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Abstract

The optimal control strategy for discrete time multiple model
is described. Simulation of control and on-line estimation of
model probability is shown. Robustness of stability and com-
parison of the classical LQ control and LQ control based on
multiple models is presented.

1 Introduction

The methodology based on bayesian update of the probability
distribution over the set of possible models [4] enables descrip-
tion of a plant by a mixture distribution [7], [1].

LQ (optimal control of Linear system with Quadratic criterion)
algorithm based on a mixture of a set of parallel models with
common state and different structure only was developed in
[3]. Robust stability analysis of such close loop is shown in
this paper.

LQG (Gaussian noise) algorithm based on a mixture of a set of
parallel models with different parameters and different dimen-
sion was developed in [6]. The design of such LQ controller
with a set of Kalman filters for on-line estimation of model
probability is also presented in this paper.

The outline of the paper is as follows: in section 2 Bayesian
approach to state estimation is formulated in a general way.
In section 3, Bayesian approach to multiple state development
model and Kalman filter in normalized form for estimate the
optimal probability distribution over the set of possible models
are described. Section 4 solves multiple model approach for
quadratic optimal discrete time multiple model. In section 5,
simulation results and robustness analysis is presented.

2 Bayesian approach to state estimation

In this section we will analyze general properties of a process
model from the bayesian viewpoint. It will be shown that all
the concepts used can be generally described in terms of con-

ditional probability density functions (c.p.d.f.).

For the design of manipulated input, the knowledge of the pro-
cess output based on a finite set of observed input and output
data up to time(t− 1)

Dt−1 = {u(1), y(1), . . . , u(t−1), y(t−1)}

is required. It can be described by a set of c.p.d.f.

p
(
y(t)|Dt−1, u(t)

)
for t = 1, . . . . (1)

If there exists a finite-dimensional vector variablex(t) such
that

p
(
x(t+1), y(t)

∣∣Dt−1, x(t), u(t)
)

= (2)

= p
(
x(t+1), y(t)|x(t), u(t)

)

i.e. it contains all the relevant information for the prediction of
the process outputy(t) and statex(t + 1), then it is called the
state of the process.

To obtain the predictive c.p.d.f. (1) given as

p
(
y(t)

∣∣Dt−1, u(t)
)

= (3)

=
∫

p
(
y(t)|x(t), u(t)

)
p

(
x(t)

∣∣Dt−1
)

dx(t),

the c.p.d.f.

p
(
x(t)

∣∣Dt−1, u(t)
)

= p
(
x(t)

∣∣Dt−1
)

(4)

representing our knowledge about the state of the process must
be also propagated in time. This c.p.d.f. is called thestate esti-
mate. The condition (4) introduced by [5] is called thenatural
condition of control. It will be used repeatedly in the following
text.

The c.p.d.f.p
(
y(t)|x(t), u(t)

)
is defined by the output (mea-

surement) equation of the state-space model of the process

y(t) = Cx(t) + Du(t) + e(t), (5)

wheree(t) is the measurement noise with known distribution
with zero mean and covariance cov{e(t)} = Γe, independent
of the state and input of the process.



The incorporation of the information contained in a new pair
of data{u(t), y(t)} (thedata-updatestep of the algorithm) can
be described as

p
(
x(t)

∣∣Dt
)
=

p
(
y(t)|x(t), u(t)

)

p
(
y(t) |Dt−1, u(t)

) p
(
x(t)

∣∣Dt−1
)
. (6)

The time-updatestep of the algorithm, i.e. the predictive
c.p.d.f.p

(
x(t+1)|Dt

)
is given as

p
(
x(t+1)

∣∣Dt
)

= (7)

=
∫

p
(
x(t+1)

∣∣x(t),Dt
)
p

(
x(t)

∣∣Dt
)

dx(t).

To complete this step, a state development model defined by
the c.p.d.f.

p
(
x(t+1)

∣∣x(t),Dt
)
=p

(
x(t+1)|x(t), u(t), y(t)

)
(8)

which can be obtained from (2) is necessary. The c.p.d.f.
p

(
x(t+1)|x(t), u(t)

)
is usually defined by the state transition

equation of the state-space model of the process

x(t+1) = Ax(t) + Bu(t) + v(t), (9)

wherev(t) is the process noise with known distribution with
zero mean and covariance cov{v(t)} = Γv, independent of the
state and input of the process. The role of the termy(t) in the
condition of (8) is discussed in [2].

3 Multiple state development models

Suppose a set ofh alternative state development models
p

(
x(t+1)|x(t), u(t), y(t)

)
parameterized by the active mod-

elsm(t) = 1, . . . , h

pi

(
x(t+1)|x(t), u(t)

)
= (10)

= p
(
x(t+1)|x(t), u(t),m(t) = i

)

is given. Then simultaneous filtering of the state and detection
of the active model can be developed. It is possible to propa-
gate the state estimates based on thei-th model in parallel and
compute the probability distribution over the set of models. In
this setting, no changes in the active model are modelled but the
(constant) active model is classified from the set of candidates.

g g g- -
p2(x(t)|t−1) p2(x(t)|t) p2(x(t+1)|t)

p(m(t) = 2|t−1) p(m(t) = 2|t) p(m(t+1) = 2|t)

g g g- -
p1(x(t)|t−1) p1(x(t)|t) p1(x(t+1)|t)

p(m(t) = 1|t−1) p(m(t) = 1|t) p(m(t+1) = 1|t)

Figure 1: State filtering and model classification with parallel
models

Suppose the initial probability distribution (p.d.) over the set
of candidate models is given

p
(
m(0) = i

∣∣D0
)

= pi. (11)

The probabilityαi(t) = p
(
m(t) = i|Dt

)
can be updated by

the data as

p
(
m(t) = i|Dt

) ∝ (12)

∝ p
(
y(t)|Dt−1, u(t),m(t) = i

)
p

(
m(t) = i|Dt−1

)

where the predictive c.p.d.f. of the output is

p
(
y(t)

∣∣Dt−1, u(t),m(t) = i
)

= (13)

=
∫

p
(
y(t)|x(t), u(t),m(t)= i

)
pi

(
x(t)

∣∣Dt−1
)
dx(t),

where the c.p.d.f. of the state based on thei-th model

pi

(
x(t)

∣∣Dt−1
)

= p
(
x(t)

∣∣Dt−1,m(t) = i
) ∼ (14)

∼ N (
x̂i(t|t−1), Γxi(t|t−1)

)

is used (see Figure 1).

The time-update step of the algorithm (for the p.d. over the set
of models) isp

(
m(t + 1) = i |Dt

)
= p

(
m(t) = i |Dt

)
be-

cause there is no ”model” of model probability development.
But there is the possibility to enable tracking the changes in
probability distribution over the set of models to realize forget-
ting some obsolete information in time update step.

While in its corresponding operation point thei-th output error
(or equivalent state space) model provides the ”correct” output
prediction, for other operating regimes the output prediction
is not consistent with the data, resulting in biased probability
distribution over the set of models. One of the possibilities
how to compensate for this fact is the use of normalized form
of models

xi(t+1) = Aixi(t) + Biu(t) + vi(t) (15)

y(t) = Cixi(t) + Diu(t) + ei(t) (16)

with (scalar) measurement noise variance and process noise co-
variance matrix

cov {ei(t)} = σ2
ei

(t), cov {vi(t)} = σ2
ei

(t)Vi. (17)

Also the Kalman filter is implemented in normalized form, op-
erating on the statistics

p
(
x(t)|σ2

ei
,Dt−1, u(t),m(t) = i

) ∼ (18)

∼ N (
x̂i(t|t−1), σ2

ei
Γxi(t|t−1)

)
,

i.e. the variance of the state estimate is also scaled by the mea-
surement noise variance. Then one-step of the algorithm of the
normalized Kalman filter can be written as

x̂i(t+1|t) = Aix̂i(t|t−1) + Biu(t) + (19)

+ Li(t)
(
y(t)− Cix̂i(t|t−1)−Diu(t)

)

Γxi(t+1|t) = AiΓxi(t|t−1)AT
i + Vi − (20)

− Li(t)CiΓxi(t|t−1)AT
i

Li(t) = AiΓxi(t|t−1)CT
i × (21)

× (
CiΓxi(t|t−1)CT

i + 1
)−1

,



i.e. it is independent of the measurement noise variance and
the unknown measurement noise variance for each model can
be independently estimated from the data.

The covariance of the prediction error of thei-th model
εi(t|t−1) = y(t)− ŷi(t|t−1) is

cov{εi(t|t−1)} = cov {y(t)− ŷi(t|t−1)} = (22)

=
(
1 + CiΓxi(t|t−1)CT

i

)
σ2

ei
.

The c.p.d.f. of the output for known measurement noise vari-
ance is

pi

(
y(t)|σ2

ei
,Dt−1, u(t)

) ∼ (23)

∼ N
(
ŷi(t|t−1),

(
1 + CiΓxi(t|t−1)CT

i

)
σ2

ei

)
.

The statistics for the bayesian estimate of the variance [5]

p
(
σ2

ei
(t)

∣∣Dt−1, u(t)
)∼ χ2

ν(t|t−1)

(
S2

i (t|t−1)
σ2

ei

)
,

i.e. variableS2
i /σ2

ei
has aχ2 distribution with ν degrees of

freedom, can be updated (using exponential forgetting with for-
getting factorϕ) as

S2
i(t+1 | t) = ϕ·

(
S2

i (t | t−1)+
ε2
i (t | t−1)

1 + CiΓxi(t|t−1)CT
i

)

ν(t+1 | t) = ϕ ·
(
ν(t | t−1) + 1

)

σ̂2
ei

(t+1 | t) =
S2

i (t+1 | t)
ν(t+1 | t) . (24)

Using the estimate of measurement noise variance, the p.d.f.
(23) should be replaced a Student distribution; however, for
sufficiently largeν(t+1|t) > 30, Student distribution can be
well approximated by a normal distribution (23) where the es-
timate of the noise variance (24) is substituted.

4 Multiple model control

In this section, LQ controller for output feedback is design
based on a multiple model. First compatible multiple model
with common state and different structure only was developed
in [3]. In the next paragraph, compatible multiple model with
different parameters, structure and different dimension was de-
veloped in [6].

4.1 State feedback controller

Suppose a set ofh state development particular models is given

pi

(
x(t+1)|x(t), u(t)

) ∼ (25)

∼ N (
Aix(t) + Biu(t), Γvi(t)

)
,

whereΓvi
(t) = cov {vi(t)}. Then the state prediction based

on the measured statex(t) is

p
(
x(t+1)|x(t), u(t)

)
= (26)

=
h∑

i=1

αipi

(
x(t+1)|x(t), u(t)

) ∼

∼ N (
x̂(t+1|t),Γx(t + 1|t)),

where the mean̂x(t+1|t) and covarianceΓx(t + 1|t) of c.p.d.f
(26) equal

x̂(t+1|t) =
h∑

i=1

αi

(
Aix(t) + Biu(t)

)
(27)

Γx(t+1|t) =
h∑

i=1

αi

{
Γxi(t + 1|t) +

+
(
xi(t+1)− x̂(t+1|t))(xi(t+1)− x̂(t+1|t))T

}
.

Consider a loss function

V
(
x(t), uN−1

t , t
)

= E
{

xT (N)Q(N)x(N) + (28)

+
N−1∑

k=t

xT (k)Q(k)x(k) + uT (k)R(k)u(k)
}

,

where

uN−1
t =

{
u(t), u(t + 1), . . . , u(N − 1)

}
(29)

and its optimal value

V ∗(x(t), t) = min
uN−1

t

V (x(t), uN−1
t , t). (30)

The optimal control law after the minimization is

u∗(t) = −
(

R(t) +
h∑

i=1

αiB
T
i P (t+1)Bi

)−1

×

×
h∑

i=1

αiB
T
i P (t+1)Aix(t). (31)

Matrix P (t) is solution of the Riccati equation

P (t) = Q(t) +
h∑

i=1

αiA
T
i P (t+1)Ai − (32)

−
(

h∑

i=1

αiA
T
i P (t+1)Bi

)
×

×
(

R(t) +
h∑

i=1

αiB
T
i P (t+1)Bi

)−1

×

×
(

h∑

i=1

αiB
T
i P (t+1)Ai

)



with final conditionP (N) = Q(N). The optimal value of the
criterion is

J∗(t) = V ∗(x(t), t
)

= xT (t)P (t)x(t) + (33)

+
N−1∑

k=t

{
h∑

i=1

αi trace
(
P (k)Γvi

(k)
)
}

.

More details were described in [3].

Note that the optimal feedback gain matrix equals

K(t) =

(
R(t) +

h∑

i=1

αiB
T
i P (t+1)Bi

)−1

×

×
h∑

i=1

αiB
T
i P (t+1)Ai (34)

and finally the optimal feedback control equals

u∗(t) = −K(t)x(t). (35)

4.2 Output feedback controller

For the output feedback controller, the set of models available
reads

pi

(
x(t + 1)|Dt, u(t)

) ∼ (36)

∼ N (
x̂i(t+1|t), Γxi(t+1|t)).

Then the state predictionp
(
x(t + 1)|Dt, u(t)

)
based on the

measured dataDt is the same as (26), where the meanx̂(t+1|t)
and covarianceΓx(t + 1|t) equal

x̂(t+1|t) =
h∑

i=1

αix̂i(t+1|t) (37)

Γx(t+1|t) =
h∑

i=1

αi

{
Γxi(t+1|t) +

+
(
x̂i(t+1|t)−x̂(t+1|t))(x̂i(t+1|t)−x̂(t+1|t))T

}
.

Consider a loss function

V
(
x(t), uN−1

t , t
)

= (38)

= E
{

h∑

i=1

αix
T
i (N)Q(N)xi(N)+

+
N∑

t=1

h∑

i=1

αix
T
i (t)Q(t)xi(t) + uT (t)R(t)u(t)

}

and its optimal value

V ∗(t) = min
uN−1

t

V
(
x(t), uN−1

t , t
)
. (39)

The optimal feedback control is

u∗(t) = −
(

R(t) +
h∑

i=1

αiB
T
i Pi(t + 1)Bi

)−1

×

×
h∑

i=1

αiB
T
i Pi(t + 1)Aix̂i(t|t−1). (40)

and the special Riccati equation forPi(t), starting with
Pi(N) = Qi(N) reads

Pi(t) = Qi(t) + AT
i Pi(t + 1)Ai −AT

i Pi(t + 1)Bi × (41)

×

R(t)+

h∑

j=1

αjB
T
j Pj(t + 1)Bj



−1

BT
i Pi(t + 1)Ai.

The optimal value of the quadratic criterion equals

J∗(t) = V ∗(t) =
h∑

i=1

αix̂
T
i (t)Pi(k)x̂i(t) +

+
N∑

k=t

{
h∑

i=1

αitr
(
Qi(k)Γxi(k|k−1)

)
}

+

+
N−1∑

k=t

{
h∑

i=1

αitr
(
LT

i (k)Pi(k+1)Li(k)Qε(N−1|N−2)
)
}
.

The optimal feedback gain matrices equal

Ki(t) =


R(t) +

h∑

j=1

αjB
T
j Pj(t + 1)Bj



−1

×

× BT
i Pi(t + 1)Ai (42)

and finally the optimal feedback control equals

u∗(t) = −
h∑

i=1

αiKi(t)x̂i(t|t−1), (43)

wherex̂i is the state estimation by the i-th Kalman filter (19) to
(21).

Note that Riccati equations (41) and feedback gain matrices
(42) cannot be computed separately for each model.

5 Simulation results

5.1 Example 1

Consider simple SISO system of second order

P (s) =
Y (s)
U(s)

=
1

(1 + sτ)2
(44)

with time constantτ ∈ 〈20; 50〉 s.

The state space description of system (44) is

ẋ (t) =
[ −1/τ 1/τ

0 −1/τ

]
x (t) +

[
0

1/τ

]
u (t) (45)

y (t) =
[

1 0
]
x (t) .

Note that it is necessary to use the cascade form (see Figure 2)
for description of the set of models with time constant
τ ∈ 〈20; 50〉 s.
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Figure 2: Mixture model step responses and pole map
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Figure 3: Reference tracking and model probability estimation - deterministic simulation
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Figure 4: Reference tracking and model probability estimation - stochastic simulation



System (45) is approximated by a set of two models with the
matrices

A1 =
[ −1/τ1 1/τ1

0 −1/τ1

]
, B1 =

[
0

1/τ1

]
, (46)

A2 =
[ −1/τ2 1/τ2

0 −1/τ2

]
, B2 =

[
0

1/τ2

]
, (47)

whereτ1 = 20s andτ2 = 50s.

For the simulation, the time constant of the system (44) is
changed fromτ = 25s to τ = 40s at timet = 200s and back
to τ = 25s at timet = 650s. The probabilitiesα1(t) andα2(t)
of models (46) and (47) are estimated by two Kalman filters in
normalized form (20), (21). Note that the estimate of model
probabilityα∗(t) together with its filtered value are shown in
Figure 3b and Figure 4b. Note that unlike the deterministic
case, the process and measurement noise provide sufficient ex-
citation for probability distribution tracking at the time of the
change of the time constant.

The LQ control law for reference tracking is designed for a
mixture of two models with parametersα1 = α∗, α2 = 1−α∗.
The criterion matrices areQ = 100, R = 1.

Robust stability analysis

For robust stability analysis, the nominal model is chosen from
the set of models (44) and the nominal time constant isτn =
25s. This nominal model is used for classical LQ controller
design.

For the nominal model with the time constantτn, the optimal
estimate of model probability isαn = 0.67. Such optimal
estimate of model probability is used for LQ controller for the
multiple model design.

For criterion matrices

Q =
[

105 0
0 0

]
, R = 1 (48)

classical LQ controllerKc(τn) and LQ controller for the multi-
ple modelKm(αn) (31), (32) are designed. For analysis of the
robustness, the time constant of the real system (45) is changed
from τ = 10s to τ = 60s.

The eigenvalues of matrices

A(τ) − B(τ)Kc(τn) (49)

A(τ) − B(τ)Km(αn) (50)

are shown in Figure 5. The maximum singular values
(H2 norm) of matricesPc(τ) andPn(τ) are shown in Figure 6.
Matrix Pc(τ) is the solution of discrete Lyapunov equation

Pc(τ) = Q+KT
c (τn)R Kc(τn)+ (51)

+
[
A(τ)−B(τ)Kc(τn)

]T
Pc(τ)

[
A(τ)−B(τ)Kc(τn)

]

and matrixPn(τ) is the solution of equation

Pn(τ) = Q+KT
m(αn)R Km(αn)+ (52)

+
[
A(τ)−B(τ)Km(αn)

]T
Pn(τ)

[
A(τ)−B(τ)Km(αn)

]
.
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Figure 6: Maximum singular values

Note that the Figure 6b, is just a normalized version Figure 6a.

From Figure 5 follows that LQ strategy based on multiple
model is more robust then classical LQ. For nominal model
with time constantτn = 40s, the eigenvalues of matrices (49)
and (50) are almost similar as in Figure 5.



From Figure 6b follows that values ofH2 norm of LQ strategy
based on multiple model is less thenH2 norm of LQ strategy
based on single model for the time constantτ < τn and is
bigger for the time constantτ > τn. But the differences are not
so significant.

5.2 Example 2

SISO system is modelled by mixture of two models with dif-
ferent structure and different dimension.

The nominal model of system is

P0(s) =
1

0.5s3 + s2 + s
. (53)

It is supposed that system can have complex poleσ±j ω where
σ ∈ (−∞,−0.2) andω = 10. The multiplicative perturbation
model is

P (s) = P0(s) · σ2 + ω2

s2 − 2σs + σ2 + ω2
. (54)

System (54) is approximated by a set of two models with dif-
ferent dimension. The first model (A1, B1) correspond to the
nominal model (53)

A1 =




0 0 0
0 −1 −1
0 1 −1


 , B1 =




1
2
0


 , (55)

and the second model (A2, B2) correspond to the worst pertur-
bation model (54) i.e. forσ = −0.2

A2 =




0 0 0 0 0
0 −1 −1 0 0
0 1 −1 0 0
0 0 0 −0.2 −10
0 0 0 10 −0.2



, B2 =




1
2
0
2
0



. (56)
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Figure 7: Impulse responses - nominal and perturbation model
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Figure 8: Bode diagrams - nominal and perturbation model
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Figure 9: Reference tracking - deterministic simulation
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Figure 10: Reference tracking - stochastic simulation



Impulse responses of nominal and perturbation model are in
Figure 7. These responses are almost the same and with inex-
act measurement cannot be distinguished. But the resonance
ω ≈ 10 can have essential influence on some controllers. The
difference of both models is better seen in Bode diagram (see
Figure 8).

For simulation, the parameterσ of the system (54) is changed
from σ=−1 to σ=−100 at timet = 20s and back toσ = −1
at timet = 65s. The probabilitiesα1(t) andα2(t) of models
(55) and (56) and the estimate of system statesx̂1(t) andx̂2(t)
are provided by two Kalman filters in normalized form (20),
(21). The LQ control for reference tracking is designed for a
mixture of two models with parametersα1 = α∗, α2 = 1−α∗.
The criterion matrices areQ1 = 50, Q2 = 10 andR = 1.

The LQ controller based on the multiple model with different
parameters, structure and dimension was designed. The refer-
ence tracking is shown in Figure 9 and Figure 10.

6 Conclusion

The design of LQ controller based on the multiple model and
analysis of robustness was presented. Simulation results prove
the facts which was expected - multiple model approach is
more robust then single model approach. But the differences
are not so significant.
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