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tion, Robust stability. For the design of manipulated input, the knowledge of the pro-

cess output based on a finite set of observed input and output
Abstract data up to timét — 1)

The optimal control strategy for discrete time multiple model D = {u(1),y(1), ..., u(t—1),y(t—1)}
is described. Simulation of control and on-line estimation of
model probability is shown. Robustness of stability and coris required. It can be described by a set of c.p.d.f.
parison of the classical LQ control and LQ control based on

multiple models is presented. p(y®)D ut) for t=1,.... )
_ If there exists a finite-dimensional vector variahl€&) such

1 Introduction that

The methodology based on bayesian update of the probability p (:I;(t_|_ 1), y(t) |DH’ x(t), u(t)) = 2

distribution over the set of possible models [4] enables descrip- _
tion of a plant by a mixture distribution [7], [1]. =P (x(t+1), (Ol (), u(t))

LQ (op“ma] control of Linear System with Quadratic Criterion).e. it contains all the relevant information for the prediction of
algorithm based on a mixture of a set of parallel models withe process outpu(t) and statex(t + 1), then itis called the
common state and different structure only was developedstate of the process

[3]. Robust stability analysis of such close loop is shown #y gptain the predictive c.p.d.f. (1) given as
this paper.

t—1 _
LQG (Gaussian noise) algorithm based on a mixture of asetof ¥ (y(t) [P u(t)) = ®)
parallel models with different parameters and different dimen- _ /p (y(t)\x(t) u(t))p (x(t) }rDt—l) dz(t)
sion was developed in [6]. The design of such LQ controller ’ ’

with a set of Kalman filters for on-line estimation of mode{
probability is also presented in this paper.

The outline of the paper is as follows: in section 2 Bayesian p () D7 u(t)) = p (x(t) [D) 4)
approach to state estimation is formulated in a general w.
In section 3, Bayesian approach to multiple state developm L . ) ;

Y bp P P e also propagated in time. This c.p.d.f. is calledstae esti-

model and Kalman filter in normalized form for estimate th te Th dition (4) introduced by [51 i lled thatural
optimal probability distribution over the set of possible mode[§2t€ e condition ( ).'n roduced by [5] is called thatura
,ndmon of contral It will be used repeatedly in the following

are described. Section 4 solves multiple model approach i

guadratic optimal discrete time multiple model. In section &Xt'

simulation results and robustness analysis is presented.  The c.p.d.f.p (y(¢)|=(t), u(t)) is defined by the output (mea-
surement) equation of the state-space model of the process

2 Bayesian approach to state estimation y() = Ca(t) + Du(t) + e(t), (5)

he c.p.d.f.

ay. :
%;Presentmg our knowledge about the state of the process must

In this section we will analyze general properties of a proces . . . T
. . : . eree(t) is the measurement noise with known distribution
model from the bayesian viewpoint. It will be shown that all . . :
. g with zero mean and covariance deVt)} = T, independent
the concepts used can be generally described in terms of con- .
of the state and input of the process.



The incorporation of the information contained in a new paBuppose the initial probability distribution (p.d.) over the set
of data{u(t),y(t)} (thedata-updatestep of the algorithm) can of candidate models is given
be described as

( ) P (m(O) =1 |D0) = p;. (12)
P (y(®)](t), u(t) 1 . e
p(z(t) |D") = p (z(t) D). (6) The probabilitya;(t) = p (m(t) = i|D") can be updated by
(=®)[P%) p (y(t) DL, u(t)) =01P™) the data as
The time-updatestep of the algorithm, i.e. the predictive p (m(t) =i[D") 12)
c.p.d.f.p (z(t+1)|D?) is given as o p (y(#)| D, u(t), m(t) = i)p (m(t) = i|D)
p (z(t+1)|D!) = @) where the predictive c.p.d.f. of the output is
p(y(t) [P u(t),m(t) = i) = (13)

= /p (z(t+1) ‘x(t)ﬂ)t)p (z(t) |D*) da(t).

_ , = /p(y(t)lw(t), u(t), m(t)=1)p; (x(t) [D ) da(t),
To complete this step, a state development model defined by
the c.p.d.f. where the c.p.d.f. of the state based onitle model

p (x(t+1) [2(t), D )=p (z(t+1)|z(t), u(t), y(t)) () pi (z(t) D) = p (x(t) [P, m(t) = i) ~ (14)

which can be obtained from (2) is necessary. The c.p.d.f. ~ N (@t =1), T, (2]t -1))

p (z(t+1)|x(t),u(t)) is usually defined by the state transitioris used (see Figure 1).

equation of the state-space model of the process The time-update step of the algorithm (for the p.d. over the set

z(t+1) = Az(t) + Bu(t) + v(t), 9) of models) iSp (m(t +1) = i|Dt) =p (m(t). = i\Dt) be-
cause there is no "model” of model probability development.
wherev(t) is the process noise with known distribution wittBut there is the possibility to enable tracking the changes in
zero mean and covariance deyt)} = I',,, independent of the probability distribution over the set of models to realize forget-
state and input of the process. The role of the tg(m in the ting some obsolete information in time update step.

condition of (8) is discussed in [2] While in its corresponding operation point ti#h output error

) (or equivalent state space) model provides the "correct” output
3 Multiple state development models prediction, for other operating regimes the output prediction

is not consistent with the data, resulting in biased probability

Suppose a set of alternative state development mOdeIaistribution over the set of models. One of the possibilities

z l(sf?gt(; 1_)|"115(t)’ ugf)’ y(t)) parameterized by the active MOt o to compensate for this fact is the use of normalized form

of models
pi(z(t+1)|2(t), ut)) = (10) zi(t+1) = Awi(t) + Bu(t) + vi(t) (15)
=p (z(t+1)|z(t),u(t), m(t) = i) y(t) Cizi(t) + Diu(t) + e;(t) (16)

is given. Then simultaneous filtering of the state and detectiafith (scalar) measurement noise variance and process noise co-
of the active model can be developed. It is possible to propsriance matrix

gate the state estimates based onittlemodel in parallel and N = o2 (¢ = o2 () 17
compute the probability distribution over the set of models. In covie(t)} = oc (), cov{vi()} = oz, (Vi (17

this setting, no changes in the active model are modelled but &go the Kalman filter is implemented in normalized form, op-
(constant) active model is classified from the set of candidatesating on the statistics

P (:v(t)|ogi, D u(t), m(t) = z) ~ (18)
pa(a@®)t=1)  pae(®)lt)  pala(t+1)) ~ N (i(t]t=1), 02 T (1] —1)) |
O O i.e. the variance of the state estimate is also scaled by the mea-
p(m(t) =2[t—1) p(m(t) =2[t) p(m(t+1)=2[t) surement noise variance. Then one-step of the algorithm of the
normalized Kalman filter can be written as
nE®lt-1)  pEOl) e B+l = Adi(tlt=1) + Buu(t) + (19)
-0 o) +  Li(t)(y(t) — Cidi(t]t—1) — Dyu(t))
p(m(t) = 1jt=1) p(m(t) = 1|t) pim(t+1) = 1]t) T, (t+1)t) = AT, (tt—1)AT +V; - (20)
—  Li(t)CiTy,, (t[t—1)AT
Li(t) = A, (tt—1)CF x (21)

Figure 1. State filtering and model classification with parallel )
models x (Ol (tt-1)CF +1),



i.e. it is independent of the measurement noise variance amerel",, (¢) = cov {v;(t)}. Then the state prediction based
the unknown measurement noise variance for each model carthe measured stat€t) is

be independently estimated from the data.
. . . p(x (t+1)\x< ),u(t)) = (26)
The covariance of the prediction error of thieh model
i(Et—1) = y(t) — g;(tlt—1 is
ei(t] ) =y(t) — §i(t] ) 7Za7pl (t+1)|z(t), (t))w
cov{e;(t[t—1)} = cov {y(t) — i(t[t—1)} = (22)

(1+C’F (t]t— 1)0T)

~ N (@(E1[E), Tt + 1]8),

where the meafi(¢+1|t) and covarianc®, (t + 1|¢) of c.p.d.f

The c.p.d.f. of the output for known measurement noise vaf*2 ) equal
anceis h
T(t+1t) = o (A;z(t) + Byu(t)) (27)
pi (y()|o2,, D u(t)) ~ (23) i=1
h
~ N (Bi(tt=1), (1+ CiTa, (tit=1)CT)o2). La(t+1) = S aa{Tu b+ 1)+
=1
The statistics for the bayesian estimate of the variance [5] +(:vi(t+1)— f(t+1|t)) (xi(t—kl)— :?(t+1\t)) T}.
2
p (gg (t) ‘DH,u(t))N Xi(t|t—1)(5i (t|;f—1)> , Consider a loss function
oz,
Ve@,uf ) = e{aT(MQNz(N) +  (28)
i.e. variableS?/o? has ax? distribution with degrees of Nt

freedom, can be updated (using exponential forgetting with for- T N T
getting factory) as + Z o (K)Q(k)z(k) +u (k)R(k‘)U(/f)},

k=t
2
) (@i, e (t|t—1) where
SHt+11t) = ¢ (Sz- (t|t 1)+1+Cirm(t|t_1)ciT
TR {u(t), u(t+1), -~-’U(N_1)} (29)

v(t+1]t) = ¢- (V(t [t=1)+ 1) and its optimal value
. S2(t+1]t) V¥ (a(t),t) = min V(a(t),up ', 1). (30)
2 Mo\ TN ) No1 s Yt ’
Oe, (t+1 ‘t) V(tJrl | t) ’ (24) Uy

Using the estimate of measurement noise variance, the p.Tie optimal control law after the minimization is
(23) should be replaced a Student distribution; however, for

sufficiently largev(t+1[t) > 30, Student distribution can be

well approximated by a normal distribution (23) where the es- u*(t) = -— (
timate of the noise variance (24) is substituted.

h —1
R(t)+ Y aiBiTP(t—H)BZ) X

i=1

h
x Yo B] P(t+1)Ajz(t). (31)
i=1

4 Multiple model control

In this section, LQ controller for output feedback is desiggy,trix P(t) is solution of the Riccati equation
based on a multiple model. First compatible multiple model

with common state and different structure only was developed h
in [3]. In the next paragraph, compatible multiple model with  P(¢t) = Q)+ Z AT P(t+1)A; — (32)
different parameters, structure and different dimension was de- i=1

veloped in [6].

h
(Za AT P(t+1)B >
i=1

4.1 State feedback controller .
R(t) + Za BT P(t41)B; ) X

Suppose a set déf state development particular models is given X

7N

pi(l'(t+1)|l'(t),u(t)) ~ (25) , )
~ N {Asa(t) + Bu0). T, (1), x (Z_j 0.BT P(t41)A )



with final conditionP(N) = Q(N). The optimal value of the and the special Riccati equation fadP;(¢), starting with

criterion is P;(N) =Q;(N) reads
) = V(x),t) =" OPOz(t) + B3 Py =Qi(t) + ATP(t + 1)A — ATP(t +1)B; x  (41)
N-1 1
+ s tracd P(k h
Z {Zz:a ul )} x(R(t)+Zaij.TPj(t+1)Bj) BI'P(t+1)A;.
More details were descrlbed in [3]. =t
Note that the optimal feedback gain matrix equals The optimal value of the quadratic criterion equals
h -1 h
K(t) = (R(t) +Y B P(t+1)Bi> % Jt)=V*t) = Z B () Py (k)T (t) +
i=1 3

h

x Y a;BI P(t+1)A; (34) +Z{Zatr v, (klk— 1))} +
i=1

and finally the optimal feedback control equals

W () = —K(Dald). (35) >3 {Zai”(ﬁ(%(wm(k)QE(N_”N_Q»}'

- k=t \i=1

4.2 Output feedback controlier The optimal feedback gain matrices equal

For the output feedback controller, the set of models available
reads

(1) — o BT
pi (z(t + 1)[D', u(t)) ~ (36) Ki(t) = ( +Z BT Py( t+13) «

~ N(Ei(f—‘rl‘t), Iy, (t+1|f)). « BiTPL'(t + 1)Az (42)

Then the state predictiop (z(¢ + 1)|D*, u(t)) based on the
measured dat®’ is the same as (26), where the médti-1|t)
and covarianc®, (¢ + 1|t) equal

and finally the optimal feedback control equals

Zal J()Z (tt—1), (43)
Z(t+1]¢)

h
l: whereZz; is the state estimation by the i-th Kalman filter (19) to
To(t+1]) = Zai{Fmi (t4+1]t) + (21).
i=1 Note that Riccati equations (41) and feedback gain matrices
+ (T (E+1t) —z(t+1]1) )T (t+1[t) —E(t+1|t))T}. (42) cannot be computed separately for each model.

Consider a loss function . .
5 Simulation results

V(w(t),uivfl,t) = (38)
5.1 Example 1
=¢ {Z iy (N)Q(N)i(N)+ Consider simple SISO system of second order
N R Y(s) 1
+ 33 ] ()Q)mi(t) + u (H)R()u(t) P(s) = Us) ~ (11 sr)? (44)
t=1i=1
and its optimal value with time constant € (20; 50) s.
V*(t) = min V(z(t),u) 1. (39) The state space description of system (44) is
. -1 1 0
The optimal feedback control is i(t) = [ O/T 71//T } (t)+ [ 1/r }U(t) (45)
h -1 _ .
y(t) = 1 0 x(t).
u () = - (R(t) + ZaiBiTPi(t-f— 1)Bi> X ®) [ ] ®)
=1

L Note that it is necessary to use the cascade form (see Figure 2)
% ZO‘ZB Pi(t+ 1) A (tt—1). (40) for description of the set of models with time constant

P T € (20;50) s.
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Figure 4: Reference tracking and model probability estimation - stochastic simulation



System (45) is approximated by a set of two models with the . ‘ ‘ _ Flgenvaule of Close Loop

matrices ol 7
_ | -Un n _| 0 ok
Al - |: 0 71/7_1 :| 9 Bl - |: 1/7_1 :| Y (46)
04 o b et
. —1/7'2 1/7'2 _ 0 02f . o "“"M.\
A2 - |: 0 71/7_2 I B2_ 1/7_2 ? (47) g . w n+x

wherer; = 20s andr, = 50s. -02f : M/
* +' +* +‘ +‘+‘-t-'

For the simulation, the time constant of the system (44) is -4
changed fromr = 25s to 7 = 40s at timet = 200s and back o6l
to T = 25s at timet = 650s. The probabilitiesy, () andas(t)

of models (46) and (47) are estimated by two Kalman filters in
normalized form (20), (21). Note that the estimate of model T ws s 04 02 o o2 o0& 05 o8 1
probability o* (¢) together with its filtered value are shown in o

Figure 3b and Figure 4b. Note that unlike the deterministic
case, the process and measurement noise provide sufficient ex-
citation for probability distribution tracking at the time of the
change of the time constant.

Figure 5: Eigenvalues of close loop

Singular Value

The LQ control law for reference tracking is designed for a cEem T T T ﬁ;:*"

mixture of two models with parametets = o*, ay; = 1 —a*. o
The criterion matrices ar@ = 100, R = 1. w'r

Robust stability analysis 0} o

For robust stability analysis, the nominal model is chosen from | #*
the set of models (44) and the nominal time constant, is= ° 10ty +"

25s. This nominal model is used for classical LQ controller .*
design. il o

For the nominal model with the time constatyt the optimal
estimate of model probability is,, = 0.67. Such optimal wr
estimate of model probability is used for LQ controller for the ==
multiple model design. Time Constant

Singular Value

*  Multiple LQ Controller (nominal o)
+ Classical LQ Controller (nominal a)
Classical LQ Controller (optimal a)
T T T

T T T
Multiple LQ Controller (nominal o)

Classical LQ Controller (nominal a)
Classical LQ Controller (optimal a)

For criterion matrices

o= 0| m- (48) :

+ x|

classical LQ controllef.(7,,) and LQ controller for the multi-

ple modelK,, (o) (31), (32) are designed. For analysis of the
robustness, the time constant of the real system (45) is changed
fromr = 10sto T = 60s.

X(Tn)

11

&
£
&
£

o lo

1.05-

The eigenvalues of matrices +

x .
+ x%
xx* * ++++

A(T) - B(T)KC(TH) (49) '*+++ LA ::::++++"‘+++++++++++
A(T) — B(1)Kpn(an) (50) 1k UM PRRE 3 S-3nt

x%
“"",-n
x%

R . . . 10 1‘5 2‘0 2‘5 3‘0 3‘5 4‘0 4‘5 5‘0 5‘5 60
are shown in Figure 5. The maximum singular values Time Consantt
(H2 norm) of matrices’,(7) and P, () are shown in Figure 6.

Matrix P.(7) is the solution of discrete Lyapunov equation Figure 6: Maximum singular values
Po(7) = Q+ K (tn) R K. (70)+ (51)
+[A(r) - B(T)Kc(rn)]TPc(T) [A(T)=B(T)K.(m,)]  Note that the Figure 6b, is just a normalized version Figure 6a.
and matrixP, (7) is the solution of equation From Figure 5 follows that LQ strategy based on multiple
T model is more robust then classical LQ. For nominal model
Po(1) = Q+ K, (o) R Ko (an) + (52)

with time constant;,, = 40s, the eigenvalues of matrices (49)
+[A(7) —B(T)Km(an)]TP,L(T)[A(T) —B(7)Km(ay)].  and (50) are almost similar as in Figure 5.



From Figure 6b follows that values &f, norm of LQ strategy
based on multiple model is less thefs norm of LQ strategy
based on single model for the time constank 7, and is
bigger for the time constant> 7,,. But the differences are not
so significant.

Bode Diagram

(dB)

Magnitude

5.2 Example 2

SISO system is modelled by mixture of two models with dif-
ferent structure and different dimension.

Phase (deg)

The nominal model of system is

1 -360 - “

Pols) = 0.583 + 5245 (53)

107° 107 10° 10" 10°
Frequency (radisec)

Itis supposed that system can have complex petg w where
o € (—o00,—0.2) andw = 10. The multiplicative perturbation Figure 8: Bode diagrams - nominal and perturbation model
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40H
and the second modefl§, Bs) correspond to the worst pertur-
bation model (54) i.e. fos = —0.2 20f] 7
8 ‘1) 2 8 8 ; I I T
=0 1 -1 0 0 |, Bo=]|0/ (56)
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Figure 7: Impulse responses - nominal and perturbation model Figure 10: Reference tracking - stochastic simulation



Impulse responses of nhominal and perturbation model are[@} STECHA, J.andHAVLENA, V. Optimal Control of Mul-
Figure 7. These responses are almost the same and with inex-tiple Model. In IASTED International Conference on
act measurement cannot be distinguished. But the resonanceModelling Identification, and Contrplnnsbruck, Austria,
w =~ 10 can have essential influence on some controllers. The 2003. (on CD).

difference of both models is better seen in Bode diagram (see
Figure 8). [7] TiTTERINGTON, D. M., SMITH, A. F, and

Makov, U. E. Statistical Analysis of Finite Mixture
For simulation, the parameterof the system (54) is changed  Distributions John Wiley & Sons, Chichester, New York,
fromo=—1t00=-100 at timet = 20s and back tar = —1 1986.
at timet = 65s. The probabilitiesy; () andas(t) of models
(55) and (56) and the estimate of system statés) andz,(t)
are provided by two Kalman filters in normalized form (20),
(21). The LQ control for reference tracking is designed for a
mixture of two models with parametetis = o*, as = 1 —a*.
The criterion matrices ar@, = 50, Q> = 10 andR = 1.

The LQ controller based on the multiple model with different
parameters, structure and dimension was designed. The refer-
ence tracking is shown in Figure 9 and Figure 10.

6 Conclusion

The design of LQ controller based on the multiple model and
analysis of robustness was presented. Simulation results prove
the facts which was expected - multiple model approach is
more robust then single model approach. But the differences
are not so significant.
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