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Abstract

A comprehensive analysis of aeroelastic systems has shown
that these systems exhibit a broad class of pathological re-
sponse regimes when certain types of non-linearities are in-
cluded. In this paper, we propose a design method of a state-
dependent non-linear controller for aeroelastic systems that in-
cludes polynomial structural non-linearities. The method is
based on recent numerical methods such as Tensor Product
model transformation and Parallel Distributed Compensation.
As an example, a controller is derived that ensures the quadratic
stability of a prototypical aeroelastic wing section via one con-
trol surface. Numerical simulations are used to provide empir-
ical validation of the control results. The effectiveness of the
controller design is compared with former approaches.

1 Introduction

In the past few years various studies of aeroelastic systems have
emerged. [1] presents a detailed background and refers to a
number of papers dealing with the modelling and control of
aeroelastic systems. The following provides a brief summary
of this background.

Regarding the properties of aeroelastic systems one can find the
study of free-play non-linearity by Tang and Dowell in[2, 3], by
Price et al. in [4] and [5], by Lee et al. in [6], and a complete
study of a class of non-linearities is in [7], [5]. O’Neil et al. [8]
examined the continuous structural non-linearity of aeroelas-
tic systems. These papers conclude that an aerolesatic system
may exhibit a variety of control phenomena such aslimit cycle
oscillation, flutterand evenchaotic vibrations.

Control strategies have also been derived for aeroelastic sys-
tems. [9] and these show that controllers, capable of stabilizing
structural non-linearity over flow regimes, can be derived via
classical multivariable control methods. However, while sev-
eral authors have investigated the effectiveness of linear control
strategies for aeroelastic systems, experimental evidence has
shown that linear control methods may not be reliable when
non-linear effects predominate. For example in the case of
large amplitude limit cycle oscillation behaviour the linear con-

trol methodologies [9] do not stabilize aeroelastic systems con-
sistently. [10] and [9] proposed non-linear feedback control
methodologies for a class of non-linear structural effects of the
wing section [8]. Papers [10, 11, 1] develop a controller, capa-
ble of ensuring local asymptotic stability, via partial feedback
linearization. It has been shown that by applying two control
surfaces global stabilization can be achieved. For instance,
adaptive feedback linearization [12] and the global feedback
linearization technique were introduced for two control actua-
tors in the work of [1].

The primary goal of this paper is to develop non-linear state
dependent control method capable of globally and quadrati-
cally stabilizing a given prototypical aerolelastic wing section
via one control surface. The controller design is based on the
Tensor Product (TP) transformation introduced in [13, 14] and
Parallel Distributed Dompensation (PDC) [15]. Our model in-
corporates the essential and well-characterized structural non-
linearities that yield limit cycle oscillation at low velocity. The
control results are compared with the previously developed par-
tial feedback linearization technique that also utilizes one con-
trol surface.

2 Nomenclature

This section is devoted to introduce the notations being
used in this paper:{a, b, . . .}: scalar values. {a,b, . . .}:
vectors. {A,B, . . .}: matrices. {A,B, . . .}: tensors.
RI1×I2×···×IN :vector space of real valued(I1×I2×· · ·×IN )-
tensors. Subscript defines lower order: for example, an ele-
ment of matrixA at row-column numberi, j is symbolized
as (A)i,j = ai,j . Systematically, theith column vector of
A is denoted asai, i.e. A =

[
a1 a2 · · ·]. ¦i,j,n, . . .:

are indices. ¦I,J,N , . . .: index upper bound: for example:
i = 1..I, j = 1..J , n = 1..N or in = 1..In. A(n): n-
mode matrix of tensorA ∈ RI1×I2×···×IN . A ×n U: n-
mode matrix-tensor product.A⊗n Un: multiple product as
A×1 U1 ×2 U2 ×3 .. ×N UN . Detailed discussion of tensor
notations and operations is given in [16].

3 Equations of Motion

In this paper, we consider the problem of flutter suppression for
the prototypical aeroelastic wing section as shown in Figure 1.



The aerofoil is constrained to have two degrees of freedom, the
plungeh and pitchα. The equations of motion of the system
have been derived in many references (for example, see [17],
and [18]), and can be written as
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Figure 1: Aeroelastic model
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and wherexα is the non-dimensional distance between elas-
tic axis and the centre of mass;m is the mass of the wing;Iα

is the mass moment of inertia;b is semi-chord of the wing,
andcα andch respectively are the pitch and plunge structural
damping coefficients, andkh is the plunge structural spring
constant. Traditionally, there have been many ways to repre-
sent the aerodynamic forceL and momentM , including steady,
quasi-steady, unsteady and non-linear aerodynamic models. In
this paper we assume the quasi-steady aerodynamic force and
moment, see work [17]. It is assumed thatL andM are ac-
curate for the class of low velocities concerned. Wind tunnel
experiments are carried out in [9]. In the above equationρ is
the air density,U is the free stream velocity,clα andcmα re-
spectively, are lift and moment coefficients per angle of attack,
andclα andcmα , respectively are lift and moment coefficients
per control surface deflection, anda is non-dimensional dis-
tance from the mid-chord to the elastic axis. Several classes
of non-linear stiffness contributionskα(α) have been studied
in papers treating the open-loop dynamics of aeroelastic sys-
tems [2, 19, 20, 7]. For the purpose of illustration, we now
introduce the use of polynomial non-linearities. The non-linear

stiffness termKα(α) is obtained by curve-fitting the measured
displacement-moment data for non-linear spring as [21]:

kα(α) = 2.82(1−22.1α+1315.5α2 +8580α3 +17289.7α4).

The equations of motion derived above exhibit limit cycle os-
cillation, as well as other non-linear response regimes includ-
ing chaotic response [21, 19, 7]. The system parameters to be
used in this paper are given in [1] and are obtained from exper-
imental models described in full detail in work by [21, 1].

With the flow velocityu = 15(m/s) and the initial condi-
tions of α = 0.1(rad) andy = 0.01(m), the resulting time
response of the non-linear system exhibits limit cycle oscilla-
tion, in good qualitative agreement with the behaviour expected
in this class of systems. Papers[21, 8] have shown the relations
between limit cycle oscillation, magnitudes and initial condi-
tions or flow velocities.

Let the equations (1) and (2) be combined and reformulated
into state-space model form:

x =
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Then we have:

ẋ = A(p)x + B(p)u = S(p)
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x
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)
, (3)
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wherep ∈ RN=2 contains valuesx2 andU . The new variables
are tabulated in Table 1. One should note that the equations of
motion are also dependent upon the elastic axis locationa.

4 Controller design method

The recently proposed very powerful numerical methods (and
associated theory) forconvex optimizationinvolving Linear
Matrix Inequalities (LMI) help us with the analysis and the de-
sign issues of dynamic systems models (3) in acceptable com-
putational time [22, 23]. One direction of these analysis and
design methods is based on LMI’s and PDC techniques [15],
and functions with the multiple-model form. In this paper we
utilise the TP transformation and a PDC controller design tech-
nique to derive viable control methodologies for the non-linear
aeroelastic system defined in the previous section. The key idea



Table 1: System variables

d = m(Iα −mx2
αb2)
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d
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of the proposed design method is that the TP transformation
is utilized to represent the model (3) in multiple-model form
with specific characteristics, whereupon PDC controller design
techniques can immediately be executed. The detailed descrip-
tion of the TP transformation and PDC based designs is beyond
the scope of this paper and can be found in [13, 14, 15]. First
of all, let us define the multiple-model form.

4.1 Multiple-model

This subsection defines the multiple model form of (3) as:

(
ẋ
y

)
=

(
R∑

r=1

wr(p)Sr

) (
x
u

)
. (4)

where basis functions fulfill:

∀r,p : wr(p) ∈ [0, 1]; and ∀p :
R∑
r

wr(p) = 1. (5)

This defines a fixed polytope, where the system varies in:
S(p) ∈ {S1,S2, . . . ,SR}. MatricesSr ∈ RO×I are termed
vertex systems. Further, (5) defines the convex hull of the ver-
tex systems as:

S(p(t)) = co{S1,S2, . . . ,SR}w(p),

where the row vectorw(p) ∈ RR contains the basis functions
wr(p). In many cases the basis functionswr(p) are decom-
posed to dimensions, which leads to a higher structure of (4).
Having the decomposed basis the multiple-model (4) can be
written, in order to avoid complicated indexing, in terms of
tensors as:

(
ẋ
y

)
= S N⊗

n=1
wn(pn)

(
x
u

)
. (6)

Here, the row vectorwn(pn) ∈ RIn contains the basis func-
tions wn,in(pn), the N + 2 -dimensional coefficient tensor

S ∈ RI1×I2×···×IN×O×I is constructed from the vertex sys-
tem matricesSi1,i2,...,iN

∈ RO×I . The firstN dimensions of
S are assigned to the dimensions ofp.

4.2 TP transformation to multiple model

The TP transformation has various options. Let us summarize
here only those that have prominent roles in this work:

(wn=1..N (pn),S) = TP transf(S(p), Ω, options), (7)

whereS(p) ∈ RO×I is from the state-space model (3), and
Ω ⊂ RN denotes the bounded domain which the transforma-
tion is performed over, and ”options” is to define some char-
acteristics of the basis. The transformation can generate ”min-
imal”, ”convex” and ”close-to-localised” basis. The ”close-
to-localised ” basis means that the vertex models involved in
the multiple-model form are the linear models of the given dy-
namic modelS(p) over certain operation points, namely, the
vertex systems are included in the dynamic model at certain
pointsp or they are as close to the given model as possible.
close-to-localised basis - option understood on a convex basis,
required by the multiple-model form, see (5). In the control de-
sign of this paper (Section 5) we select the ”close-to-localised”-
basis option. Papers [13, 14] introduces the method of gen-
erating ”minimal” and ”convex” basis. The transformation to
”close-to-localised ” basis is introduced in [24] in a slightly
different manner. Vectorswn(pn) ∈ RIn and tensorS are
defined at (6). At this point, we should describe briefly the
existence of the exact TP transformation. In [25] it is shown
that the multiple-model (6) is no-where dense in the modelling
space if the number of basis functions is bounded, which is
always the case in numerical implementations. The practical
significance of this is that the transformed multiple-model is
only an approximation in general cases:

ẋ≈
ε
S N⊗

n=1
wn(pn)

(
x
u

)
. (8)

ε denotes the transformation error. It is zero if the given model
can be transformed exactly to multiple-model form. If exact
representation does not exist then we should employ as many
basis functions as possible to ensure smallε. The TP transfor-
mation defines the relation betweenε and the number of basis
functions, which helps us with optimising the number of basis
functions, subject to an acceptable error.

4.3 PDC controller design

The PDC design techniques determine one feedback to each
vertex model:

K = PDC(S, stability theorem).

”stability theorem” is a symbolic parameter. It specifies the
stability criteria expressed in terms of matrix algebra or Lin-
ear Matrix Inequalities. The control performance depends on
the selected criteria. For instance, the speed of response, con-
straints on the state vector or on the control value can also be



set by properly selected LMI based stability theorems. A large
collection of such theorems is presented in [15]. Under the
framework of vertex feedback systems, one can define the con-
trol value as:

u = −K N⊗
n=1

wn(pn)x.
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Figure 2: Basis functions on the dimensionsα andU .

5 Quadratic stability of the aeroelastic wing sec-
tion

This section is intended to perform the controller design
method discussed in the previous section to the present aeroe-
lastic system defined in (3). First of all let us define the
transformation spaceΩ. We are interested in the interval
U ∈ [14, 25](m/s) and we presume that the intervalα ∈
[−0.03, 0.03](rad) is sufficiently large enough (note that these
intervals can arbitrarily be set). Therefore let:

Ω : [14, 25]× [−0.03, 0.03]

in the present example. Executing the TP transformation (7),
yields that the dynamic model (3) can be represented exactly in
TP model form (6) over a 3 times 2 ”closeto localizes” basis.
This means that the model in (3) can be described exactly (ε =
0 in (8)) by the convex combination of3× 2 = 6 linear vertex
systems.

Note that, we may try to derive the basis functions analytically.
The basis functions ofα can easily be extracted fromkα(α).
However, finding the basis functions ofU , seems to be rather

complicated. TP transformation takes a few seconds to execute
on a Pentium computer.

Having the multiple-model form we can execute the PDC de-
sign techniques. Let us select one of the simplest PDC tech-
niques that does not consider any constraint on the speed of the
controller, the state vector and the control values, and does not
involve LMI’s: First we execute pool-replacement technique to
define the vertex feedback systems:

K = Pool replacement(S, pools), (9)

then we utilise Theorem C14 of paper [26] to check the stability
of the controlled multiple model:

Theorem 1 (Quadratic stability)Dynamic system

ẋ(t) = S ⊗
n

wn(pn)
(
x
u

)

where

u = −K N⊗
n=1

wn(pn)x.

is quadratically stable if and only if the following condition
holds:

Reλi(H) 6= 0, (10)

whereH is an indicator matrix. Its elements are detailed in
[26].

As a matter of fact thepools in (9) cannot be arbitrarily set, but
we can easily find densely located regions of those pools, which
lead to (10). Furthermore, as one might expect, the effect of the
selected pools on closed-loop controller performance (speed of
response) and on the maximum value ofu. We may select the
pools according to a desired controller speed.

6 Control results

To demonstrate the performance of the controlled system, nu-
merical experiments are presented in this section. In order to
be comparable to other published results, the numerical exam-
ples are performed with free stream velocityU = 20m/s, a
velocity that exceeds the linear flutter velocityU = 15.5m/s.

6.1 Time response of controlled system

Figure 3 shows the control results forU = 20m/s and for
initials h = 0.01 andα = 0.1.

6.2 Comparison to other solutions

For comparison, Figure 4 presents the time response of the con-
troller developed, via exact feedback linearization, forU =
20m/s and for initialsh = 0.01 andα = 0.1, see [1]. Com-
paring the results we can observe that the controller developed
in this paper is faster and stabilises the system in about 3 sec
whilst the maximum control values are significantly smaller
than those shown in Figure 3.
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Figure 3: Time response of derived controller forU = 20m/s
anda = −0.4.

7 Conclusion

In this paper we have applied a numerical control design
method which is based on the TP model transformation and
PDC design methods, to design non-linear controllers for pro-
totype aeroelastic wing sections that includes structural non-
linearity. The control design utilises one control surface. With-
out any control effort, or with linear controllers, the aeroelas-
tic system reveals various kinds of non-linear phenomenon in-
cluding limit cycle oscillation as noted in various text. The
proposed controller design method quadratically stabilises the
system and is based on numerical steps. The controller can thus
be determined automatically and without analytic derivations.
The effectiveness of the controller has been compared with an
alternative another control solution. If the design requirements
extend beyond stability, various performance specifications can
be given by selecting proper PDC design theorems. As a fur-

ther development of this work the authors plan to design con-
trollers for advantageous control performance.
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