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universe; nonlinear control system with output. has the same differential output universe as the original (unob-
servable) system and the two systems are externally dynami-
Abstract cally equivalent. Thus the main construction can only be done

for an observable system which allows for recovering the state
It is shown that a nonlinear continuous-time control systefipm the output and the control.

with output is externally dynamically linearizable if and Onlyl’he main result of this paper is an application of the theorem

if.iFS differential output universe is free. Some regularity corg, equivalence and it states that a nonlinear continuous-time
ditions are assumed, but the system does not have to be obs I¥tem with output is externally dynamically linearizable if and

"’;1ble' LIJlsm? unlvzrsgs l'nsteadgf algelbras orﬁeldsf;s esgentl ﬁﬁ;/ if its differential output universe is free. This is again
they allow for substitutions and amalgamations o unctlons.loarallel to the discrete-time version given in [8].

1 Introduction 2 External dynamic equivalence

Dynamic state feedback linearization has been studied for sey; ,, ¢onsider an analytic continuous-time control system de-
eral years by many authors. To obtain a linear system one uﬁ@éd onR”™:

a dynamical system in a feedback loop (e.g. [3]) or state an

control transformations that involve derivatives of states and :2(t) = f(x(t),ul(t))

outputs (e.0. [é_l, 9_]). Wg _consider here systems_ with output and y(t) = h(x(t), u(t)) (1)
are interested in linearizing the external behavior of the system )

using dynamic transformation of output and control. The codherey(t) € R? andu(t) € R™. By x(t, 29, u) we will de-
cept of flatness [6] is close to our investigations as flat outgifte the solution at time of the equation: = f(z,u) that

is close to free generator of a universe — the main concept Jfisfies initial condition:(0) = x, and corresponds to con-
use here (see [1, 5]). The difference lies in the problem: we éf@' u. We Wlll_assume that controls are analytic fun_ctlons of
interested in transformation of output and control and not std@€ ¢- By atrajectory of system> we will mean any triple of
and control. This requires getting state from output and conctions(y(-), z(-), (-)) defined on some interval that satis-
trol. The tools available in differential algebra are not enoudi¢S the equations af. Then the pair(z(-), u(-)) is aninner

to achieve this in an analytic case. Besides algebraic operatiJRiectory and the pair(y(-), u(-)) is anexternal trajectoryof
we need also substitutions into analytic functions and amalga- 1he set of all inner (external) trajectories of the systém
mation (gluing-up) of partially defined functions. These af@™™MS thelnn_er (external) _behawoof the system. It will be
exactly the operations that constitute function universe. ~ denoted byB' (%) (respectively byB*(%2)).

We show that the differential output universe of a system is th¥ /() we will denote the space of all infinite sequences
{s)iz0, s € R". We will denoteS = (s();>o. The space

only invariant of external dynamic equivalence. This is an ex? ) :
tension of the result of Jakubczyk [4] which says that the diffe-(") may be |nterp£eted as the space of jets-at0 of smooth
ential algebra of a system without output is the only invariafifnctionss : R—R". ElementsS € J(s) are calledinfinite

of dynamic (state) feedback equivalence. In this case one Els

puty = z (the output is the entire state) and the universe mgye shall consider real maps defined on the space of infinite jets.
be replaced by the algebra. On the other hand our charactgyi assume that such maps depend only on a finite number of
zation of external dynamic equivalence is parallel to our earligfements of the sequenge(but the number of these elements
result for discrete-time system [2, 7] where the invariant W%pends on the given ma@ In this case we say that func-

the difference output universe. The idea of the proof for theyn ¢ is finitely presented A map ¢ : J(r)—R” is finitely
continuous-time case is similar to that of the discrete-time cas@sentedf all its components have this property.

so we omit the proof.
Let us denote byX € J(n), Y € J(p) andU € J(m) - the

We do not have to assume observability as we show that fiinite jets of, respectively, states, outputs and controls. Let us



consider two continuous-time systems [Jh]. A function subuniversef the universé/ is a subset/ ¢
) . o U that is a function universe oX. If H C U, then function
Y- (1) = f(x(t), u(t)) and 3 2(t) = f(@(6),a(t)  sypuniverse generated By is the smallest subuniverse of
h h(E(t),a(t)  containingH [1].

wherez(t) € R", Z(t) € R", y(t) € RP, 5(t) € RP, Inanatural way a function univeréeon X induces a topology
u(t),u(t) € R™, t € R. We say that: andX aredynami- on X: the open sets have the fornme : ¢ € U.

cally externally equivalentf there exist transformations: . . .
y yed Letify, Us be function universes oX; and X, respectively. A

y=o¢°(Y,U0), u=1°(Y,0) (2) mapr : Uy —Us is ahomomorphisnof function universesf,
o L andifs if
g=o"(V\U), a=94°(Y,U) @) L7r(Fo(p1,. y0k)) =F(rer,...,Tor)forer, ... oK €

where ¢¢, ¢¢, ¢, ¢ are finitely presented maps of the class, F € Ay,

C% such that the induced maps on pai-),u(-)) and 2.7(M) = (M) for any matching sed C U,

(g(+),a(-)) transform external behavior of one system onto e%. 7(0x,) = Ox,

ternal behavior of the second one and are mutually inverselda homomorphisnr is a bijective map then it is aisomor-
these behaviors. Then the relation between the external trajgltismof function universes.

tories of both systems can be written as follows:

A differential universds a function universé/ together with
y(t) = ¢ (), 5(t), ..., gF @), a(t), a(t), ..., a"(t)) an operatolD : .{—U4 that satisfies the chain rule, i.e.

u(t) = (@), 7' (1), ... g0 @), a(t), @ (t),...,aM () (@) koop
. D(F(p1,..., =S —(o1,....01) - Dy,

for somek > 0. Similarly for (g(¢), @(t)). (Fler #x)) — O; (1 or) - Do

We say that the systemis dynamically externally linearizable for F ¢ 4, andes, ..., ¢, € U. Dis called adifferential op-

if it is dynamically externally equivalent to a linear minimakrator. A mapr : U; —s is a homomorphism of differential

one (i.e. controllable and observable). universes(if;, D;) and (s, Ds) if it is a homomorphism of

universes and, o 7 = 70 D;.
3 Function universes

Let (n, m) denote the function universe of all real finitely
. O g

in Y is any mapy : A—Y, whereA C X is called domain of %(Lesegted functions of clags® defined on open subsets of
¢ and denoted bylome. If domy = X theny is global. x J(m).
Let Yx be the set of all partially defined functions gh One By the differential operatorassociated with the systel we
can extend any € Yx to one defined onX by assigning will mean the mapDs; : U(n, m)—U(n, m):
o(x) = 0 for z ¢ domyp. We call )y the phantom Now P P

_ . — (i+1)
domp = {x € X : ¢(x) #0p}. If a € Y,z € X then we set Ds, := Z fqa—xq-i—izjuj , (5)

ax(z) :=a. 1<q<n oul)

Let X, Y be sets. Apartially defined functiomn X with values

Let A,, denote the set of functions of cla€$’, partially de- \yherery — {(u(i) cj=1,...,m):i >0} € J(m). The
fined on open subsets " with values inR. In particular, J P -
Ag can be identified witlR U ();. The topology in4q can be
defined as follows: a subs& C Ag is open if B = Ay or B
is an open subset iR.

second sum is treated as a formal sum. @ U (n, m), Dsp

is a well defined, finitely presented function. [If> 2, then
DLy := Dx (D5 p). The universé((n, m) together with the
operatorDy; forms a differential universe called tdéferential
Functionsy, 1) € Yx arematching if they take on the same universe of the systedi and denoted by/s. By Hyx we will
values ondomy N doms. Let us consider a set/ C Yy of denote the subuniverse ofs:, calleddifferential output uni-
functions that are matching and define a functidhe Yy: Verseof the system, generated (as a function universe) by func-
M(z) = 0y if no function in M is defined atr and M (z) = tiOﬂShk,DiEhk,uy) ceUmn,m),k=1,...,p,j=1,...,m,
¢(x) for any functiony € M defined atz. The process of ; — (1 ... whereu!” is the coordinate function assigning to
constructingl/ is calledamalgamatiorof the functions of\l. (5 ) thei-th coordinate of the sequente

Let ¢1,...,ox € Rx and FF' € A, Then F o The operatoDs; may be interpreted as an abstract vector field
(1., k) is a partially defined function otX" given by o the spac®” x .J(m) that corresponds to the following in-
(F o (g1, 06))(@) = Flpi(x),...,or(x)) for z € finjte system

X. If pi(x) = 0y or (p1(x),...,0k(x)) &€ domF then i = f(z,up)

F(gﬁo(fﬂ), ey gon(x)) = @0. The map(cpl, RN (pk) — Fo Uy = Uy

(¢1,...,pr) is called asubstitution ] = us

A setUd C Rx containing0x and closed under substitutions
and amalgamation is calledfanction universe on the séf y = h(z,uo)



4 Indistinguishability relation Ds(uf? o (ILidy)) (z, U) = (Dsul)(z,U)
We say that states z areindistinguishableif for every control and Simi|ar|y,H:(Dl§ﬂ§.i))(gj7 U) = (Dlzugi))(% U)foril =
U . N A O] _
h(a(t 2, u)) = h(z(t, 2,u)) 1,2,.... Beca(q)se functions, Dih, u;’ are generators At
) ) ] . andh, DLh, uj are generators df(x, hencdl (Hsx) = Hs.
for everyt > 0 for which both sides are defined. '”d'St'”‘Bijectivity of the maplII* implies thatr = IT*|,._ is an iso-
guishability relation is an equivalence relation. It will be der'norphism of function u;iverses. Moreover Eeczause
noted by~ and the equivalence class of elemerty [z].

Let us consider the mafi : R"—R"/ ~= M, II(x) := [z]. (Ds(r¢))(z,U) = d

= ()@ U) =2 o((2,0))

M is a topological Hausdorff space with quotient topology. On |£=0 l£=0
this space let us define the quotient system: = (Dsp) (e (2, U)) = 7(Dsp) (z,U)

S z(t) = f(@(t),u(t)) hencer is an isomorphism of the differential universes. O

7(t) = h(@(t), 0 1)) ®) N _
_ . 5 Conditions of equivalence

wherez := Il(z), @ := u, h(T,u) := h(x,u). f5is avector
field on M defined as a derivation operator y(%)(Z) := The control system isbservabléf any two distinct points are
fu@oI)(z), » : M—R andz € II-*(z), where f, = indistinguishable. It can be noticed that the quotient system is

f(-,u) is identified with a derivation. Theis;, define by observable.
(Ds9)(@,U) = Dx(% o (IL,idy))(z, U), is the differential

operator for the quotient system. Functighs do not depend

on the choice of representatives (see [1] for more details). Let us consider a mafi’ : M x J(m)—J(p,m), where

J(p,m) denotes the space of jets of outputs and controls, de-
Remark 4.1. The external behaviors of the original and qudined as follows:

tient systems coincide. The original and quotient systems are ~ _ . o o
externally dynamically equivalent. It is enough to gut= y T(z,U) = (h, Dgh, Dsh, ..., u, Dga, D5, ...)(7, U)

andw := u. —
whereU = U € J(m). Let

Proposition 4.2. x ~ z <= (D)(x,U) = (D%)(z,U) for _
anyk =0,1,2,... T|k(@,U) =

T N k=17 — 1 — k—1—
Let Hss; be the differential output universe of the quotient sys- (h, Dsh, ... D "h W, D, ..., D) (7, U).
tem. Itis generated by functior8/y,, leuy), i,l € NU{0}, For fixedU
k=1,....,p,5=1,...,m. _ _ _ _

Ty(%) = (h, Dgh, DZh, .. .)(z,U)
Proposition 4.3. The differential output univers@gs, and’Hy;
are isomorphic. and o P

Ty, (@) = (h, Dgh, ..., DE'h)(3, D).

Proof. Let IT. : R™ x J(m)—=M x J(m), Il.(z,U) := we say thafl}; is animmersion at poing if there existsk € N
(L(x), U). Letr : Hu—Hs;, (7¢)(x, U) = (poll)(x,U).  such thafly;, is an immersion at.

Thenr = II;|#, and from Proposition 4.217|._ is one-to- .

one. From now on we shall assume the following

Al. M ia a manifold of the clas§“.
o R R such thafl’|. is a proper map on some neighborhood@fU ).
et M (m) T RR? X (m)- A3. For everyU € J(m) the mapl'| is an imbedding.

Then for anyp € Hg Theorem 5.1. Under conditionsA1-A3 continuous-time sys-

temsY andy. are externally dynamically equivalent if and only
if their differential output universes{y, and Hs, are isomor-
phic.

I (Dgh) (z,U) = (Dgh)(I(z), U)

= (o (I ido))(@,U) = Lho(hlalt,z,0))
= (Dsh)(z,U). 6 Linearization

Similarly we can show thalfl; (DL 1) (2, U) = (DLh)(2z,U)  Let us recall that linear systems
fori =1,2,.... Moreover, . }
= Ax + Bu ~  T=AT+
w0 (1) _ (i) - : and A: T 2T 27
He(DEuj )(xaU)—(Diuj JI(z),U) = y=Cxz+ Du y=CZ+ Du



or shortly: (A4, B, C, D), (A, B,C, D) are equivalent with re- = a(twi, ..., TWm, 7(Dswy), ..., 7(Dswy,), .. .)
spect to a linear static state feedback if there exist matrices
T, F, G, such thatl’ and G are invertiblethe and inner trajec-
tories(X, U) of A are transformed onto inner trajectories’of Hencer is “1-1”. Moreover because (Dsw;) = i; =
by transformations: = Tz, v = FZ + Ga and vice versa.  Da%; = Dj(7w;) thenT commutes with differential opera-

) tors. Hencer : Hy—H, is an isomorphism and systeris
Lemma 6.1. If two observable linear systenisl, B,C, D) anqA are externally dynamically equivalent. O
and(A, B, C, D) are equivalent with respect to a linear static

state feedba_ck transformations then they are gquwalent W}{rc]knowledgement. This work was supported by KBN
respect to a linear external dynamic transformations.

through a Bialystok Technical University grant No

_ ) W/IMF/1/02.
Proof. It is clear that for an observable linear system the state

x(t) may be expressed as a functionygf)(t) and u*)(t),
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