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Abstract

It is shown that a nonlinear continuous-time control system
with output is externally dynamically linearizable if and only
if its differential output universe is free. Some regularity con-
ditions are assumed, but the system does not have to be observ-
able. Using universes instead of algebras or fields is essential as
they allow for substitutions and amalgamations of functions.

1 Introduction

Dynamic state feedback linearization has been studied for sev-
eral years by many authors. To obtain a linear system one uses
a dynamical system in a feedback loop (e.g. [3]) or state and
control transformations that involve derivatives of states and
outputs (e.g. [4, 9]). We consider here systems with output and
are interested in linearizing the external behavior of the system
using dynamic transformation of output and control. The con-
cept of flatness [6] is close to our investigations as flat output
is close to free generator of a universe – the main concept we
use here (see [1, 5]). The difference lies in the problem: we are
interested in transformation of output and control and not state
and control. This requires getting state from output and con-
trol. The tools available in differential algebra are not enough
to achieve this in an analytic case. Besides algebraic operations
we need also substitutions into analytic functions and amalga-
mation (gluing-up) of partially defined functions. These are
exactly the operations that constitute function universe.

We show that the differential output universe of a system is the
only invariant of external dynamic equivalence. This is an ex-
tension of the result of Jakubczyk [4] which says that the differ-
ential algebra of a system without output is the only invariant
of dynamic (state) feedback equivalence. In this case one can
put y = x (the output is the entire state) and the universe may
be replaced by the algebra. On the other hand our characteri-
zation of external dynamic equivalence is parallel to our earlier
result for discrete-time system [2, 7] where the invariant was
the difference output universe. The idea of the proof for the
continuous-time case is similar to that of the discrete-time case
so we omit the proof.

We do not have to assume observability as we show that the

quotient system with respect to the indistinguishability relation
has the same differential output universe as the original (unob-
servable) system and the two systems are externally dynami-
cally equivalent. Thus the main construction can only be done
for an observable system which allows for recovering the state
from the output and the control.

The main result of this paper is an application of the theorem
on equivalence and it states that a nonlinear continuous-time
system with output is externally dynamically linearizable if and
only if its differential output universe is free. This is again
parallel to the discrete-time version given in [8].

2 External dynamic equivalence

Let us consider an analytic continuous-time control system de-
fined onRn:

Σ : ẋ(t) = f(x(t), u(t))
y(t) = h(x(t), u(t)) (1)

wherey(t) ∈ Rp andu(t) ∈ Rm. By x(t, x0, u) we will de-
note the solution at timet of the equationẋ = f(x, u) that
satisfies initial conditionx(0) = x0 and corresponds to con-
trol u. We will assume that controls are analytic functions of
time t. By a trajectoryof systemΣ we will mean any triple of
functions(y(·), x(·), u(·)) defined on some interval that satis-
fies the equations ofΣ. Then the pair(x(·), u(·)) is an inner
trajectory and the pair(y(·), u(·)) is anexternal trajectoryof
Σ. The set of all inner (external) trajectories of the systemΣ
forms theinner (external) behaviorof the system. It will be
denoted byBi(Σ) (respectively byBe(Σ)).

By J(r) we will denote the space of all infinite sequences
(s(i))i≥0, s

(i) ∈ Rr. We will denoteS = (s(i))i≥0. The space
J(r) may be interpreted as the space of jets att = 0 of smooth
functionss : R→Rr. ElementsS ∈ J(s) are calledinfinite
jets.

We shall consider real maps defined on the space of infinite jets.
We assume that such maps depend only on a finite number of
elements of the sequenceS (but the number of these elements
depends on the given mapϕ). In this case we say that func-
tion ϕ is finitely presented. A mapφ : J(r)→Rr̃ is finitely
presentedif all its components have this property.

Let us denote byX ∈ J(n), Y ∈ J(p) andU ∈ J(m) - the
infinite jets of, respectively, states, outputs and controls. Let us



consider two continuous-time systems

Σ :
ẋ(t) = f(x(t), u(t))
y(t) = h(x(t), u(t)) and Σ̃ :

˙̃x(t) = f̃(x̃(t), ũ(t)
ỹ(t) = h̃(x̃(t), ũ(t)

where x(t) ∈ Rn, x̃(t) ∈ Rñ, y(t) ∈ Rp, ỹ(t) ∈ Rp̃,
u(t), ũ(t) ∈ Rm, t ∈ R. We say thatΣ and Σ̃ aredynami-
cally externally equivalent, if there exist transformations:

y = φe(Ỹ , Ũ), u = ψe(Ỹ , Ũ) (2)

ỹ = φ̃e(Y, U), ũ = ψ̃e(Y,U) (3)

whereφe, φ̃e, ψe, ψ̃e are finitely presented maps of the class
Cω such that the induced maps on pairs(y(·), u(·)) and
(ỹ(·), ũ(·)) transform external behavior of one system onto ex-
ternal behavior of the second one and are mutually inverse on
these behaviors. Then the relation between the external trajec-
tories of both systems can be written as follows:

y(t) = φe(ỹ(t), ˙̃y(t), . . . , ỹ(k)(t), ũ(t), ˙̃u(t), . . . , ũ(k)(t))
u(t) = ψe(ỹ(t), ỹ′(t), . . . , ỹ(k)(t), ũ(t), ũ′(t), . . . , ũ(k)(t)) (4)

for somek ≥ 0. Similarly for (ỹ(t), ũ(t)).

We say that the systemΣ is dynamically externally linearizable
if it is dynamically externally equivalent to a linear minimal
one (i.e. controllable and observable).

3 Function universes

LetX,Y be sets. Apartially defined functiononX with values
in Y is any mapϕ : A→Y , whereA ⊆ X is called domain of
ϕ and denoted bydomϕ. If domϕ = X thenϕ is global.
Let YX be the set of all partially defined functions onX. One
can extend anyϕ ∈ YX to one defined onX by assigning
ϕ(x) = ∅0 for x 6∈ domϕ. We call ∅0 the phantom. Now
domϕ = {x ∈ X : ϕ(x) 6= ∅0}. If a ∈ Y , x ∈ X then we set
aX(x) := a.

Let An denote the set of functions of classCω , partially de-
fined on open subsets inRn with values inR. In particular,
A0 can be identified withR ∪ ∅0. The topology inA0 can be
defined as follows: a subsetB ⊂ A0 is open ifB = A0 or B
is an open subset inR.

Functionsϕ,ψ ∈ YX arematching, if they take on the same
values ondomϕ ∩ domψ. Let us consider a setM ⊆ YX of
functions that are matching and define a functionM ∈ YX :
M(x) = ∅0 if no function inM is defined atx andM(x) =
ϕ(x) for any functionϕ ∈ M defined atx. The process of
constructingM is calledamalgamationof the functions ofM .

Let ϕ1, . . . , ϕk ∈ RX and F ∈ Ak. Then F ◦
(ϕ1, . . . , ϕk) is a partially defined function onX given by
(F ◦ (ϕ1, . . . , ϕk))(x) = F (ϕ1(x), . . . , ϕk(x)) for x ∈
X. If ϕi(x) = ∅0 or (ϕ1(x), . . . , ϕk(x)) 6∈ domF then
F (ϕ0(x), . . . , ϕn(x)) = ∅0. The map(ϕ1, . . . , ϕk) 7→ F ◦
(ϕ1, . . . , ϕk) is called asubstitution.

A setU ⊆ RX containing0X and closed under substitutions
and amalgamation is called afunction universe on the setX

[Jh]. A function subuniverseof the universeU is a subset̂U ⊂
U that is a function universe onX. If H ⊂ U , then function
subuniverse generated byH is the smallest subuniverse ofU
containingH [1].

In a natural way a function universeU onX induces a topology
onX: the open sets have the formdomϕ : ϕ ∈ U .

LetU1,U2 be function universes onX1 andX2 respectively. A
mapτ : U1→U2 is ahomomorphismof function universesU1

andU2 if
1. τ(F ◦ (ϕ1, . . . , ϕk)) = F (τϕ1, . . . , τϕk) for ϕ1, . . . , ϕk ∈
U1, F ∈ Ak

2. τ(M) = τ(M) for any matching setM ⊂ U1

3. τ(0X1) = 0X2

If a homomorphismτ is a bijective map then it is anisomor-
phismof function universes.

A differential universeis a function universeU together with
an operatorD : U→U that satisfies the chain rule, i.e.

D(F (ϕ1, . . . , ϕk)) =
k∑

i=1

∂F

∂xi
(ϕ1, . . . , ϕk) ·Dϕi

for F ∈ Ak andϕ1, . . . , ϕk ∈ U . D is called adifferential op-
erator. A mapτ : U1→U2 is a homomorphism of differential
universes(U1, D1) and (U2, D2) if it is a homomorphism of
universes andD2 ◦ τ = τ ◦D1.

Let U(n,m) denote the function universe of all real finitely
presented functions of classCω defined on open subsets of
Rn × J(m).

By the differential operatorassociated with the systemΣ we
will mean the mapDΣ : U(n,m)→U(n,m):

DΣ :=
∑

1≤q≤n

fq
∂

∂xq
+

∑
i,j

u
(i+1)
j

∂

∂u
(i)
j

(5)

whereU = {(u(i)
j : j = 1, . . . ,m) : i ≥ 0} ∈ J(m). The

second sum is treated as a formal sum. Forϕ ∈ U(n,m),DΣϕ
is a well defined, finitely presented function. Ifl ≥ 2, then
Dl

Σϕ := DΣ(Dl−1
Σ ϕ). The universeU(n,m) together with the

operatorDΣ forms a differential universe called thedifferential
universe of the systemΣ and denoted byUΣ. By HΣ we will
denote the subuniverse ofUΣ, calleddifferential output uni-
verseof the system, generated (as a function universe) by func-
tionshk, D

i
Σhk, u

(i)
j ∈ U(n,m), k = 1, . . . , p, j = 1, . . . ,m,

i = 0, 1, . . ., whereu(i)
j is the coordinate function assigning to

(x,U) thei-th coordinate of the sequenceU .

The operatorDΣ may be interpreted as an abstract vector field
on the spaceRn × J(m) that corresponds to the following in-
finite system

ẋ = f(x, u0)
u̇0 = u1

u̇1 = u2

. . .
y = h(x, u0)



4 Indistinguishability relation

We say that statesx, z areindistinguishable, if for every control
u

h(x(t, x, u)) = h(x(t, z, u))

for every t ≥ 0 for which both sides are defined. Indistin-
guishability relation is an equivalence relation. It will be de-
noted by∼ and the equivalence class of elementx by [x].

Let us consider the mapΠ : Rn→Rn/ ∼= M, Π(x) := [x].
M is a topological Hausdorff space with quotient topology. On
this space let us define the quotient system:

Σ : ẋ(t) = f(x(t), u(t))
y(t) = h(x(t), u(t)) (6)

wherex := Π(x), u := u, h(x, u) := h(x, u). fu is a vector
field onM defined as a derivation operator byfu(ϕ)(x) :=
fu(ϕ ◦ Π)(x), ϕ : M→R and x ∈ Π−1(x), wherefu =
f(·, u) is identified with a derivation. ThenDΣ, define by
(DΣϕ)(x,U) = DΣ(ϕ ◦ (Π, idU ))(x, U), is the differential
operator for the quotient system. Functionsf, h do not depend
on the choice of representatives (see [1] for more details).

Remark 4.1. The external behaviors of the original and quo-
tient systems coincide. The original and quotient systems are
externally dynamically equivalent. It is enough to puty := y
andu := u.

Proposition 4.2. x ∼ z ⇐⇒ (Dk
Σ)(x,U) = (Dk

Σ)(z, U) for
anyk = 0, 1, 2, . . .

LetHΣ be the differential output universe of the quotient sys-

tem. It is generated by functionsDl
Σ
hk,Dl

Σ
u

(i)
j , i, l ∈ N∪{0},

k = 1, . . . , p, j = 1, . . . ,m.

Proposition 4.3. The differential output universesHΣ andHΣ

are isomorphic.

Proof. Let Πe : Rn × J(m)→M × J(m), Πe(x, U) :=
(Π(x), U). Let τ : HΣ→HΣ, (τϕ)(x,U) := (ϕ ◦ Πe)(x,U).
Thenτ = Π∗e|HΣ

and from Proposition 4.2Π∗e|HΣ
is one-to-

one.

Let us consider a homomorphism of function universes

Π∗e : RM×J(m)→RRn×J(m).

Then for anyϕ ∈ HΣ

Π∗e(DΣh)(x,U) = (DΣh)(Π(x), U)

= DΣ(h ◦ (Π, idU ))(x, U) =
d

dt
|t=0(h(x(t, x, u)))

= (DΣh)(x,U).

Similarly we can show thatΠ∗e(D
l
Σh)(x,U) = (Dl

Σh)(x, U)
for l = 1, 2, . . .. Moreover,

Π∗e(DΣu
(i)
j )(x,U) = (DΣu

(i)
j )(Π(x), U) =

DΣ(u(i)
j ◦ (Π, idU ))(x, U) = (DΣu

(i)
j )(x,U)

and similarly,Π∗e(D
l
Σ
u

(i)
j )(x,U) = (Dl

Σu
(i)
j )(x,U) for l =

1, 2, . . .. Because functionsh,Dl
Σ
h, u(i)

j are generators ofHΣ

andh,Dl
Σh, u(i)

j are generators ofHΣ, henceΠ∗e(HΣ) = HΣ.
Bijectivity of the mapΠ∗e implies thatτ = Π∗e|HΣ

is an iso-
morphism of function universes. Moreover, because

(DΣ(τϕ))(x, U) =
d

dt |t=0
(τϕ)(x,U) =

d

dt |t=0
ϕ(Πe(x,U))

= (DΣϕ)(Πe(x, U)) = τ(DΣϕ)(x, U)

henceτ is an isomorphism of the differential universes.

5 Conditions of equivalence

The control system isobservableif any two distinct points are
indistinguishable. It can be noticed that the quotient system is
observable.

Let us consider a mapT : M × J(m)→J(p,m), where
J(p,m) denotes the space of jets of outputs and controls, de-
fined as follows:

T (x,U) = (h,DΣh,D
2
Σ
h, . . . , u,DΣu,D

2
Σ
u, . . .)(x, U)

whereU = U ∈ J(m). Let

T |k(x, U) =

(h,DΣh, . . . ,D
k−1

Σ
h, u,DΣu, . . . ,D

k−1

Σ
u)(x, U).

For fixedU

TU (x) = (h,DΣh,D
2
Σ
h, . . .)(x, U)

and
TU |k(x) = (h,DΣh, . . . ,D

k−1

Σ
h)(x, U).

We say thatTU is animmersion at pointx if there existsk ∈ N
such thatTU |k is an immersion atx.

From now on we shall assume the following
A1. M ia a manifold of the classCω .
A2. For everyx ∈M and everyU ∈ J(m) there existsk ∈ N
such thatT |k is a proper map on some neighborhood of(x, U).
A3. For everyU ∈ J(m) the mapT |U is an imbedding.

Theorem 5.1. Under conditionsA1-A3 continuous-time sys-
temsΣ andΣ̃ are externally dynamically equivalent if and only
if their differential output universesHΣ andHΣ̃ are isomor-
phic.

6 Linearization

Let us recall that linear systems

Λ :
ẋ = Ax+Bu
y = Cx+Du

and Λ̃ :
˙̃x = Ãx̃+ B̃ũ

ỹ = C̃x̃+ D̃ũ



or shortly: (A,B,C,D), (Ã, B̃, C̃, D̃) are equivalent with re-
spect to a linear static state feedback if there exist matrices
T, F,G, such thatT andG are invertiblethe and inner trajec-
tories(X̃, Ũ) of Λ̃ are transformed onto inner trajectories ofΛ
by transformationsx = T x̃, u = Fx̃+Gũ and vice versa.

Lemma 6.1. If two observable linear systems(A,B,C,D)
and(Ã, B̃, C̃, D̃) are equivalent with respect to a linear static
state feedback transformations then they are equivalent with
respect to a linear external dynamic transformations.

Proof. It is clear that for an observable linear system the state
x(t) may be expressed as a function ofy(k)(t) and u(k)(t),
wherek = 0, 1, . . . , n− 1. Thusx = γ(Y, U) with γ a finitely
presented function, and similarlỹx = γ̃(Ỹ , Ũ).

The static state transformationsx = T x̃, u = Fx̃+Gũ, F,G
- invertible, give the corresponding external dynamic transfor-
mations:

y = CT γ̃(Ỹ , Ũ) +DFγ̃(Ỹ , Ũ) and u = F γ̃(Ỹ , Ũ).

Similarly in the other way.

We say that a differential universe(U , D) is free if there exist
functionsω1, . . . , ωr ∈ U such that
1. for any finitely presented functionν : J(p)→A0 of class
Cω : ν◦W ≡ 0 ⇒ ν ≡ 0, whereW = {Djwi}i=1,...,r;j=0,1,...

2. for anyϕ ∈ U there exists a finitely presented function
ν : J(p)→A0 of classCω such thatϕ = ν ◦W .

The first condition means that there is no functional relation
betweenωi, i = 1, . . . , r and their differentials. The second
one says that any function from universeU can be expressed as
a function onωi’s and their differentials. Functionsω1, . . . , ωr

are calledfree generatorsof universe(U , D).

Lemma 6.2. LetΛ be a controllable linear system. The differ-
ential output universeHΛ of this system is free.

The proof is similar as in discrete-time case [8].

Theorem 6.3. The systemΣ is externally dynamically lineariz-
able if and only ifHΣ is a free universe.

Proof. Implication “⇒” follows from Theorem 5.1 and
Lemma 6.2. To prove the converse let us consider the systems

Σ :
ẋ = f(x, u)
y = h(x, u) and Λ :

˙̃xi = ũi

ỹi = x̃i

wherei = 1, . . . ,m, u ∈ Rm. Let ω1, . . . , ωm be free gener-
ators of the universeHΣ. Let us consider a mapτ : HΣ→HΛ

defined byτ(wi) = x̃i, τ(DΣwi) = ũi. The second condition
of free universe allows us to extendτ on the whole universeHΣ

via substitutions. It is clear thatτ is “onto”. If α is a finitely
presented function, then

τ(α(w1, . . . , wm, DΣw1, . . . , DΣwm, . . .))

= α(τw1, . . . , τwm, τ(DΣw1), . . . , τ(DΣwm), . . .)

= α(x̃1, . . . , x̃m, ũ
0
1, . . . , ũ

0
m, . . .) ≡ 0 ⇒ α ≡ 0.

Hence τ is “1-1”. Moreover becauseτ(DΣwi) = ũi =
DΛx̃i = DΛ(τwi) thenτ commutes with differential opera-
tors. Henceτ : HΣ→HΛ is an isomorphism and systemsΣ
andΛ are externally dynamically equivalent.
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