in order to tegt(x) for positivity in R”™ we can alterna-
The inequalities (10),(12),(13) are valid for polynomials in Onﬁ'vely testj(x) for positivity in R+ under the further condi-
variable. They are extended to polynomials of several variabﬁén o > 0. The following equation

using the following replacements. The intervak replaced by
N ~ _ de x) =~
J = [a1,b1] % [a2,ba] X -+ X [am, bm] (14) pAz) = N9PW 5(z) . VAER (23)

which represents a hyperrectangle. For the degreewith is valid due to homogeneity gf(x). It follows that if A > 0,
respect to the-th variablez; we introduce the abbreviationy thenp(A z) andp(z) have the same sign. If we choose
and the set of Chebychev points.iris given by .

JZ(N, j) = x(Nh[alabl]) Xoeee Xx(N'rna[anubm]) (15) A= (l(r)naxm ‘ €Ty | ) ) (24)

where N; is the number of Chebychev points for thh vari-

able; in the intervalla,, b;]. Then the inequalites the vector(\ z) is on the boundary of the hypercubedefined

by

j 1 o(N,J 7,7
Pinin > 2{(K+1)pnfm ) - (K—l)pﬂé\é"”} 18) g .= Hy UHFU---UH; UHFU-- UH,, UH;, (25)



with with

Hi = {zeR™"|z=-1, -1<<1, al = (K41)pe(x) — (K—1)pi(z;)
i#j, i=0,...,m} (26) t=0,...,7, i,j=1,...,N  (36)
‘L a1 B o< wheredk;, t = 1,...,r, denotes the uncertainty at the pa-
Hi = {zeR | zj=+1, 1<z <1, rameterk, in the polynomialp(z) anda;’, t = 0,...,r,
i#j, i=0,...,m}. (27) 4,5 = 1,...,N, is constant. For the values of thd;,’s

that satisfy theV2 inequalities in (35) for each hyperrectangle
Ho,H{y,Hyy, ... H o H, ., the polynomialp(z) is globally

positive definite. From the inequalities (35) we get an inner
approximation to the convex set

Thus the test ofi() for positivity in R™*! under the condition
xo > 0 is reduced to test positivity gi(x) of that part of the
boundary ofH for which 2y > 0 is fulfilled. This boundary
consists of a finite number of hyperrectangles defined by

HO = {IER”L+1|$0:17—1S$1‘§1, Q:{ék\fsgéklgs, izl,...,r}. (37)
i=1,...,m} (28) Because the inequalities (35) are the sufficient conditions for

the strict positivity of the polynomigb(z). An outer approxi-
mation tof? is achieved if only theV inequalities

Hf, = {zeR™ | z;=F1, 0<z0< 1,

—1§$l§17 275], i:l,...7m}, ;5(1'1) = ﬁr(l'l)ékr + ﬁr,l(xi)dk,«,l —+ ...

j = 1,...,m (29) +ﬁ1($1)5k1 + ﬁo(xl)
and thus the theorem of Ehlich and Zeller can be applied to 4 ,
every part of this boundary. Inequality (16) is used to ensure = a, 0k, + a;_y 0k,_1 + ...
the positivity of (z) on Ho,H{y,Hy, ... H o H, . If for Yl ok +al >0, i=1,....N (38)
every hyperrectanglé € {Ho, Hyy), Hyg, .., Hho, Hyoo ) in
this boundary the inequality for each hyperrectanglly, Ho, Hyg, . - - ,H 0, H ., are taken

. o into account at the Chebychev points. The total number of the
(K+1) "D (k-1 > 0 (30) inequalities for the outer approximation(@m + 1)N. Since

the inequalities (38) are the necessary conditions for the strict
positivity, by means of the solutions of the inequalities in (38)
we get an outer approximation to the $&t Thus, using the
theorem of Ehlich and Zeller we are able to compute inner and
outer approximations t.

is fulfilled, the polynomialp(z) is positive definite on the
boundary of the hyperrectangleli**! for whichz is greater
than zero. Due to (22) and (23) the polynomiét) is global
positive inR™. In case that

K+ 1) 5D (k@) s o0 (31

Pinin Praz

The inequalities in (35) and (38) are in the form
on the set/, the inequalities

(K+1) p(x;) — (K=1)p(a;) > 0, i,j=1,... ,N (32)

ar 0k, + a,—10k,—1 + ... + a1 0k1 + ag > 0 (39)

where the coefficient;, j = 0,...,r, is known and constant.

are valid for alli, j due to fact that Because it is a function of the Chebychev points on the
- - . hyperrectangle&ly, Hi, Hry, . . . ,H b o H o
FE NN < ) < WD 1L N (33) 1010 morHmo

min Pmazx

Our aim in this paper is to determine the getwhich is

the largest hypercube in the parameter space so that for the
values of the parameter vecték € ) the polynomialp(x)

| is globally positive. The hypercube has the origin of the
alent to (30). Since there at@m + 1) hyperrectangles t0 be o rameter spack” as its center. To do this it is necessary

. .y e 2
checked, the total number of the inequalitie$ds: + 1)N™. {, harametrise the parameter uncertaingies . . ., 6k, along

If the polynomialp(x) depends linearly on some uncertain pgs, o or rays starting at the origin and passing through the
rametersy, ..., k- asin (4), then the polynomigl«) can be hypercube’®" vertices.

written as

wherez;, z; € X(N,J) are two Chebychev points in the
same hyperrectangle. Fof Chebychev points in one hyper-
rectangle we hav&/2 inequalities of type (32) which are equiv-

~ _ i R Before we do this we want to define the function
Blz) = Polx) + Y Okipi(x) (34)

i=1 by div by (40)
and the inequalities (32) can be represented as whereb, is a natural number arid is a natural number or zero.

a6k, + 'l Sky_y + ... + a7 Sk + ai’ > 0 The numbeb, can be described according to the numieas

. i,j=1,...,N (35) by = c1 b1 + co (41)



wherec; andcy are two positive entire numbers or zero. Thefihe value of lies in the interval
the arithmetic operatiofb, div b,) gives us the numbesr;.
Emin S 3 S Emax (50)
bg div b1 = C1 (42) .
and the sef) lies between the sefg;,, and,,;.
Now we can parametrise the parameter veétoalong the2”

rays as follows. Qin € Q C Qo (51)

We want to give an example now in order to illustrate our algo-

_1) G-1) :
(=1) rithm.
(—1) [ (i—1) div 2]
4 Example
okt = Ak : 43) In the following example the number of variables of the main
: g p
polynomial is one and the relevant hyperrectangles are a subset
(—1) [G=D) div 272 of the edges of a square. They are given by
1 [(1_1) d|V gr-1 ] (1) H(] = {.’L‘ | o — 1, —1 S T S 1} 5 (52)
(=1) (2) Hfy ={z| 21=1,0<x9 <1}, (53)
wheredki € R", i = 1,...,2", denotes the parameter vector (3) Hyy ={z| z1=-1,0<z0<1}. (54)

along the i-th ray passing through the i-th vertex akif is
scalar and positive. Let us consider the inequality in (39).
can rewrite this inequality according to vectors in (43) with the p(x) = (kin +0k1)zd — (Kon + Sko)ad +

following expression.
gexp (ksp + 0ks)z? + (kan + 0ky)

v\\/ge will test our numerical method with the polynomial

(Z a; (—plE=D div 29~ ]) AK + = (14 0k)2t — (24 0ka)a? +
= (14 6ks)a? + (5 + 0ks) (55)
a (1) AK +ap >0, i=1,...,2" (44)

that is taken from [1].
Let be our aim to determine the largest hypercube in the param-
eter space for which the inequality (39) is valid. It means th&fter the transformation we get the homogenized poly-
inequality must be solved according to vectors in (43). For ti@mial
minimum positive value of the\k’ that satisfies the inequali- . 5
ties (44) we get the largest hypercube for which the inequality?(®) = (1 +0k1)a] — (24 6k2)wozy +
(39) is valid. If the inequality (39) is thg — th inequality un- (1+ 0ks)xdx? + (5 + 0ky)xp
der the conditions in (35) or in (38), we define the minimum
positive value of the\k’ for this inequality as = (@) — 2208 + 222 + 5al) + Skaat —

g; = min(AKY), i=1,...,2". (45) Skoxoxt + Oksxgal + Okuxg . (56)

The largest hypercube . ) o
Fig.1 shows the inner and outer approximations to the value of

Qin = {0k | —€min < 0ki < Emin, i=1,...,7} (46) € depending on the number of Chebychev points on the sets
H,, H}ty and H,,. For 100 Chebychev points per variable the
in the parameter space that satisfies the sufficient conditiong§ahowing interval
(35) can be found by
Emin = 0.297520663 < & < egpqe = 0.299647902 (57)

min = min(e;), j=1,...,(2 1)N?. (47
© min(e;) J (2m +1) (47) was found for the value of.

The largest hypercube

5 Conclusions and Outlook
Qout 1= {5k | —€maz < 0k < Eman , t=1,... 7T}
(48) In this paper the positivity of polynomials depending on
in the parameter space that satisfies the necessary conditiongigertain parameters have been investigated. By means of the
(38) can be found by theorem of Ehlich and Zeller we have developed a new algo-
rithm that defines the parameter region as a hypercube where
Emaz = min(e;), j=1,...,2m+ 1)N . (49) a polynomialp(z) is positive definite. The example presented
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Figure 1: Inner and outer approximationsto (10]

in this paper illustrates the result which can be achieved with
this new algorithm. In contrast to other methods our method
is able to produce inner and outer approximations to the set
Q and relies entirely on linear inequalities. This offers the
posibility of using methods from linear programming in the
case of higher parameter dimension. This will be the focus of
future research.
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