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Abstract

When the process uncertainty size increases, even linear
minimum phase systems must sacrifice desirable aggressive
feedback control benefits to avoid an excessive ‘cost of
feedback’, while preserving the robust stability. With a
suitable uncertainty division and a QFT controller-prefilter to
command each uncertainty subset inside a controller-
scheduler structure, it is possible to enhance the feedback
tracking performance without an excessive bandwidth. To
preserve the robust stability from any failure in the switching,
each controller is designed to be stable in the whole
uncertainty domain, and as accurate in command tracking as
desired in its uncertainty subset.

1 Introduction

The feedback control is only justified to reduce the closed
loop sensitivity to any kind of uncertainty, in the plant
modeling or in the unmeasurable disturbances [11]. Thus, the
amount of feedback is directly proportional to the amount of
uncertainty and to the sensitivity reduction required. Besides,
a unique controller can not perform as well for a wide
uncertainty plant set as for a smaller domain of uncertainty.

The feedback trade-offs derived from performance limitations
in uncertain systems have been widely discussed in the
control literature [3][4][14]. The Quantitative Feedback
Theory (QFT) stands out for its transparency and the
quantitative formulation of the feedback limitations [13][17].
Let’s consider the open loop transmission function (controller
plus plant): L(j�)=G(j�)P(j�). Sufficiently large feedback
(i.e. |L|>>|P|) removes the effect of the plant ignorance and of
the disturbances. On the other hand, any practical L(j�) must
go to zero as ���, but robust stability requires that |L|
decreases comparatively slowly with �, [5]. Consequently,
there is an intermediate frequency range where the excessive
open-loop bandwidth due to feedback benefits amplifies
dangerously sensor noises or supposedly negligible
disturbances, mainly at the plant input [12]. This effect, called
the ‘cost of feedback’ [11], produces elements of G and P to

be saturated most of the time, such that the useful signal
components due to input commands cannot get through [12].

In this context, the existence of a unique controller that meets
simultaneously different nature control requirements was
discussed in [9]. Considering the plant uncertainty inherent to
the system and the maximum bandwidth limited by the
expected level of noise at plant actuators, a suitable selection
of the feedback specification values taking into account the
trade-offs was analyzed in [8]. However, for high plant
ignorance or highly noise environments, this may imply a
poor performance.

Therefore, the uncertainty reduction remains as the only
solution. An infinite uncertainty division translates into
adaptive control schemes where a particular controller is
responsible for a unique plant identified in the uncertain
domain. Despite of vigorous research in the field of adaptive
control, rather few practical applications have appeared [2].
The reasons seem to be that stability of the closed loop is
difficult to guarantee during parameter adaptation. Some
interesting attempts of comparing and mixing robust and
adaptive principles were made in [1] [10] [16]. A first attempt
to develop a methodology for the uncertainty division in the
QFT domain is presented in [7]. This work studied the
uncertainty contribution at the lowest frequency QFT bound,
from the graphical arrangement of the M-contours and the
lowest-frequency template in the Nichols Chart (NC). The
purpose was to reduce the controller static gain.

This paper shows the feedback tracking control limitations
due to the uncertainty size in LTI m.p. plants. These are
discussed from the QFT bounds, computed with the formulas
developed in [6] and broadly studied in [9] [8]. The goal is to
divide the uncertainty. Then, several controllers will improve
the feedback benefits and minimize the cost of feedback in
their uncertainty subset. The whole structure should be a
nonlinear controller scheduler [15] that would switch the
controllers through on-line measurements of certain auxiliary
variables. To preserve robustness despite of failure in the
switching, each controller will be designed robustly stable for
the full uncertainty.

This paper consists of five sections. Section 2 deals with the
nature and severity of the QFT bounds. Section 3 details the



difficulties in the open loop transmission loop shaping,
revealing the limitations in the tracking feedback
performance. Section 4 illustrates the improvements of the
uncertainty division through a practical example. Finally,
Section 5 contains the conclusions.

2 Feedback Control Requirements and Bound
Typologies in QFT

Let’s consider the feedback control scheme in Fig.1. General
feedback control specifications are formulated in terms of
QFT (see the 1st column in Table I) imposing maximum
tolerance models �k(�) on the magnitude of certain transfer
functions |Tk(j�)|, k=1,...,M, from some inputs to some
outputs in the frequency domain [17]. Then, the controller
G(j�) design methodology translates these frequency domain
specifications of an uncertain feedback system into bounds on
the NC that the nominal loop transmission L0(j�) must meet.
Therefore, the bound arrangement is the key point in the
controller synthesis process.
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Fig 1.  General MISO feedback control scheme
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Table I. Bound Typologies for General Feedback Specifications

The bound typology [9] refers to the bound appearance and
the way to achieve the bound. Fig. 2 depicts general bound
typologies for general feedback control specifications such as
those studied in [9] that are summarized in Table I (3rd

column). The necessary trade-offs among conflicting
requirements are discussed in the QFT bound domain in [9],
and outlined below.

When an upper bound occurs, L0=GP0 must be placed on or
above it, and is usually depicted as a continuous line (see
Fig.2b). These upper bounds look for a minimum gain |L0| at
the whole phase range [-2� 0] rad, which must be added to P0
by the controller G. Sufficiently large feedback, |L|>>|P|,
removes the effect of P ignorance and of the disturbances.
The bounds with this typology should become dominant at
low-medium frequencies demanding the robust feedback

benefits: the input and output disturbance rejection and the
command tracking (sensitivity reduction).
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Fig. 2.  QFT bound typologies

The outer bounds (Fig.2a) enclose the critical stability point 0
dB�-� rad, building a forbidden area all around that must not
be penetrated by L0. This ensures certain minimum gain and
phase margins [17] including the uncertainty. When there are
no lower bounds (discussed below), the robust stability outer
bounds become relevant at medium frequencies and dominant
in the high frequency band. As long as any practical L must
go to zero as ���, the outer bounds constrict the gain |L0|
decrement ratio with increasing frequencies in such a way
that robust stability principles are met according to Bode’s
Integrals [5].

Due to |L| decreasing comparatively slowly with �, there is an
intermediate range where |L(j�)|<<1 but |L/P (j�)|>1. That
means a dangerous amplification of the noise N at Y and U.
Satisfyingly small output deviations can be achieved with
available instrumentation. However, large |L/P| peaks produce
unavoidable large U peaks [12], this being the main price paid
for feedback, also referred in QFT as the ‘cost of feedback’
[11]. A large cost may produce elements of G and P to be
saturated most of the time, in such a way that the useful signal
components due to input commands cannot get through.

Then, once the feedback benefits are won at the low-medium
frequencies, the open-loop gain of L=GP should decrease
with the frequency as quick as possible. It can be taken into
account in the QFT controller design in two ways. Firstly,
when relaxing the main feedback objectives that previously
gave upper bounds at the low frequencies, they yield now
non-dominant (respecting to stability) outer bounds. Then, L0
can be loop-shaped looking for its high frequency asymptote.
The |L0| decrement ratio is only limited by the robust stability
outer bounds. Another way to guarantee a low enough high
frequency gain consists in the explicit formulation of robust
specifications to cut it off. Then, the lower bounds (Fig. 2c)
restrict the gain |L| to a maximum at each phase in [�2� 0]
rad, and are usually depicted as a discontinuous line. This
bound typology should become dominant just at high
frequencies, avoiding its incompatibility with the low-
medium frequency upper bounds.



3 Performance Limitations in Tracking

The bound arrangement on the NC shows quantitatively the
limitations in the feedback performance. Let’s consider for
example Fig. 3(a), where robust tracking and stability
specifications are represented by QFT bounds. It is assumed
that the desired robust tracking performance basically
configures the upper bounds at the lowest frequencies, i.e.
B(j0.1), B(j1). At these frequencies, the open loop magnitude
uncertainty, pmax/pmin, should be reduced under a threshold
�T=�Tsup/�Tinf that represents the reduction in the closed loop
uncertainty, {|L/(1+L)|}<�T. Then, pmax/pmin>�T, and upper
bounds result according to Table I. pmax and pmin represent the
maximum and minimum magnitude plants of the �-template
{P(j�)}={p(�)��(�)}.
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Fig. 3. Bound arrangement and loopshaping for (a) certain plant
uncertainty and certain tracking and stability requirements; (b) the
same plant uncertainty and robust stability but poorer tracking
performance.

From medium frequencies onward, the robust stability
requirements become significant too in Fig. 3(a). Stability
requirements constraint complementary sensitivity function
such that |L/(1+L)|<�S. Being �S=1.3 ensures minimum
stability margins of 45º and 4.9dB [17]. As discussed in [8],
�S<<1 in stability terms implies too conservative margins, and
�S>>1 highly, underdamped systems. According to Table I,
�S>1 implies outer bounds and, as long as �S is close to the
unity, these outer bounds become dominant at high
frequencies.

Hence, the upper bound B(j10) in Fig. 3(a) is the less
favorable intersection between the upper bound due to
{|L/(1+L)|}<�T (main contribution) and also the outer bound
due to |L/(1+L)|<�S (note the peak close to –2� rad), resulting
in an upper bound intersecting both. The high frequency is
dominated exclusively by the stability outer bound, B(j100).
The specific plant uncertainty values and the tracking and
stability tolerances to built Fig. 3 are studied through the
example in Section 4. The loop-shaping difficulties stemming
from the bound outlook are discussed below.

A proper tracking accuracy in the static behavior –zero steady
state error– requires adding a pole at the origin ‘s’, if there is
no one in the plant P. Afterwards, the required open-loop
static gain Kdc is added to fulfill the lowest frequency bound,
i.e. B(j0.1). And subsequently, poles and zeros are added to
meet the frequency bounds along the frequencies and to try to
reach the high frequency asymptote as soon as possible (cost
of feedback minimization).

Therefore, the higher the lowest frequency bound B(j0.1), the
larger the static gain Kdc needed. And this has an unavoidable
drawback effect on the high frequency range. L0(j�)
necessarily increases at the whole frequency range, since a
desired rapid decrement (more excess of poles over zeros) of
|L0| from medium to high frequencies, �>�T=10, is
impracticable due to the high frequency stability outer bound,
i.e. B(j100), and also due to the fixed Bode’s relation phase-
magnitude [5]. To show clearly this effect, take out B(j1) and
B(j10), i.e. let’s consider just |T(j�T)|<�T(�T), �T=0.1 rad/s
and |T(j�S)|<�S(�S), �S=0.1, 100 rad/s. Fig. 4 shows the effect
of raising the upper bound of the lowest frequency �lf, e.g.
B(j0.1), exclusively owed to |T(j�)|<�T(�), �=0.1. Compare
Figs. 4(a) and 4(b). The same control structure is used in both
loop shapes: L0a and L0b are obtained adding a pole at the
origin, then certain static gain Kdc, plus a zero z, and finally a
pole p. Fig. 4 clearly reveals how the |L0(j�lf)| increment to
satisfy the higher |B(j�lf)| is paid with a high gain excess
|L0(j�hf)|, i.e. a major cost of feedback. A major control effort
peak is also solicited to actuators.
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Fig. 4.  Increment of the low and high frequency open loop gain |L|
for more accurate low frequency tracking in (b) compared to (a).

The situation is much more complex if stringent tracking
bounds appear at mid frequencies, e.g. the upper B(j1) and
B(j10) bounds in Fig. 3(a). Now a zero closer to the origin
than that in Fig. 4(a) is needed to increase the gain |L0| and
meet the upper B(j10) bound. The extra |L0| increase due to
the pairs zero-pole demanded by the mid-frequency tracking
performance is added to the static gain required by the lowest
frequency tracking performance. And both contribute to
increase the cost of feedback in the high frequency range, e.g.
��100. A harder B(j1) bound would have lead to add extra
pairs zero-pole, increasing the controller complexity. For the



same excess of poles over zeros required, each extra zero
requires an extra pole. Then, the complexity of the controller
is translated into significant delays to apply the expected
control signal, at least in practice.

Hence the ‘cost of feedback’ and the controller complexity
increase due to tougher tracking bounds at any frequency
���T, and especially at the lowest frequency. The drawback
gets even worse for non-minimum phase plants, for unstable
plants and/or for plants with delays, where the decrement
ratio of L0 is more constricted.

A constraint looking for certain maximum open-loop gain at
the high frequency, max|L0(j�hf)|, could be explicitly
expressed. Then, explicit robust specifications on certain
closed-loop transfer functions that yield lower bounds are
suggested (see Table I). For simplicity reasons, this paper just
imposes implicit conditions such as a maximum |L0(j�hf)| on
the loop-shaping step. Then, certain upper bounds due to
robust tracking specifications at low-mid frequencies could be
incompatible with a high frequency gain |L0(j�hf)| under a
threshold. For example, Fig. 3(a) expresses the impossibility
of meeting the bounds depicted and simultaneously
guaranteeing |L0(j�hf=j100)| under –20dB. This is due to the
B(j10) height of about 10dB, being impossible to decrease |L0|
from 10dB to –20dB in just one decade without penetrating
the outer robust stability bound B(j100).

The tracking bound arrangement is due to both, the hardness
of sensitivity reduction �T(�)=�Tsup/�Tinf(�) and the plant
uncertainty {P}. Then, an achievable feedback control can be
guaranteed by a proper selection of �T(�) as [8] demonstrated.
The problem comes down to relaxing appropriately �T(�),
supposing that {P(�)} is unchangeable. An example for the
new situation is depicted in Fig. 3(b), where the upper bounds
B(j0.1), B(j1), B(j10) reduce their height allowing to place
|L0(j�hf=j100)| under –20dB. However, this could imply a
poor tracking performance, whether �T(�) would get close to
pmax/pmin(�). Then, the solution requires the reduction of the
uncertainty to get a similar bound distribution than that in Fig.
3(b), but without having to relax �T, and therefore the desired
performance remains and can be even more ambitious. As
long as the uncertainty is inherent to the system nature, the
only way out is to divide the uncertainty and to control each
division with a low cost controller, preserving the stability
robustness. The methodology is described through an
example.

4 Example of Uncertainty Division

Let’s consider a dc field-controlled motor whose nominal
characteristics are those in Table II. Assuming that the
angular velocity � is the plant output to be controlled,
manipulating the field voltage Vf, the dc motor in Laplace
terms obeys:

bsJ
K

bsJ
RK

V
sP fm

f �

�

�

��

/
)( � , (1)

where the electrical time constant Lf/Rf has been neglected
compared to the field time constant J/b (see Table II). Usually

the motor parameters differ from the nominal ones due to
temperature and some other special effects. Because of that,
in this example it is supposed a 20% variation in b and a 5%
deviation in K=Km/Rf from their nominal values. In addition,
the larger divergence observed in the proposed real
application takes place at the rotor inertia J. Its nominal value
of J=0.01 refers to unload driving. However, considering the
load, J is expected in [0.01 0.1] between unload and full load.

Parameter Nominal Values
Unload Rotor Inertia, J 0.01 kg m2

Friction, b 0.1 N m s
Motor constant, Km 0.05 N m /A
Field Resistance, Rf 1 �
Field Inductance, Lf <<0.1 H

Table II. Nominal Characteristics of a Dc Field-Controlled Motor

The speed control requirements in QFT terms are (i)-(iii):

(i) Robust stability with minimum margins of MF�45º and
MG�4.9dB. QFT expresses it like: |L/(1+L)|<�S, �S(�S)=1.3,
�S�[0, �] rad/s. Discretising the frequency vector: �iS={0.1,
1, 10, 100} rad/s.
(ii) Robust tracking performance, �Tinf<|F�L/(1+L)|<�Tsup, at
�T�10 rad/s, being the upper and lower tracking models:

)75.194()30(66.0)( 2
sup ���� ssssT� (2)

)10)(4)(3(8400)(inf ���� ssssT� (3)
For the tracking frequency range: �iT={0.1, 1, 10} rad/s, the
specification values from (2) and (3) result
�T=�Tsup/�Tinf={1.0012, 1.1255, 3.0771}. Note that for the G
design the prefilter F is omitted, and then
�Tinf<F	L/(1+L)<�Tsup translates to L/(1+L)<�T [17].
(iii)  A low enough high frequency open-loop gain to reduce
the ‘cost of feedback’, e.g. |L(j�hf)|<-20dB, �hf�100.

Considering the parameter uncertainty defined and �i={0.1,
1, 10, 100} rad/s for the frequency vector, Fig. 5 depicts the
plant templates. Note the huge phase and magnitude
uncertainties of the templates {P(j1)} and {P(j10)}. The low
and high frequency templates, {P(j0.1)} and {P(j100)},
mainly display magnitude uncertainty.
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Fig. 5.  Plant templates for the full and divided parameter uncertainty



The QFT bounds expressing the stated robust specifications
(i)-(iii) were depicted in Fig. 3(a). The bound typology and its
severity according to the uncertainty and the specification
models were discussed in Sections 2 and 3. The loop-shaping
L0=GP0 performed on the bound arrangement yields:
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71.37)(1
ssssGT (4)

The prefilter F to place |L/(1+L)| in-between �Tsup and �Tinf :

� �281128)( 2
��� sssF (5)

According to Fig. 3(a), it is impossible to loop-shape a
controller that meets explicit bounds on stability and tracking
specifications in (i) and (ii), and that cuts off simultaneously
the implicit cost of feedback in (iii). This performance
limitation was argued in Section 3. Figs. 6(a,b) simulate the
time domain performance of the designs (4) (5) for the plant:
J=Jmax, b=bmax, K=Kmin (plant at the bottom of each template
in Fig. 5). This is the plant with more difficulties to track the
input signal since it represents the biggest load and friction
for the smallest motor constant; and it will need the maximum
control effort value; this plant is also the nominal plant taken
in the QFT design. Nevertheless, the worst saturation effects
(higher cost of feedback) occur in the plant with the biggest
|L|, that is, the plant at the top in the frequency templates of
Fig. 5, which corresponds to J=Jmin, b=bmin and K=Kmax.
Figure 6(a) shows an acceptable tracking performance for
J=Jmax, b=bmax and K=Kmin, whereas the sensor noise is highly
amplified at the control input as Fig. 6(b) shows; it would be
even worse for J=Jmin, b=bmin and K=Kmax. In practice, this
huge cost of feedback will saturate the armature core, spoiling
the expected performance in Fig. 6(a).
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Fig. 6. GT1 and GT2 output tracking performance, and control efforts,
for the plant J=Jmin, b=bmin and K=Kmax in the full uncertainty set

Fig. 3(b) offered a solution to the trade-offs in Figs. 6(a),
6(b). It suggests relaxing the tracking specification values
such that �Tnew=�Tsup/�Tinf={1.007, 1.375, 8.000}. Then, the
height reduction of the bounds B(0.1), B(j1) and B(10) would
allow to reach |L0(j100)|<<-20dB with a controller GT2:

�
�

�
�
�

� ��
�

�
�
�

� �� 1
4.49

1
8.0

8)(2
ssssGT (6)

To complete the control design, the same prefilter that in (5)
is used. The cost of feedback reduction shown in Fig. 6(d)
compared to 6(b) is not for free. It also implies spoiling the
control tracking performance, as shown in Figure 6(c)
compared to Fig. 6(a). The solution planned in this paper is
the division of the uncertainty.

The J uncertainty contributes strongly to both magnitude and
phase uncertainty in the templates at mid frequencies �i=1, 10
rad/s. Then, a mere a division of the J domain into two parts
may also halve these template uncertainties (see Figs. 5b,c).
This ultimately implies a significant reduction of the height of
B(j1) and B(10) in the whole phase range [-2�, 0] rad (both
phase and magnitude uncertainties are reduced). The lowest
frequency template (�i=0.1 rad/s) is apparently slightly
affected by the J uncertainty, which only contributes to its
small phase uncertainty (
0.14 rad in Fig.5a). However,
significant bound improvements are gained at the valley
points of the bound. Note that the controller has to add an
origin pole to avoid tracking static error; then, in the loop-
shaping step, the static gain is added nearly at –�/2 rad, that
is, just at the phases with the largest bound relaxation with
phase uncertainty division. Then, the benefits may be of
interest. J basically contributes to the magnitude uncertainty
of the template at �i=100 rad/s (see Fig.5d). However, the
starting point of the robust-adaptive control planned is just the
tracking enhancement, preserving always the robust stability.
This forces to compute the high frequency stability bounds
with the full uncertainty, dismissing the effect of the J
division. Taking all this into account, the rotor inertia
uncertainty J=[0.01, 0.1] kg m2 is divided into two parts:
J1=[0.01 0.05] kg m2 and J2=[0.05 0.1] kg m2. The new plant
templates are also depicted in Fig. 5.

New bound arrangements, BJ1(j�) and BJ2(j�), at frequencies
�={0.1, 1, 10, 100} rad/s, are illustrated in Figs. 7(a) and
7(b), respectively. And also the controller designs L0(j�) are
depicted, resulting:
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Comparing Fig. 7 with Fig. 3(a), the low frequency bound
B(j0.1) height improves about –10dB for J1 and just –3dB for
J2, at the bound valley points (phase -�/2 rad) where L0(j0.1)
is placed due to its origin pole. Note also the controller static
gain reduction in (7) and (8) compared to (4). This will allow
at least the same reduction of the high frequency gain
|L0(j100)|. Mid frequency �i=1 rad/s bound, B(j1), also drops
in Fig. 7(a) and Fig. 7(b) compared to Fig. 3(a), thus enabling
to place less dominant zeros; see the zero in (4) and the zeros
at (7) and (8). This yields a smaller gain increase to be
recovered by a pole at a higher frequency. At �i=10 rad/s, the
bound B(j10) in Fig. 7(a) falls –10dB compared to Fig. 3(a).
In the case of the division J2, the magnitude uncertainty



reduction pmax/pmin at the �i=10 rad/s template drops below
the requirement �T(�i) in (ii), thus the upper bound B(j10) in
Fig. 3(a) relaxes to an outer bound in Fig. 7(b), mainly due to
robust stability requirements. In conclusion, L0(j�) in Fig 7(a)
can reduce its high frequency gain compared to Fig 3(a),
mainly due to the improvement of B(j0.1); meanwhile in Fig
7(b) the benefits are due to B(j10) relaxation. The prefilters
for these new designs are the same than the one in (5).
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Fig. 7.  Bounds and controller designs for uncertainty plant subsets:
(a) Division J1; (b) Division J2

Fig. 8 verifies the time performance of the new designs.
Compare it to Figs 6(a) and 6(c), and note that GJ1 in (7)
equals and GJ2 in (8) improves the tracking performance
yielded by GT1 in (4) and, besides, GJ1 and GJ2 reduce
considerably the cost of feedback. Compared to the
performance of GT2 in (7), the cost of feedback is now similar
whereas the tracking performance is better (see Figs. 6(c) and
6(d) for GT2 performance).

5 Conclusions

This paper tackled with the feedback performance limitations
for LTI m.p. uncertain plants. Even for these apparently
simple to control processes, a high plant ignorance may imply
a poor tracking performance in favour of avoiding an
excessive cost of feedback, which would saturate the
actuators, and guaranteeing an acceptable robust stability. The
solution suggested was to carry out a suitable uncertainty
division. Different QFT controllers were responsible of
maximising the feedback benefits and minimising the cost of
feedback in their uncertainty subset. Apart from that, they
were robustly stable in the full uncertainty domain. In a
further work, a non-linear controller-scheduler structure
would be designed. The answer given solves the feedback
performance limitations preserving the robustness for plants
with arbitrarily large uncertainties.
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Fig. 8. GJ1 and GJ2 output tracking performances and control effort,
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