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product transformation, parallel distributed compensation sistently. [10] and [9] proposed non-linear feedback control

methodologies for a class of non-linear structural effects of the
Abstract wing section [8]. Papers [10, 11, 1] develop a controller, capa-

ble of ensuring local asymptotic stability, via partial feedback
A comprehensive analysis of aeroelastic systems has shdingarization. It has been shown that by applying two control
that these systems exhibit a broad class of pathological gHfaces global stabilization can be achieved. For instance,
sponse regimes when certain types of non-linearities are @slaptive feedback linearization [12] and the global feedback
cluded. In this paper, we propose a design method of a stdteearization technique were introduced for two control actua-
dependent non-linear controller for aeroelastic systems thatti@rs in the work of [1].

cludes polynomial structural non-linearities. The method ig . primary goal of this paper is to develop non-linear state

based on recent r_1umer|cal method§ S!JCh as Tensor Pr(_) i)tendent control method capable of globally and quadrati-
mode] transformation and I?arallgl Distributed Compensatlo&l"y stabilizing a given prototypical aerolelastic wing section
As an example, acoqtroller IS denyed thatensgres t_he quadre‘g one control surface. The controller design is based on the
stability of a prototypical aeroelastic wing section via one COHansor Product (TP) transformation introduced in [13, 14] and
trol surface. Numerical simulations are used to provide empgz,ayje| pistributed Dompensation (PDC) [15]. Our model in-
ical valldatlon_ of Fhe control reS_UItS‘ The effectiveness of t'l?orporates the essential and well-characterized structural non-
controller design is compared with former approaches. linearities that yield limit cycle oscillation at low velocity. The
control results are compared with the previously developed par-
1 Introduction tial feedback linearization technique that also utilizes one con-

i . . trol surface.
In the past few years various studies of aeroelastic systems have

emerged. [1] presents a detailed background and refers tg a
number of papers dealing with the modelling and control Nomenclature

aero.elastic systems. The following provides a brief summagys section is devoted to introduce the notations being
of this background. used in this paper:{a,b,...}: scalar values. {a,b,...}:
Regarding the properties of aeroelastic systems one can findi@etors. {A,B,...}: matrices. {A,B,...}: tensors.
study of free-play non-linearity by Tang and Dowell in[2, 3], byR"* * /2~ :vector space of real valuéd x I x - - - x Iy)-
Price et al. in [4] and [5], by Lee et al. in [6], and a complettensors. Subscript defines lower order: for example, an ele-
study of a class of non-linearities is in [7], [5]. O’Neil et al. [8]Jment of matrix A at row-column numbet, j is symbolized
examined the continuous structural non-linearity of aeroelds (A);; = a; ;. Systematically, theéth column vector of

tic systems. These papers conclude that an aerolesatic systeris denoted asy;, i.e. A = [a; ay --]. O n,...

may exhibit a variety of control phenomena sucliiast cycle are indices. or s n,.... index upper bound: for example:
oscillation, flutterand everchaotic vibrations i =11,7=1Jn=1LNori, = 1.I,. Ay n-

mode matrix of tensord € RIxD2X-xInv A x  U: n-

Control strategies have also been derived for aeroelastic Sysija matrix-tensor productA @, U,.: multiple product as
tems. [9] and these show that controllers, capable of stabilizigg><1 U, xo Uy 5. xy Uy DZztaiTéd discussion of tensor
structural non-linearity over flow regimes, can be derived Vi, .0 e and operz;';t.ions is gi.ven in [16]

classical multivariable control methods. However, while sev-
eral authors have investigated the effectiveness of linear control ) )
strategies for aeroelastic systems, experimental evidence Bas Equations of Motion

shown that linear control methods may not be reliable Wh?r?fthis paper, we consider the problem of flutter suppression for

non-linear effects predominate. For example in the case P . o . .
. o o . . the prototypical aeroelastic wing section as shown in Figure 1.
large amplitude limit cycle oscillation behaviour the linear con-



The aerofoil is constrained to have two degrees of freedom, gtéfness termi, («) is obtained by curve-fitting the measured
plungeh and pitcha. The equations of motion of the systendisplacement-moment data for non-linear spring as [21]:
have been derived in many references (for example, see [17],

and [18]), and can be written as ko(a) =2.82(1-22.1a+ 1315.502 4 8580a° + 17289.70[4).
(\'oc The equations of motion derived above exhibit limit cycle os-
cillation, as well as other non-linear response regimes includ-
L J h ing chaotic response [21, 19, 7]. The system parameters to be
W used in this paper are given in [1] and are obtained from exper-
= imental models described in full detail in work by [21, 1].
7] m— 1? With the flow velocityu = 15(m/s) and the initial condi-
! tions ofa = 0.1(rad) andy = 0.01(m), the resulting time
c=2*b response of the non-linear system exhibits limit cycle oscilla-
._—.| tion, in good qualitative agreement with the behaviour expected
b/, S—— in this class of systems. Papers[21, 8] have shown the relations
elastic axis a*p midchord between limit cycle oscillation, magnitudes and initial condi-
5 tions or flow velocities.
S Let the equations (1) and (2) be combined and reformulated

B into state-space model form:

Figure 1: Aeroelastic el T h
. . x=|"] = Z and u=3.
m MEob h 4 (e 0 h Y T3 !
mxab  Iilpha 1o 0 co & Ty &
kp 0 h .y Then we have:
(0 i) ()= () .
where x = A(p)x + B(p)u = S(p) (u) : 3)
h 1 & where
L= pU2bC[a (Oé + E + (2 — CL) bU) + pUchlﬁﬁ (2)
Zs3
T4
j ; A(p) =
h 1 a —kimy — (koU? + p(x2))22 — 123 — Cow
M = pU?b%c,, i Z_alb= 2be, 121 2 p(r2))x2 — C1T3 — C214
pU Cma (CM + U + (2 a) U) * pU ¢ ﬂﬁ’ —kgl‘l - (k‘4U2 + q(.Z‘Q))JJQ — C3T3 — C4T4
and wherez,, is the non-dimensional distance between elas- 0
tic axis and the centre of mass; is the mass of the wingf, 0
is the mass moment of inertid; is semi-chord of the wing, B(p) = gU? |
andc,, andcy, respectively are the pitch and plunge structural 9.U?

damping coefficients, anél, is the plunge structural spring

constant. Traditionally, there have been many ways to reprgerep € R"V=2 contains values, andU. The new variables
sent the aerodynamic fordeand momenf\/, including steady, are tabulated in Table 1. One should note that the equations of
quasi-steady, unsteady and non-linear aerodynamic modelsmtion are also dependent upon the elastic axis location

this paper we assume the quasi-steady aerodynamic force and

moment, see work [17]. Itis as_s_umed tHatand M are ac- 4 Controller design method

curate for the class of low velocities concerned. Wind tunnel

experiments are carried out in [9]. In the above equatia® The recently proposed very powerful numerical methods (and
the air density[J is the free stream velocity,, andc,, re- associated theory) foconvex optimizatiorinvolving Linear
spectively, are lift and moment coefficients per angle of attadatrix Inequalities (LMI) help us with the analysis and the de-
and¢;,, andc,,_, respectively are lift and moment coefficientsign issues of dynamic systems models (3) in acceptable com-
per control surface deflection, amdis non-dimensional dis- putational time [22, 23]. One direction of these analysis and
tance from the mid-chord to the elastic axis. Several classkssign methods is based on LMI's and PDC techniques [15],
of non-linear stiffness contributior's, (o) have been studied and functions with the multiple-model form. In this paper we
in papers treating the open-loop dynamics of aeroelastic susitise the TP transformation and a PDC controller design tech-
tems [2, 19, 20, 7]. For the purpose of illustration, we nowique to derive viable control methodologies for the non-linear
introduce the use of polynomial non-linearities. The non-lineaeroelastic system defined in the previous section. The key idea



Table 1: System variables

d = m(I, — mz2b?)
kl _ Iakp

d
1o pbcla +mx, bSPCma
ko

d
kS _ —mx o bk
o —mxabzpclu —mpr(zma
ky = i
_ —mz,
p(a) = ="k (a)
_m
al0) = %Fa(a) 3
_ Ia(cn+pUbcy ) +mzapU-cm,
Cl(U) a 2 1 d 4 1
CQ(U) _ I,pUb CZO(E*G)*mwadea+’m€EaPUb Cmg, E*G)
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Cg(U) a 3 d 1 3 1
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_ 1 3
g3 = %(_Iapbclﬂ — mTab pcmﬁ)
_ 2 2
94 = E(mxab PCig + mpb Cm@)

S € RIxI2xxInxOxI s constructed from the vertex sys-
tem matricesS;, ;,, iy € RO*I The firstN dimensions of
S are assigned to the dimensiongof

4.2 TP transformation to multiple model

The TP transformation has various options. Let us summarize
here only those that have prominent roles in this work:

(Wn=1.N(pn),S) = TP_transf(S(p), 2, options), (7)

whereS(p) € RY*! is from the state-space model (3), and
Q c RY denotes the bounded domain which the transforma-
tion is performed over, anthptions” is to define some char-
acteristics of the basis. The transformation can generate "min-
imal”, "convex” and "close-to-localised” basis. The "close-
to-localised " basis means that the vertex models involved in
the multiple-model form are the linear models of the given dy-
namic modelS(p) over certain operation points, namely, the

of the proposed design method is that the TP transformati@rtex systems are included in the dynamic model at certain
is utilized to represent the model (3) in multiple-model formoints p or they are as close to the given model as possible.
with specific characteristics, whereupon PDC controller desigpse-to-localised basis - option understood on a convex basis,
techniques can immediately be executed. The detailed descfigquired by the multiple-model form, see (5). In the control de-
tion of the TP transformation and PDC based designs is beyaigh of this paper (Section 5) we select the "close-to-localised’-
the scope of this paper and can be found in [13, 14, 15]. Fisisis option. Papers [13, 14] introduces the method of gen-

of all, let us define the multiple-model form.

4.1 Multiple-model

This subsection defines the multiple model form of (3) as:

(’y‘) - (i wr<p>sr> (’;) |

where basis functions fulfill:

R
Vr,p:w.(p) €[0,1]; and Vp: Zw,.(p) =1. (5

This defines a fixed polytope, where the system varies
S(p) € {S1,S,,...,Sg}. MatricesS, € RO*! are termed
vertex systems. Further, (5) defines the convex hull of the v

tex systems as:

S(p(t)) = CO{Sh SQ; ceey SR}W(p)7

erating "minimal” and "convex” basis. The transformation to
"close-to-localised ” basis is introduced in [24] in a slightly
different manner. Vectorsv, (p,,) € R* and tensoiS are
defined at (6). At this point, we should describe briefly the
existence of the exact TP transformation. In [25] it is shown
that the multiple-model (6) is no-where dense in the modelling
space if the number of basis functions is bounded, which is
always the case in numerical implementations. The practical
significance of this is that the transformed multiple-model is
only an approximation in general cases:

n= u

X~ S g1 W, (pn) (X> . 8)

¢ denotes the transformation error. Itis zero if the given model
I .
can be transformed exactly to multiple-model form. If exact

r?_presentation does not exist then we should employ as many

Basis functions as possible to ensure smallhe TP transfor-

mation defines the relation betweemand the number of basis
functions, which helps us with optimising the number of basis
functions, subject to an acceptable error.

where the row vectow (p) € R’ contains the basis functions

w,(p). In many cases the basis functioms(p) are decom- 4.3 PDC controller design

posed to dimensions, which leads to a higher structure of (4).

Having the decomposed basis the multiple-model (4) can hee PDC design techniques determine one feedback to each
written, in order to avoid complicated indexing, in terms ofertex model:

tensors as:

(3) = Zveon (1)

K = PDC(S, stability_theorem).

"stability_theorem” is a symbolic parameter. It specifies the
stability criteria expressed in terms of matrix algebra or Lin-
ear Matrix Inequalities. The control performance depends on

Here, the row vectow, (p,) € R contains the basis func-the selected criteria. For instance, the speed of response, con-
tions w,, ;, (pn), the N + 2 -dimensional coefficient tensorstraints on the state vector or on the control value can also be



set by properly selected LMI based stability theorems. A largemplicated. TP transformation takes a few seconds to execute
collection of such theorems is presented in [15]. Under tlo& a Pentium computer.
framework of vertex feedback systems, one can define the ¢

i m\_ving the multiple-model form we can execute the PDC de-
trol value as:

sign techniques. Let us select one of the simplest PDC tech-
niques that does not consider any constraint on the speed of the
controller, the state vector and the control values, and does not
-— involve LMI's: First we execute pool-replacement technique to
define the vertex feedback systems:

N
u=-K @ w,(p,)x.

n=1

°
©
T

o
®
T

)

K = Pool_replacement(S, pools), (9)

°
>
T

)
@

then we utilise Theorem C14 of paper [26] to check the stability
of the controlled multiple model:

Basis functions: w(U
°
2
:

°
©
T

| Theorem 1 (Quadratic stabilityDynamic system

() = Sww(n) ()

| . . . . . . !
14 15 16 17 18 19 20 21 22 23 24 25
Free stream velocity: U (m/s)

where
N
u=-K ® w,(p,)x.
n=1

o

| is quadratically stable if and only if the following condition
i holds:
Re)i(H) # 0, (10)

1 whereH is an indicator matrix. Its elements are detailed in
] [26].

Basis functions: w(a)
o o
g &
:

| As a matter of fact theools in (9) cannot be arbitrarily set, but
h . we can easily find densely located regions of those pools, which
Pitch angle: a (rad) lead to (10). Furthermore, as one might expect, the effect of the
selected pools on closed-loop controller performance (speed of
Figure 2: Basis functions on the dimensienandU . response) and on the maximum valueuofWe may select the
pools according to a desired controller speed.
5 Quadratic stability of the aeroelastic wing sec-

tion 6 Control results

This section is intended to perform the controller desigio demonstrate the performance of the controlled system, nu-
method discussed in the previous section to the present aernerical experiments are presented in this section. In order to
lastic system defined in (3). First of all let us define thibe comparable to other published results, the numerical exam-
transformation spac€). We are interested in the intervalples are performed with free stream velodify= 20m/s, a

U € [14,25](m/s) and we presume that the interval € velocity that exceeds the linear flutter velodify= 15.5m/s.
[—0.03,0.03](rad) is sufficiently large enough (note that these

intervals can arbitrarily be set). Therefore let: 6.1 Time response of controlled system
Figure 3 shows the control results fof = 20m/s and for
initials A = 0.01 anda = 0.1.

in the present example. Executing the TP transformation (7),

yields that the dynamic model (3) can be represented exactiypid  Comparison to other solutions
TP model form (6) over a 3 times 2 "closeto localizes” basi
This means that the model in (3) can be described exactly (
0in (8)) by the convex combination 8fx 2 = 6 linear vertex
systems.

Q : [14,25] x [—0.03,0.03]

Eor comparison, Figure 4 presents the time response of the con-
troller developed, via exact feedback linearization, or=
20m/s and for initialsh = 0.01 anda = 0.1, see [1]. Com-
paring the results we can observe that the controller developed
Note that, we may try to derive the basis functions analyticalliyn this paper is faster and stabilises the system in about 3 sec
The basis functions ok can easily be extracted frof,(«). whilst the maximum control values are significantly smaller
However, finding the basis functions bf, seems to be ratherthan those shown in Figure 3.
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Figure 3: Time response of derived controller #or= 20m/s
anda = —0.4.

7 Conclusion

In this paper we have applied a numerical control design
method which is based on the TP model transformation and
PDC design methods, to design non-linear controllers for pro-
totype aeroelastic wing sections that includes structural non-
linearity. The control design utilises one control surface. With-
out any control effort, or with linear controllers, the aeroelas-
tic system reveals various kinds of non-linear phenomenon in-
cluding limit cycle oscillation as noted in various text. The
proposed controller design method quadratically stabilises the
system and is based on numerical steps. The controller can thus
be determined automatically and without analytic derivations.
The effectiveness of the controller has been compared with an
alternative another control solution. If the design requirements

ther development of this work the authors plan to design con-
trollers for advantageous control performance.
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