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Abstract

In this paper, a new semiactive control approach is presented to
stabilize a base isolated structure subjected to parametric un-
certainties and unknown disturbances. In the controller design,
the actuator dynamics (time delay and frictional effects) are
taken into account. The ultimate boundedness is achieved in
the closed-loop system. Numerical simulation is done for a
10 story base isolated building, with two semiactive controllers
being put on the base and the first floor, to illustrate the effec-
tiveness of the proposed semiactive control scheme.

1 Introduction

In recent years, different (passive, active and semiactive) con-
trol approaches have been proposed in order to attenuate the
structural vibration in high rise buildings and long span bridges
caused by the strong earthquake and wind[1]. In general, the
application of active control force to the structure can achieve
an important improvement of the structural behavior compared
with the traditional passive controlled structures[2]−[5]. Some
successful application of active control of structures can be
found in Japan, China, etc. However, one of the main prob-
lems associated with the active structural control is the need of
high electric energy for its correct operation, which could be
failed during the strong seismic excitation. Semiactive control
strategies become very promising for vibration suppression in
flexible structures due to the requirement of low electric supply
and the facility of maintenance[6]−[7]. In a semiactive control
system, on-line adjustment of the damping and/or stiffness of
adaptable devices are done according to feedback signals and
control commands. In general, a semiactive controller can act
in a desirable fashion in both a passive and a feedback control
mode, with its performance generally enhanced in this mode.
The use of semiactive devices in combination with base iso-
lation systems has been also considered within this context.
In the design of semiactive controller up to now, the actuator
dynamics have not been considered but just being included in
the validation of the controller implementation. In this paper,
a new semiactive controller is presented for achieving the ul-
timate boundedness of structural performance in the presence
of seismic excitation. The controller design is made based on
the Lyapunov theory and the actuator dynamics is taken into
account in order that the obtained results give a better approx-

imation to the real conditions. Numerical simulation is done
with a 10 story base isolated building to show the effectiveness
of the proposed control strategy.

2 Problem Formulation

Consider a nonlinear base isolated building structure as shown
in Figure 1, whose dynamic behavior can be described by
means of a model composed of two coupled subsystems,
namely, the main structure (Sr) and the base isolation (Sc):

Sr : MMMq̈qqr + CCCq̇qqr + KqKqKqr = [c1, 0, ..., 0]T q̇c + [k1, 0, ..., 0]T qc .

Sc : m0q̈c + (c0 + c1)q̇c + (k0 + k1)qc − c1q̇r1 − k1qr1

= −c0ḋ− k0d + fN .

fN = −sgn(q̇c − ḋ)[µmax −∆µe−ν|q̇c−ḋ|]G . (1)

This model assumes that the structure has a linear behavior due
to the effect of the base isolation. This behavior is represented
by the positive definite mass, damping and stiffness matrices
MMM , CCC andKKK ∈ IR n×n respectively.

MMM = diag(mi) ; (i = 1, 2, ..., n) (2)

CCC =


c1 + c2 −c2 0 · · · 0 0
−c2 c2 + c3 −c3 · · · 0 0

...
...

... · · ·
...

...
0 0 0 · · · −cn cn

 (3)

KKK =


k1 + k2 −k2 0 · · · 0 0
−k2 k2 + k3 −k3 · · · 0 0

...
...

... · · ·
...

...
0 0 0 · · · −kn kn

(4)

qqqr = [ qr1 , qr2 , · · · , qrn ]T ∈ IR n represents the horizontal
displacements of each floor with respect to an inertial frame.
The base isolation is described as a single degree of freedom
with horizontal displacementqc ∈ IR . It is assumed to
exhibit a linear behavior characterized by mass, damping and
stiffnessm0, c0 andk0, respectively, plus a nonlinear behavior
represented by a forcefN supplied by a frictional isolator
with G being the force normal to the friction surface,µ the
friction coefficient, ν a constant,µmax the coefficient for
high sliding velocity and∆µ the difference betweenµmax

and the friction coefficient for low sliding velocity. The term
−c0ḋ − k0d is a dynamic excitation force acting on the base
due to the horizontal seismic ground motion represented by in-



ertial displacementd(t) and velocityḋ(t) at each time instantt.

In general, the base isolator (passive control device) can
achieve satisfactory performance if its resonance frequency
is well tuned. It is very difficult to make such tuning in
practice due to the lack of information on the forthcoming
earthquake[8]. Another serious problem is that sometimes the
peak response of absolute base displacement is so large as to
exceed the elastic limit of the base isolator. The main purpose
for the use of active and semiactive controllers in combination
with the passive controller (base isolator) is to reduce the peak
response of the absolute base displacement so that the base
isolator works always in the elastic region and also to attenuate
the dependence of structural performance on the resonance
frequency of the base isolator.

3 Controller Design

Usually, the semiactive control devices have to be installed in
all stories of the building to guarantee the global stability of
the whole base/structure system. In this paper, we only use
semiactive controllers at the base and the first floor to adjust the
stiffnesski(t) and the dampingci(t) (i = 0, 1), as illustrated in
Figure 1. In this way, the number of semiactive control devices
is significantly reduced. The following equations of motion of
the base and the first floor will be used in the controller design:

Sr1 : m1q̈r1 + c1q̇r1 + k1qr1 = α+ β . (5)

Sc : m0q̈c + [c0 + c1]q̇c + [k0 + k1]qc = c1q̇r1 + k1qr1

−c0ḋ− k0d+ fN . (6)

where {
α =: c1q̇c + k1qc .
β =: c2[q̇r2 − q̇r1] + k2[qr2 − qr1] .

(7)

It is well accepted that the movement of the buildingSr is very
close to the one of a rigid body due to the base isolation[8].
Then it is reasonably to assume that the inter-story motion of
the building will be much smaller than the absolute motion of
the base. Hence, the right-hand terms of the eqn.(5) can be
simplified as

α+ β ≈ α = c1q̇c + k1(t)qc . (8)

A numerical verification of the above assumption can be found
in Figure 2. Consequently, the following simplified equation of
motion of the first floor can be used in the subsequent controller
design:

Sr1 : m1q̈r1 + c1q̇r1 + k1qr1 = c1(t)q̇c + k1qc . (9)

The semiactive controller is designed to provide adaptive
damping and stiffness as being functions of the absolute mo-
tion. Concretely, the operation of control system is based
on the on-line modification of the stiffness and the damping
parameters of both the base(k0(t); c0(t)) and the first floor

(k1(t); c1(t)). It is assumed that these parameters can take any
value within prescribed bounds. That is,

ki(t) ∈
[
k−i , k

+
i

]
; ci(t) ∈

[
c−i , c

+
i

]
; i = 0, 1 (10)

wherek±i and c±i are known constants (prescribed bounds).
Suppose thatki(t) and ci(t) can be adjusted by control sig-
nalsuk

i (t) anduc
i (t) (i = 0, 1). For instance, without loss of

generality, let

ki(t) = k∗i + δk
i u

k
i (t) ; ci(t) = c∗i + δc

iu
c
i (t) ; (11)

uk
i (t) ∈ [−1, 1] ; uc

i (t) ∈ [−1, 1] (12)

where

k∗i = 1
2 (k+

i + k−i ) c∗i = 1
2 (c+i + c−i ) (13)

δk
i = 1

2 (k+
i − k−i ) δc

i = 1
2 (c+i − c−i ) (14)

with k∗i and c∗i being considered generally as the nominal
values ofki(t) andci(t).

By taking into account the actuator dynamics, such as time
delay and frictional force, the real control forcesvk

i (t) and
vc

i (t) generated by the semiactive controllers to the structure
are given as follows

vk
0 = δk

0u
k
0qc − τk

0 k̇0qc + P k
a0
q̇c + k∗0qc (15)

vc
0 = δc

0u
c
0q̇c − τ c

0 ċ0q̇c + P c
a0
q̇c + c∗0q̇c (16)

vk
1 = δk

1u
k
1(qc − qr1)− τk

1 k̇1(qc − qr1)
+P k

a1
(q̇c − q̇r1) + k∗1(qc − qr1) (17)

vc
1 = δc

1u
c
1(q̇c − q̇r1)− τ c

1 ċ1(q̇c − q̇r1)
+P c

a1
(q̇c − q̇r1) + c∗1(q̇c − q̇r1) (18)

with

ki = δk
i u

k
i − τk

i k̇i ; ci = δc
iu

c
i − τ c

i ċi (19)

i.e.,

uk
i =

1
δk
i

[
ki + τk

i k̇i

]
; uc

i =
1
δc
i

[ci + τ c
i ċi] (20)

whereτk
i andτ c

i are time constants of the actuator dynamics
for the stiffness and damping changing,P k

ai
and P c

ai
are

the parameters related to the frictional forces existed in the
actuator.

By substituting the above control laws into the the dynamic
equations of the base( eqn.(6)) and the first floor (eqn.(9)), we
obtain

m0q̈c + (c∗0 + c∗1 + P k
a0

+ P c
a0

+ P k
a1

+ P c
a1

)q̇c + (k∗0 +

k∗1)qc − (c∗1 + P k
a1

+ P c
a1

)q̇r1 − k∗1qr1 = f(qc, q̇c, d, ḋ)

−uk
0δ

k
0qc + τk

0 k̇0qc − uc
0δ

c
0q̇c + τ c

0 ċ0q̇c − δk
1u

k
1(qc − qr1)

+τk
1 k̇1(qc − qr1)− δc

1u
c
1(q̇c − q̇r1) + τ c

1 ċ1(q̇c − q̇r1)(21)

m1q̈r1 + (c∗1 + P k
a1

+ P c
a1

)q̇r1 + k∗1qr1 − (c∗1 + P k
a1

+

P c
a1

)q̇c − k∗1qc = δk
1u

k
1(qc − qr1)− τk

1 k̇1(qc − qr1)
+δc

1u
c
1(q̇c − q̇r1)− τ c

1 ċ1(q̇c − q̇r1) (22)



Now, define xxx(t) = [qr1(t), q̇r1(t), qc(t), q̇c(t)]
T ,uuu(t) =

[uk
1(t), uc

1(t), u
k
0(t), uc

0(t)]
T and z(t) = [k̇1, ċ1, k̇0, ċ0]T .

Then, the following state equation is obtained

ẋxx(t) = AxAxAx(t) +BBB(xxx, t)uuu(t) + C(xxx, t)zzz(t) + FFF (xxx, t) (23)

where

AAA =


0 1 0

−k∗1
m1

−c
∗
1 + P k

a1 + P c
a1

m1

k∗1
m1

0 0 0
k∗1
m0

c∗1 + P k
a1 + P c

a1

m0
−k

∗
0 + k∗1
m0

0
c∗1 + P k

a1 + P c
a1

m1
1

−c
∗
0 + c∗1 + P k

a0 + P c
a0 + P k

a1 + P c
a1

m0

(24)

BBB(xxx, t) =


0 0

δk
1 (qc − qr1)

m1

δc
1(q̇c − q̇r1)

m1
0

0 0

−δ
k
1 (qc − qr1)

m0
−δ

c
1(q̇c − q̇r1)

m0

0 0
0 0
0 0

−δ
k
0qc
m0

−δ
c
0q̇c
m0

 (25)

CCC(xxx, t) =


0 0

−τ
k
1 (qc − qr1)

m1
−τ

c
1 (q̇c − q̇r1)

m1
0 0

τk
1 (qc − qr1)

m0

τk
1 (q̇c − q̇r1)

m0

0 0
0 0
0 0

τk
0 qc
m0

τ c
0 q̇c
m0

 (26)

FFF (xxx, t) =


0
0
0
1
m0

 f [qc(t), q̇c(t), d(t), ḋ(t)] (27)

Suppose that the seismic excitation(d, ḋ) is unknown but
bounded,

‖f [qc(t), q̇c(t), d(t), ḋ(t)]‖ ≤ φ0 , (28)

whereφ0 is a known constant. Then

‖FFF (xxx, t)‖ ≤ 1
m0

‖f [qc(t), q̇c(t), d(t), ḋ(t)]‖ ≤ F0 (29)

consequentlyF0 = φ0/m0 is a known constant.
Define the Lyapunov function candidate as

V (xxx, t) =
1
2
xxxT (t)PxPxPx(t) (30)

wherePPP =∈ R4×4 is the positive definite solution of the Lya-
punov equation

PAPAPA+AAATPPP +QQQ = 0 (31)

for a given symmetric positive definite matrixQQQ. By using
eqns. (27)–(29), the derivative ofV (xxx, t) is obtained

V̇ (xxx, t) = −1
2
xxxTQxQxQx+ xxxTPbPbPbk0u

k
0 + xxxTPbPbPbc0u

c
0 + xxxTPbPbPbk1u

k
1

+xxxTPbPbPbc1u
c
1 + xxxTPcPcPck0 k̇0 + xxxTPcPcPcc0ċ0 + xxxTPcPcPck1 k̇1

+xxxTPcPcPcc1ċ1 + xxxTPFPFPF (32)

where

bbbk0 =


0
0
0

−δk
0qc/m0

 bbbk1 =


0

δk
1 (qc − qr1)/m1

0
−δk

1 (qc − qr1)/m0



bbbc0 =


0
0
0

−δc
0q̇c/m0

 bbbc1 =


0

δc
1(q̇c − q̇r1)/m1

0
−δc

1(q̇c − q̇r1)/m0



ccck0 =


0
0
0

τk
0 qc/m0

 ccck1 =


0

−τk
1 (qc − qr1)/m1

0
−τk

1 (qr1 − qc)/m0



cccc0 =


0
0
0

τ c
0 q̇c/m0

 cccc1 =


0

−τ c
1 (q̇c − q̇r1)/m1

0
−τ c

1 (q̇r1 − q̇c)/m0


It can be verified from the above relations that

cccki = −τ
k
i

δk
i

bbbki ; cccci = −τ
c
i

δc
i

bbbci ; (i = 0, 1) (33)

The control objective is to minimizėV (xxx, t) for every(xxx, t).
The semiactive control signals that result in the minimum of
V̇ (xxx, t) for uk

i (t) ∈ [−1, 1] anduc
i (t) ∈ [−1, 1] are

uk
i = −sgn(xxxTPbPbPbki ) ; uc

i = −sgn(xxxTPbPbPbci ) (34)

Now, rewrite the expression oḟV (xxx, t) into the following form

V̇ = −1
2
xxxTQxQxQx+ xxxTPbPbPbk0(δk

0u
k
0 − τk

0 k̇0) + xxxTPbPbPbc0(δ
c
0u

c
0

−τ c
0 ċ0) + xxxTPbPbPbk1(δk

1u
k
1 − τk

1 k̇1) + xxxTPbPbPbc1(δ
c
1u

c
1

−τ c
1 ċ1) + xxxTPFPFPF (35)



By applying the semiactive control laws in eqn.(34), we can
show that

xxxTPbPbPbk0(δk
0u

k
0 − τk

0 k̇0) < 0 (36)

xxxTPbPbPbk1(δk
1u

k
1 − τk

1 k̇1) < 0 (37)

xxxTPbPbPbc0(δ
c
0u

c
0 − τ c

0 ċ0) < 0 (38)

xxxTPbPbPbc1(δ
c
1u

c
1 − τ c

1 ċ1) < 0 (39)

In fact, if xxxT (t)PbPbPbk0(xxx, t) > 0 for t ≥ ts thenuk
0(t) = −1. In

this case, we get from eqn.(19) that

k0(t) = −δk
0

(
1− e−(t−ts)/τk

0

)
(40)

k̇0(t) = − δ
k
0

τk
0

e−(t−ts)/τk
0 ≥ − δ

k
0

τk
0

(41)

thus the relation eqn.(36) is accomplished. IfxxxT (t)PbPbPbk0(t) < 0
that impliesuk

0(t) = −1, then we obtain thatk0(t) ≤ δk
0/τ

k
0 .

Therefore, the relation eqn.(36) is also accomplished. The re-
lations eqns.(37)-(39) can be proved in a similar way.
Denote that

θ(xxx) = xxxTPbPbPbk0(δk
0u

k
0 − τk

0 k̇0) + xxxTPbPbPbc0(δ
c
0u

c
0 − τ c

0 ċ0)
+xxxTPbPbPbk1(δk

1u
k
1 − τk

1 k̇1) + xxxTPbPbPbc1(δ
c
1u

c
1 − τ c

1 ċ1)

then,θ(xxx) < 0 and the equation (35) can be rewritten as

V̇ = −1
2
xxxTQQQxxx+ θ(xxx) + xxxTPPPFFF (42)

SinceQQQ andPPP are positive definite matrices, using (29) we
may write

V̇ ≤ −1
2
λmin(QQQ)||xxx(t)||2 + θ[xxx(t)] + λmax(PPP )F0||xxx(t)|| (43)

whereλmin andλmax represent the minimum and maximum
eigenvalue, respectively.

The compact setK = {xxx ∈ IR 4 |V (xxx) ≤ γ} is a global
uniform attractor for the semiactively controlled system (43),
where

γ = max{V (xxx)|xxx ∈ IR 4, ψ(xxx) ≤ 0},
with

ψ(xxx) =
1
2
λmin(QQQ)‖xxx‖2 − θ(xxx)− λmax(PPP )F0‖xxx‖ (44)

By using the property that

λmin(PPP )
2

‖xxx‖2 ≤ V (xxx, t) ≤ λmax(PPP )
2

‖xxx‖2 (45)

it is easy to find that the setB = {xxx ∈ IR 4 | ‖xxx‖ ≤ ρ}, with

ρ =

√
2γ

λmin(PPP )
, (46)

is the smallest ball that contains the attractorK. This is called
theball of ultimate boundednessin the literature[9]. In control
practical terms, this is a ball such that any trajectory entering at
certain timeT remains there for allt > T .

4 Numerical Example

As an application example, a 10-story base isolated building
structure is considered in the numerical simulation. The mass
of each floor, including that of the base, is6 × 105 kg. The
stiffness of the base is1.184× 107N/m and its damping ratio
is 0.1. The stiffness of the structure varies in5 × 107N/m
between floors, from9×108N/m the first one to4.5×108N/m
the top one with damping ratio0.05. A frictional device is used
for the base isolation, where the nonlinear forcefN is described
by the next equation

fN (qc, q̇c, d, ḋ) = −sgn(q̇c − ḋ)[µmax −∆µe−ν|q̇c−ḋ|]G (47)

with G =
10∑

i=1

mi, µ = 0.1, ν = 2.0, µmax = 0.185 and

∆µ = 0.09. In the simulation, the seismic excitation has been
that of the El Centro (1940) earthquake as shown in Figure 3.

The semiactive controller laws in equations (40), (17)-(18) and
(21)-(22) have been used with

PPP =

 116120000 −194.07 −103520000 −194.07
−194.07 0.69176 196.67 0.56275

−103520000 196.67 104270000 194.12
−194.07 562.75 194.12 0.56282


The semiactive magnetorheological device is used
with τk

i = τ c
i = 1ms, δk

0 = 1.184 × 107N/mV ,
δc
0 = 2.176 × 105Ns/mV , δc

1 = 9.487 × 105Ns/mV ,
δk
1 = 9.0 × 108N/mV , P c

a0 = P k
a0 = 2.176 × 104m2,

P c
a1 = P k

a1 = 9.487 × 104m2. Both passive case (pure base
isolation) and hybrid case (base isolation plus semi-active
control) are studied. The time history of the absolute displace-
ment of the base is shown in Figure 4. The interstory response
between the 9th and 10th floors and the absolute acceleration
of the top floor are shown in the figures 5 and 6, respectively.

It is observed that the semiactive controller that takes into ac-
count the actuator dynamic is effective and improves the struc-
tural performance as compared with the purely passive con-
trolled case. It is seen from Figure 4 that the semiactive con-
trollers reduce the peak response of absolute displacements of
the base from a margin of±5.5cm (a reduction about 42.7%)
so as to maintain the base isolator working in its elastic region.
It is also observed from Figures 5 and 6 that the good dynamic
performances achieved by the base isolator have been kept in
the semiactive controlled structure.

5 Conclusions

As a novelty in the design of semiactive controllers, the control
scheme proposed in this paper has taken into account the ac-
tuator dynamics so that controlled structural performance has
better approximation to the real operation conditions such as
the effects of time delay and frictional forces. It has been



shown that the ultimate boundedness is achieved in the semi-
active controlled structures subject to unknown seismic excita-
tion. The numerical simulation has illustrated the effectiveness
of the semiactive controller for a 10-story frictional base iso-
lated structure. The peak response of the absolute movements
of the base and main structure has been significantly reduced
as compared with the purely passive controlled case.
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Figure 1:Base isolated structure

with semiactive components

Figure 2:Dynamics ofα andβ

Figure 3:Accelerogram ofEl CentroEarthquake



Figure 4:Absolute base displacement

Figure 5:Relative displacement between 9th and 10th floors

Figure 6:Absolute acceleration of the 10th floor
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