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Keywords: Feedback stabilization; descriptor systems; nonf growth conditions with respect to its arguments, is assumed.
linear systems; time-delay systems of the retarded type; und@ne feature of the controllers, employed to stabilize the class of

tain dynamic systems. uncertain systems, is that the gains depend explicitly on upper
bounds of the uncertainty and, thus, robustness of the feedback
Abstract controls is a consequence. Utilizing feedback controllers with

memory, together with a deterministic methodology based on
A class of memoryless feedback controls is designed to asyrhgapunov theory and Lyapunov-Krasovskinctionals, a sta-
totically stabilize a class of imperfectly known, nonlinear, dédility criterion is proposed that will ensure the desired stability
scriptor systems with time-delays. Each descriptor systepipperty for the prescribed class of descriptor systems.
consisting of dynamic and static subsystems, contains discrete
and distributed delays, and each dynamic supsysj[em is atime- Class of descriptor systems
delay system of the retarded type. A deterministic methodol-
ogy based on Lyapunov theory and Lyapunov-Krasé\fahic- Consider a class of imperfectly known, hereditary, descriptor
tionals is utilized and feedback controllers are synthesized tlsgstems modelled by
will ensure, under appropriate hypotheses and satisfaction of

appropriate stability criteria, a uniform asymptotic stability #(t) = alt, ze, yr, u(t)) (2.1)
property for the prescribed class of hereditary descriptor sys- 0 = b(z4, Yy, u(t)), (2.2)
tems.

where
1 |ntr0dUCt|0n a’(taxtayt7u7ﬂ') = al(x17$27241792) +I(t,7'1,a2(331))

, L I(t, 7o, G
There have been a few recent research investigations on de- It 72, a3(y1)) + Grla)u

scriptor systems using a deterministic approach, see, for ex- (w3, Y1, Y20 Y3, 1),
ample [3]-[7]. The work discussed in [4]-[5] and [7]-[8] only b(xt, Ye, u, 1) = by (w1, T2, y1,92) + 1(t, 71, b2(21))
considered linear descriptor systems, and only [5] and [7]- + I(t, 72, b3(31)) + Ga(x1)u,

[8] studied systems with uncertainty. The paper published in

[3], investigated a nonlinear descriptor control system, but noz1(t) = z(t), za(t) = th(f —p1),
uncertainty was considered and the systems were delay-free, D= It — d
Also, the class of descriptor systems investigated in [4] and [8]”L3( )= It o zi(r)dr,
consisted of dynamic subsystems modelled as linear time-delay: (t) = y(t), y2(t) = yt(t — p2),
systems of the retarded type. To the authors’ knowledge, there _ . N
appears to be no studies on uncertzomlineardescriptor sys- vs(t) = I(t, 72, 41) := i yi(r)dr,

tems with discrete and distributed time-delays. z(t) € R, y(t) € RY, u(t) € R™ is the control input, and

The main objective of this paper is to design, using a determi-< 7 < ¢ < n. The notationz, = z(r) := «(t +r)
istic approach, a class of robust memoryless feedback cont@ls€ [~7:0l, 7 > 0) is introduced to denote the restric-

for uncertain nonlinear descriptor systems, subject to timgon of z(-) to the interval[t — 7,t]. let Q) _ := {¢ €
. - . . . . ’ ) 7T :
delays (discrete and distributed), in order to achieve a uniform

asymptotic stability property. There are some advantagesvpf([_ﬂ O R?) : |9l < A, with 0 < A < oo ¢, where
using memoryless controls, namely past history of the states

do not need to be stored. Therefore, for certain application,([~7;0]; R”) denotes the Banach Space of absolutely con-
memoryless controls may be more suitable. With respect to #fous functions with Square-integrate derivation with norm
imperfectly known systems, only uncertainty in the dynami 2 0 2 2

subsystem is considered in this investigation. Also, param MW - { Il + /_T Il @)l de} - Itis assumed that
ric uncertainty is not considered in this paper; instemagri- the system (2.1-2.2) is subject to initial condition

ori bounding knowledge of the system uncertainty, in terms
Tt (0) = Q/)»L(e)v Yty (9) = ¢y(9)7 0 € [_T’ 0]7 (23)



with T = max(p1, p2, 71, 2], ande, € QY 7 ¥, € QlA7T.
The discrete and distributed delays, representeg; by, and

and

1
T1, T2, respectively, are assumed to be bounded. Itis assumed [(t,71,b2(&;)) = / I(t, 11, (0¢, b2)(aé1)é1) da
0

that the vector fields,;, € C*(R™ x R™ x R® x R%;R"),
by € CHR" x R" x RY x RE:RY), ay € CHR™R™),
by € CHR™RY), a3 € C*(R*;R"), andbs € C'(R*;RY)
are known and satisfy,(0,0,0,0) = 0, 4(0,0,0,0) = 0,
QQ(O) = a3(0) = 0, bQ(O) = bg(O) = 0, Gl(l'l) €
L(R™;R™) and Go(z1) € L(R™;RY) are known. The un-

certainty in the system is represented by the nonlinear functiofu (¢) A

hi € C(R xR" x R™ x R™ x R x R x RY x R™ x R ; R™).
For notational simplicity, let = [¢; &]T = [z, »1]T and
n = [m " [z2 32]T. It is well known that, for
(T1,22,y1,92) = f(@1,72,91,92),

1
f(x17x27y17y2) = / (8w1f)(a$1;ax27ay1,ay2) dO[ZE]_
0
1
+/ (a$2f)(axlaax27aylvay2) dOATCQ
0
1
+ [ @ 0@ asama) day,
0
1
+ [ @) aap) da.
0

Thus,aq (21, 22, y1, y2) can be expressed in the form

1 1
/ A (ag, an) dat + / A (ag, an) dan,
0

0

where

AP (€)= [ (D, a1) (&1, €2,m2) (Deya1) (€1, 62,72) |
AT En)= [ (B ar) (€1, 1, E2,m2) (Dgpar) (€1, E2uma) ] -
Also, in view of the -continuity conditions onas,,

I(t, 71, f2(x1)) can be expressed in the form

I / (96,2) (a1 (1)) daés () dr
= [ 07 r a2 06160 do

0

and, in addition,

I(t, 7, a3(62)) = /0 I(t, 72, (9e, 03) (02)E2) dax

Similarly, by (x1, z2,y1,y2) can be replaced by

1 1
/ B (a&, an) dat + / B (a&, a) dan,
0 0

bl)(€177’13€2an2) (6
)(5177’135%772) (

bl)(flaﬁlaf?ﬂh)}
)(5137717527772)}

I(t, 7, b5(62)) = / 1(t, 72(0e,b3) (062)€2) da

Hence, the descriptor system can be expressed as
ozf, an) daf + / A ozf, an) dan
1
+/ I(t,Tl, (851a2)(a§1)§1)da
0

_|_/0 I(t, 7o, (352£L3)(Oéf2)€2) dov

+ Gr(&(t))ult
+ hy (t7 51 (t)’ m (t)’ Cl (t)7 fZ(t)ﬂ 772(t)v (2(t)7 u(t))7

1 1
0= [ Bif(agandac + [ B{Y ot an)dan
1
4 / I(t, 71, (e, bo) (01)6r) dar
0

1
+ [ 1t @esba) aa)) da
0
+ Ga(&(1))u(?),

where(; := x3 and(, := ys.

3 Design objective and class of feedback control

First, some appropriate hypotheses are introduced. The Eu-
clidean inner product (orR™ or R’ as appropriate) and
the induced norm are denoted hy,-) and ||-||, respec-

tively. Let X7 (fl) = <gi(1)(f1),P1§1> and XEZ)(Q :

<gi (&), Poéy + P3§2>, whereg'", ¢ denote theth com-
ponents of7; andG, respectively.

H1: There existp : R x R” x R"™ x R"
q:R xR" x R" x R" — R™ such that

hl (ta 57 7, Cv u) = q(t7 Ev m, <7 u) + Gl (fl)p(tv 67 7, <7 u),

and there exist real constants, &, 3;,3,7:,4,:, T, d;, 9,
A;, A € RY, such that

(I) |pz(t7§a7]7C7U)| < Vz(ta > 15
+ L lm2ll + 0 |Gl + As €

(i) llq(t,€,9,¢, u) Z (&0, O )l +a

+ B1EN+4 +F||n2|| +ollGl + Alll,

wherey; : R x R" T x R" M xR — [0, 7], & : Rx R x
R x R™ — (0,54, k; € [0,1) for all 4, andu;, p; denote
theith components of: andp, respectively.

— R" and

C) + B llEIN+ i [l |
ol + Kiluil;

Remark: The vector fieldp, ¢ are said to represent the



matchedand unmatcheccomponents, respectively, of the unwhereR = diag(R1, R2). SinceP; is symmetric, then
certainty in the nonlinear dynamic time-delay subsystem.

H2: For allw; > 0 and0 < Z; < 1, the following inequality <£1’P1€1>+<§1’P1§1> N <[ 01 ] ’P£> <P£ { ) }>
holds (4.1)

2] < ws ||g|| + Z( P&, Hence, along solutions to (2.1-2.2) and utilizing (4.1), it is eas-
whereZ; : R"™ — [0, Z,], and ily shown that
Zi < Z; < 1— ks

1
&(t &(t
It is desired that a robust memoryless feedback control fundx (&) = / <[ 778 } L(ag(t), an(t)) [ ,78 }> da
tion, z(t) — c(z,y), be designed so that the uncertain de-

scriptor system has the property that a prescribed compact; 9 / / M (ay (r))E(r), PE(L)) dr da
nonempty set, containing € R" is uniformly asymptotically
stable, for definition, see [1].

_ [ (N, Pee) drdo
The design of the feedback controls emulates the work in [1]. 0 Jt—ms
Here the class of feedback controls consists the functiors + 2(G(&1(t))u(t)
e(ey) = ler(@) ()] with the following structure: 4 k¢, (1), (1), m (1), 2 (1), G (1), Ca (), u(8)), PE(D)),

~ (4.2)
ci(z,y) =—1—k; — Zz‘)71 {Hi(%‘ + T+ 7116; + 124;) Where
m;2(€) } 1) L+ R L L L
Ve, (3.1) 1+ 2 5 La
m(©) M (€0)] + N €)1 LT Ls+Ry, Lg ILn
L(&,n) =

where L3 Lg -R; 0 7

T T
x (&) = U+ (51‘ +7; | Pyl Ly L; 0 —Ry
1
+ 50+ it s + TM) el Ly = (9y00)" (€)1 + P1(9g,a1) (€.)
andyu; > 0,\; > 0,a; > 0 are design parameters. + (9, 01) T (&, M) Pa + Py (9e,b1)(€,m),

Ly =P (0 , P (0¢,b1)(&, De,b1) T (€,m)Ps,
4 Stabilization of the feedback controlled ? 106 02) (&) + P (O b1) (€, m)+ (9, ba) (€ m) Py

descriptor system Ly = P1(8y,a1)(&,m) + P (9y,b1)(€,m),

)
For this particular_problem, the methodology is based o = Pi(y,a1)(€,n) + Py (95,01)(&,n),
Lyapunov- Krasovski functionals and a Lyapunov anaIyS|s

Consider the Lyapunov-KrasovéKunctionals: vy(¢(0)) == 5 = (Deubr) (&, m) P3 + Py (9, br) (€,1),
(0, ELoO), and Lo = PE @y b)(€1), Lt = PF (0,00 (&)
0
et [ rnoinss | ) 8]
0
+ (¢2(s), Raga(s)) ds, o 0 (Og,as)(as2)
/—Pz ? e ( 52 0 (852175)(0452) :l

where ¢ = [ o1 ¢ ]T, o1,02 € C([-T,0];R"), and

I, O P, O . . G(&1) =
E = { (; 0 },P: [P P ywnhfndenotlngthe

4 2 3

n x n identity matrix andO, denoting the x £ zero matrix. p(¢, ¢,y (1, €2, 72, Co, u):{hﬂt,&,m, C1,§27772,427u)}
The particular structure afy has previously been utilized for 0
linear hereditary systems of the neutral type in [2]. Here, itis I O K. O
assumed thaR;, P, € R"*"™ are symmetric and positive def-Let J = 01 J , K = 01 Ky
|n|tg, and also?; € R“** is symmetric and positive definite. ‘trices, withJy, J,. Ky, Ky > 0, and consider the functional
Noting that(¢(0), EP¢(0)) = (¢1(0), P1¢$1(0)), it follows

-|
]

be symmetric ma-

that, along solutions to the descriptor system (2.1-2.2), : / {/ / X (a&(r)E(r)) dr ds
61(&) = (40, A& ®) + (a0, A&
+(6(), REW) — (n(t). (1) o[ oy aras e



where
X(ay) = MY (at)PT T PT M (at))

[ 5]

X1 (afy) = ((am)T(a@)Pl
" (a&w(a&)&) I (<P1 (96, a2)(ar)

T P2T<aglb2><a&>)

+ (O, b2) " (1) P3J; P Psf (9e, b2) (061),
Y (o) = NT(a&)PKPTN (afy)

- [g Yg(gfz) }’

and
Ya(ag) = ((3§2a3)T(aEz)P1
n <a@b3>T<a52>P2> K <P1(3g2a3)(a€2)

+ PF (o, ngo@))
+ (Og,b3)" (o) Ps Ky ' Py (De,bs) (aly).
Then, clearly,

ialE)) = / { (), (nX(a&a(t)) + Y (aba(0)E(D)
- / (£0r), X (a1 ()E(r)) dr

t—Tl

[ veaman arfa. @3
Define 2
o) = (&) +a(8)
tan [ ar a0 0

T1 t
B [ [ el drs
0 t—s

T2 t
+Ba [ el aras,
0 t—s
where .

) 1¢
Apy = AP+ 5D i i
i=1

m

. 1 o
A = PIPI+ 5 30 T

. 1,
By, :=6|P| + izﬂi 15,
i=1

m
-1
122 Ay,
i=1

" 1
Br, = AP+
then, using the inequality

- <I,K71I> +2 <l’,y> S <y7Ky> )
for any symmetricK > 0 and for allz andy, and invoking

(4.2-4.3), a straightforward analysis shows that, along solutions

t0 (2.1-2.2),
£(t)

0(&) §/01< [ n(t)

&(t)
[ -0 } > da + 2(G(& (1) u(t)
+ h(t’ 51 (t)v fQ(t)v m (t)’ nQ(t)’ Cl (t)7 CQ(t)’ u(t))v Pﬁ(t»
+ (Ap, + Apy + 1By, + 7B, [|€(8)]?

= Apy Im @)1 = Apy ()]

} (L(a& (1), an(t)) + W(ag(r)

B [N dr= B [ )1 ar

where
Wi(&) O O o
W(E) = 8 Wzo(fz) g 8 ’
@) ) 0 )

Wi(&) = n(J1 4+ X1(&)) + oK,
Wa(&2) := m2(Ka 4 Ya(£2)) + 11 da.
It is supposed the following hypothesis holds.

H3: (i) There exist matriced® and R, with Ry, R, > 0,
symmetric matrices/, K, with Jy, Jo, K1, Ko > 0, and a
symmetric matrix-valued functioft, n) — Q(¢,n), satisfying
Q(&,m) > 0forall (¢,7), such that

L& n) +W(E)+Q(&n) <0, V(&n).

(i) There exist a constant matr@ = Q™ € R?"**" such that

Q& n) 2 Q>0.

In view of H1 and H3, it follows that
9(&) < —0min(Q) [E®)° = omin(Q) [In(®)|I?
+ 2 Z |:(u1(ta 57 7, C) + pz(tv fa n, C? U))Xgl)(fl)

i=1

+ Ui(tv ga m, C)X?) (f):| + 2 <Q(t7 57 1, C7 U), P1£1>

+ (Apy + Apy + 11 Bry +72B5,) (1))

= Apy O = Ap, (1)

t t
2
- By, 1€(r)II” dr — B,
1

t—T

le(r)* dr,

t—To

(4.4)



then, invoking H1-H2, using feedback control (3.1), we haveTheorem 4.1 Suppose HypotheséH -H3 hold, and choosing

2 Z |:(u’t (ta 57 m, C) + pb(t7 ga 1, C7 u))X'El)(gl)

=1
+ ui(tvé.vnv C)XE2)(§):| + 2 <q(ta§7na C,U), P1£1>
< Q{B | Pl + Z (Ai +wi(l—rK; — Zi)_l(ﬁi + 75 ||P1||)
i=1

+wi (1= ki — Z) i (v + T + 7116 +72Ai))] ll€)l?
=1
Zi (vi I + T [lm2 + ||C1|| + ||C2||)

2 @ Pl +sz 1= ki = Z;) ™

i=1
+ 29 1P I HIEN + 2T ([P e €N + 28 PTG 1€

+2A [Py [1Gall11€]]-

i | lI€]

Therefore, from (4.4) and (4.5), the following result holds for

almost allt:

{ouin(@ - 232~ Jle(0

2 &P+ wi(l = ki — Zi)lﬁi] €Il
=1

(&) <—

wherek :=2(8 44 + ' + 16 + A | Py|| + Z(% +1

i=1

—|—2w (1 -k — Zi)_2u¢>
7

+2sz 1= ki — Z) 7 (Bi + 7 || o).

M|n|m|zmg k with the design parameter;, one obtains

1
+ T10; + 2 A;) (2

k. 1-— Ri — Z_z

i = Wy = %,

andk = 2(B+4 + T + 7110+ A) [P + 2 wi(l — &
i=1

— Z;) T @i 1Pl 4 Bi + i + T 4 110 + 12;).

Suppose

k= Umin(@) —k> 07

. m 1.
then design parameteks such thaz i < Sk, and
i=1
ki=k— 22&» > 0. Hence,

i=1

(&) < —RIED” + 2k [1€]

wherek, := & |[|Py[| + ) wi(l
i=1

— R — Zz) 1171.

(4.5)

1= oumin (Q) [Im() I

the design parameters to sat|sffy> 0, then the compact set
A2 A= {z e R |[lz|* < 2kik'}, is a uniformly asymp-
totically stable set for the class of descriptor systems (2.1-2.2),
subject to (2.3), using the feedback contigt) = c(z,y),
wherec;(x, y) are designed in (3.1).

5 Example

It is assumed that a plant has a system model described by

a1 (t) = 3z1(t) + y(t)

#a(t) = —A(xs(t) — tan %xl(t ~ o)

“Haa(1) —
- /t sin(xa(s))ds + (z1(¢) + x2(t))u(t)

+ ha (), y(t), =(t — p1), y(t — p2),
I(z,m), I(y, 72),u(t))

1 T2 t) 1
0= —4y(t) — 3 (xg(t) + T x%(t)) — iy(t — p2)
5 [ s
where
z(t) = [z1(t) z2(t)]T € R?, y(t)getRl,
hi(t, 2.y, 2,5, 2,9, u) = “(”1?95%)@)

+ (bl(t) sin(z3) + b2(t)x2) (z1 + 22) With = [z; Zo]"

represents uncertainty in the system ane a(t), t — b1(t),

t — by (t) are unknown functions withu(t)| < a, |by(¢)| < by
and|by(t)| < b, for all t. In this example, it is assumed that
the discrete delays ayg = po = 1 and the distributed delays
arer; = 5,7 = 1.

27
Now Gy (z)

0 e
[ €1 + 24 } Hypothesis 1 is satisfied with

? bla’Yz —b2aﬁz —Aaanda—y—ﬁz =45 =1I;
I =9¢; = 57: A, =A=k; =0. SlnceGg() =0, select
w; = 1l andZ; = 0, then Hypothesis 2 is always satisfied since

{(2) ?],sz[o 0], Ps

o =D

it can be shown that Hypothesis 3 is satisfied vith= 0.92.
Thus, witha = 1/16,b; = 1,by = 1/8, and)\; = 1/10,
Theorem 4.1 holds for this example.

The feedback control for the system is designed to be

:[1

=Ky = Iz, Jo

], Ry =

} andJ1 = Ky =1,

2

1 71'i (:c) (1)
|7zt 1 1 i (:C)a
Lﬁ m@ @) + & @2+ 23]

Ci(gjvy) =

wherer;(z) = 1+%(mf+x§+y2)% andxgl)(x) = 129+ 75,
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