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Abstract

This paper proposes a new method for the measurement of the
infinity norm of the sensitivity functions of linear systems. A
nonlinear feedback structure is derived from existing relay ex-
periments. The proposed scheme may produce a limit cycle at
a frequency where the sensitivity function of a given system
achieves a selected magnitude. Necessary and sufficient condi-
tions for the occurrence of the limit cycles are discussed using
the describing function method. If the magnitude is chosen
larger than the sensitivity infinity norm, the strictly passivity of
the scheme can be demonstrated. Based on these analyses, a
simple procedure is then proposed to identify the infinity norm
of the sensitivity function for a large class of processes. Simu-
lation results show the effectiveness and simplicity of the pro-
posed method.

1 Introduction

PID controller is the most dominating form of feedback for in-
dustrial plants. Nevertheless many of them show poor perfor-
mances, due among others to inadequate tuning of their param-
eters. Therefore, several different automatic tuning procedures
with varying objectives and complexity are desirable. Auto-
tuning methods operate usually as follows: Some important
characteristics of the plant are first measured by simple exper-
iments, which are then used to design or tune the controller
parameters. In this perspective, the measurement of robust-
ness margins can reveal a great interest, because these margins
and the frequencies at which they occur are crucial for the de-
termination of control system stability and performance. The
identified points of the frequency response can be used for ob-
taining a process model that approximate well the plant in this
important frequency region [10]. They can also be employed to
adjust the corresponding robustness margins to the desired val-
ues and then to verify if the desired robustness specifications
are effectively satisfied [6, 7, 8].

Some attention has been given to the measurement of robust-
ness margins, in particular with the relay method. This tech-
nique is well known to identify interesting points on the fre-
quency response of a transfer function. The standard method

[5], based on a simple relay feedback, generates for many sys-
tems a limit cycle. A describing function analysis shows that
the frequency of the oscillation is the critical frequency (the
frequency for which the phase is −180◦). Moreover the crit-
ical gain of the system can be approximated using the oscil-
lation amplitude. This method has been widely used for pro-
cess identification and controller tuning due to the simplicity
of the real-time implementation as well as the acceptance of
the approximative describing function method. Relay feed-
back can be applied to closed-loop systems too. In [10] two
closed-loop relay tests are proposed to estimate the critical and
the crossover frequency (the frequency for which the ampli-
tude of the open-loop system is one), as well as the gain and
phase margin [9]. This procedure has been generalized in [2]
to estimate the frequency at which a user defined transfer func-
tion achieves a given magnitude. Among these functions, one
can choose between the loop transfer function and the sensitiv-
ity function. No method is however proposed for determining
the infinity norm of the sensitivity function. In [3] a stability
analysis of the limit cycles is provided for the experiment pro-
posed in [2]. This analysis considers that the system is perfectly
known, which is generally not the case in practice.

The inverse of the infinity norm of the sensitivity function,
which is simply the shortest distance from the Nyquist curve to
the critical point −1, constitutes particularly an important ro-
bustness margin and gives very significant informations about
the closed-loop system. It quantifies how sensitive is the
closed-loop system to variations of the considered plant, and
can be seen as a better robustness indicator than the phase and
the gain margins. On the other hand the sensitivity function
is closely related to the disturbance amplification. When de-
signing a controller, it can be important to control the maximal
amplification of disturbances. This can be done by limiting the
largest magnitude of the sensitivity function.

Various methods for measuring the infinity norm of the sen-
sitivity function exist nowadays. However, they do not give
always complete satisfaction, due either to their complexity or
to their measuring accuracy. To illustrate this fact, consider
the non-parametric identification methods: First of all a signal
containing interesting frequencies must be chosen as the refer-
ence of the closed-loop system. The sensitivity function at the
considered frequencies is given by the ratio of the Fourier trans-
forms of the error and the reference signals (or respectively by
the ratio of the cross spectrum between the error and the ref-



erence signal over the spectrum of the reference signal). In
practice the Fourier transforms are computed numerically with
truncated signals in the time domain, which causes in particular
a local averaging of the resulting function in the frequency do-
main. If the amplitude of the sensitivity function has a peak at
its maximal value, a loss of resolution of the identified function
will be specially noticeable in this frequency region. For this
reason, this method is not always adapted for measuring the
infinity norm of the sensitivity functions. Model-based iden-
tification methods in the time domain give on the other hand
good results, but suffer from their complexity. Moreover these
methods require a priori informations of the plant.

In this paper a nonlinear scheme is proposed to measure the
frequency at which the magnitude of the sensitivity function
has a desired value. The main property of this scheme is that
it becomes passive if the desired value is chosen larger than
the infinity norm of the sensitivity function. This property to-
gether with the limit cycle stability analysis given by the well-
known describing function method leads to a simple procedure
for measuring the infinity norm of the sensitivity function. Sim-
ulation results show the effectiveness of the proposed method.

The paper is organized as follows: In Section 2, a nonlinear
scheme is presented and the properties of the generated limit
cycles are discussed. A passivity analysis, as well as limit
cycles stability considerations are provided in Section 3. A
method for measuring the infinity norm of the sensitivity func-
tions is then proposed in Section 4 and illustrated with an ex-
ample. Simulation results are given in Section 5. Finally, some
concluding remarks are made in Section 6.

2 Closed-Loop Scheme and Limit Cycles Char-
acteristics

In this section, the scheme of Fig. 1 is considered and the char-
acteristics of the generated limit cycles are studied. G(s) is
an unknown linear time-invariant transfer function, K(s) the
transfer function of a controller that stabilizes the closed-loop
system:

Gcl(s) =
K(s)G(s)

1 + K(s)G(s)
(1)

k is the slope of the saturation nonlinearity, and α a positive real
number. A basic requirement is that the closed-loop transfer
function

Y (s)

Ys(s)
=

α
α+1K(s)G(s)

1 + α
α+1K(s)G(s)

(2)

is stable. This is, however, the case in general when K(s)G(s)
is stable (since the loop gain of Gcl(s) is reduced by a factor of

α
α+1 < 1).

This scheme is similar to the one proposed in [2] to generate
limit cycles for the measurement of several points of the sensi-
tivity function. One of the differences is the use of a saturation
nonlinearity in the scheme. This change brings two new impor-
tant advantages:

Figure 1: Nonlinear feedback structure

1. By adjusting the slope k, the describing function approach
can be made more accurate. Thus the measurement preci-
sion can be improved (see Section 4).

2. If α is chosen larger than the infinity norm of the sensi-
tivity function γ =

∥

∥

∥

1
1+K(s)G(s)

∥

∥

∥

∞

, the scheme becomes
asymptotically stable (see Section 3.1).

The method proposed in this paper will benefit of these new
properties to measure the infinity norm of the sensitivity func-
tion. The saturation level can be set to 1 without loss of gener-
ality.

The describing function method will be used hereafter to deter-
mine the properties of the limit cycles generated by the consid-
ered scheme, as well as the necessary condition for their occur-
rence. This method is an approximative approach. It assumes
that a limit cycle occurring at the output of a feedback sys-
tem with static nonlinearities contains only the first harmonic.
Higher harmonics are attenuated by the process. The nonlin-
earities can then be described by simple nonlinear gains.
The condition for obtaining a limit cycle based on the describ-
ing function analysis is given by:

1

jω

α(K(jω)G(jω) + 1) − 1

α(K(jω)G(jω) + 1) + 1
= −

1

Ns(a, k)
(3)

where a is the amplitude of the signal at the input of the satu-
ration nonlinearity, and Ns(a, k) is the describing function of
the latter:

Ns(a, k) =
2k

π

[

arcsin(
1

ka
) +

1

ka

√

1 −
1

k2a2

]

∈ [0, k] (4)

To simplify the notation in the sequel, let us define the function
seen by the saturation as:

Fα(jω) =
1

jω

α(K(jω)G(jω) + 1) − 1

α(K(jω)G(jω) + 1) + 1
(5)

Thus an oscillation may occur if the Nyquist curve of Fα(jω)
intersects the half straight line (−∞,− 1

k
]. Eq. 3 is



Figure 2: A typical sensitivity function

equivalent to

1

jω

1 − 1
α(K(jω)G(jω)+1)

1 + 1
α(K(jω)G(jω)+1)

= −
1

Ns(a, k)
(6)

which gives

1

1 + K(jω)G(jω)
= α

[

−1− jω 1
Ns(a,k)

−1 + jω 1
Ns(a,k)

]

(7)

Since Ns(a, k) is a real positive function, the term on the right
hand side of Eq. (7) has a modulus of α. The presence of a
limit cycle at the frequency ωi implies

∣

∣

∣

∣

1

1 + K(jωi)G(jωi)

∣

∣

∣

∣

= α (8)

Moreover

Im
{

1

1 + K(jωi)G(jωi)

}

≥ 0 (9)

This property follows straightforwardly from Eq. 7. Thus, an
oscillation may occur if there exists an intersection between the
frequency response of the sensitivity function in the complex
plane and the half-circle located in the upper half-plane with
the radius α. Moreover, the frequency of the oscillation is the
frequency at which the amplitude of the sensitivity function
is α.

Fig. 2 depicts the Nyquist plot of a typical sensitivity function
and half-circles with different radius. In the case where α is
smaller then γ, there can be one (α = α4) or more (α = α3)
intersections between the half-circle and the curve of the sensi-
tivity function. Limit cycles may occur in these cases, however
they may be stable or unstable. A discussion on the limit cy-
cle stability will show in the next section which intersections
correspond to stable or unstable limit cycles.

3 Stability Analysis

This section is devoted to a stability analysis of the system and
the limit cycles that where discussed in the previous section.

If α is chosen larger than the infinity norm of the sensitivity
function γ (for example α = α1 in Fig. 2), no intersection ex-
ists between the half-circle with the radius α and the sensitivity
function. In this way the system will not enter a limit cycle,
and is asymptotically stable. This affirmation rises from the
preceding describing function analysis, but will also be proven
in a more rigorous way hereafter through a passivity analysis.
If α is smaller then γ, sufficient conditions for the presence of
limit cycles will then be discussed. In particular the effect of
the saturation slope k will be analyzed. Based on this analysis,
a method will be given to tune α and k in order to identify the
largest magnitude of the sensitivity function with an appropri-
ate accuracy.

3.1 Passivity Analysis

Consider the scheme of Fig. 3. This scheme is equivalent to
the one shown in Fig. 1. This closed-loop system can be di-

Figure 3: Equivalent scheme for passivity analysis

vided into two subsystems: S1 and S2. S1, is composed of the
integrator and the saturation, and

S2 = sFα(s) =
α(K(s)G(s) + 1) − 1

α(K(s)G(s) + 1) + 1
(10)

If one of these subsystems is passive, and the other one strictly
passive, then the well-known passivity theorem demonstrates
the strictly passivity of the whole system [4].
To demonstrate the passivity of S1, consider this subsystem in
its state space representation:

ẋ = u

y = h(x) (11)

where u is the system input, y the output and x describes the
state of the system. The function h(x) represents the satura-
tion nonlinearity. According to the definition of passivity, the
system S1 is passive (but not strictly), if there exists a lower
bounded positive function V , such that V̇ = yu. Since the
function V =

∫ x

0
h(σ)dσ verifies these conditions for all x:

V =

∫ x

0

h(σ)dσ > 0 (12)

V̇ =
d

dt

∫ x

0

h(σ)dσ = h(x)ẋ = yu (13)



the system S1 is passive.

The strictly passivity of the system S2 can be demonstrated
with the relations between the small-gain and the passivity the-
orem, which are investigated in [1]. These relations show that,
for a transfer function E(s):

If ‖E(s)‖
∞

< 1

⇒ (I − E(s)) (I + E(s))
−1 is strictly passive (14)

By substituting E(s) with 1
α(1+K(s)G(s)) , the above affirmation

becomes:

If
∥

∥

∥

∥

1

(1 + K(s)G(s))

∥

∥

∥

∥

∞

< α

⇒
α(K(s)G(s) + 1) − 1

α(K(s)G(s) + 1) + 1
is strictly passive (15)

It follows that the subsystem S2 and thus also the whole system
of Fig. 3 are strictly passive if α > γ. Note that the whole
system still remains passive if the saturation is replaced with
any static nonlinearity that is of the same sign as its argument,
although not necessarily continuous. This is however not the
case if the saturation is replaced with an ideal relay: Sliding
modes oscillations will occur.

3.2 Stability and Occurrence of Limit Cycles

In Section 2 the necessary condition for the occurrence of limit
cycles has been given, which is the existence of one or more
intersections between the Nyquist plot of the sensitivity func-
tion and the half-circle with the radius α located in the upper
half-plane, and centered at the origin. In this chapter, suffi-
cient conditions will be treated. This study will be done in two
steps. First, a stability analysis of limit cycles will be provided.
Then, the existence of a trivial solution, which consist of a sta-
ble equilibrium point, will be studied.

Consider the case where α < γ. Eq. 3 and Eq. 7 imply
that the number n of intersections between the Nyquist curve
of the sensitivity function and the half-circle of radius α cor-
responds to the number of intersections between the negative
real axis and the transfer function Fα(jω).The latter are de-
noted with P1, P2, ..., Pn in the ascending order of the corre-
sponding frequencies (P1 corresponds to the lowest frequency
and Pn to the largest). Since the Nyquist curve of the sensi-
tivity function intersects successively the half-circle, the points
P1, ..., Pn are placed respectively in an ascending order on the
real axis. Moreover, the function Fα(jω) has the following
boundary conditions, due to the presence of the integrator:

lim
ω→0

Fα(jω) = −j∞, lim
ω→∞

Fα(jω) = 0 (16)

In Fig. 4, an example for the function Fα(jω) is depicted.
At least one intersection exists between Fα(jω) and the half
straight line (−∞,− 1

k
] ∈ (−∞, 0], if k > − 1

P1

, where k is
the slope of the saturation. To each intersection corresponds
a stable or unstable limit cycle. Furthermore, the limit cycle

Figure 4: Fα(jω)

stability criterion, based on the extended Nyquist criterion [4],
shows that stable and unstable limit cycles occur alternatively.
Moreover, the limit cycle which corresponds to the first inter-
section P1 is always stable. Thus, if k ∈ [− 1

P1

; +∞), at least
one stable limit cycle exists. The existence of a stable limit
cycle does however not necessarily impose its occurrence. A
stable limit cycle will occur if it is the only stable solution of
the system. Otherwise it may occur or not, depending on the
initial conditions of the system.

Let us now consider the stability of the equilibrium point 0 (in-
put, output and all states of the system are 0), that may also
be a solution of the closed-loop system. For this purpose, con-
sider the system of Fig. 1 at the point 0 and infinitesimal dis-
turbances entering somewhere in the loop. If 0 is an stable
equilibrium point, the disturbances in the loop will be damped.
Since the output signal of the saturation (which is << 1) is not
saturated, the closed-loop system is linear in this region. Its
open-loop transfer function is:

kFα(s) = k
1

s

α(K(s)G(s) + 1) − 1

α(K(s)G(s) + 1) + 1
.

Moreover Fα(s) does not have unstable poles, because the
poles of sFα(s) are those of the closed loop system of Eq. 2,
which is stable according to the basic assumption of Section 2.
Hence, stability can be determined with the Nyquist criterion
as followed: The closed-loop system is stable if and only if
Fα(jω) doesn’t encircle the point − 1

k
. According to the char-

acteristics of the curve Fα(jω), it follows that the linear system
is stable only if the index m of the intersection point Pm, which
is directly smaller than − 1

k
, is even.

To clarify these affirmations, let us consider the example of Fig.
4. As long as − 1

k
> P1, at least one stable limit cycle exists

in the system. If P1 < − 1
k

< P2 or − 1
k

> P3 limit cycles are
the only stable solutions of the system. On the other hand, if
P2 < − 1

k
< P3, 0 is a stable equilibrium point, and the system

is also locally asymptotically stable.



4 Measuring the Infinity Norm of the Sensitivity
Function

Based on the preceding stability analysis, as well as the passiv-
ity property, a method with sufficient accuracy is proposed in
this section to identify the infinity norm of the sensitivity func-
tion of systems. The procedure is illustrated with the following
example:

K(s)G(s) =
1

(s + 1)5
(17)

for which the infinity norm of the sensitivity function γ is 1.65.
The Nyquist plot of its sensitivity function is depicted in Fig. 6.

The proposed method consists of the following steps:

1. Choose a large value for the saturation slope k, so that
the saturation can be regarded as a non-ideal relay, and α
large enough to obtain a passive system (α > γ). Fig. 5a
shows Fα1=1.7(jω) for the considered example.

2. Reduce then gradually α until the occurrence of a limit
cycle.

When α becomes smaller than γ, a stable limit cycle ex-
ists, but will not occur as long as the point 0 is an sta-
ble equilibrium point. This is the case, if the number
of intersections between the half-straight line (−∞,− 1

k
]

(≈ (−∞, 0]) and the Function Fα(jω) is even (See Fig.
5b for α2 = 1.6). This number corresponds however to
that of the intersections between the frequency response
of the sensitivity function and the half-circle of radius α
centered at the origin (see Fig. 6). The number of intersec-
tions between the two curves is 2 if αu < α < γ, where
αu is the magnitude of the sensitivity function at ωu. For

1
1+K(0)G(0) < α < αu there is one intersection. Thus a
limit cycle occurs only when α reaches αu (see Fig. 5c,
α3 = αu = 1.53).

3. Identify the intersection point P1(αu) between Fαu
(jω)

and the negative real axis through the limit cycle ampli-
tude obtained in the experiment shown in Fig. 1 according
to Eq. 3 and Eq. 4.

4. Choose k = k1 > − 1
P1(αu) . For this value the limit cycle

will not be damped. Proposed value: k1 = − 1
4P1(αu)

(Fig.5c).

In fact, k is a determining factor for the accuracy of the
measurements. If k is chosen very large (relay), the out-
put signal of the saturation will be a square wave. The
presence in this signal of high harmonics that cannot be
attenuated efficiently by the function Fα(jω), due to its
relative degree of 1, will lead to significant identification
errors. If k is reduced, the output of the saturation will
contain less harmonics, improving the precision of the es-
timates. However, a small saturation level ensures a mini-
mum distance between −1/k and P1(α) which guaranties
the continuity of the limit cycle. The proposed value for k
is a good compromise between harmonic elimination and
limit cycle conservation.

Figure 5: Fα(jω) for different values of α

5. Increase slowly α until the limit cycle starts damping.
This value gives the infinity norm of the sensitivity func-
tion (see Fig. 5d).

During this step, if the saturation level becomes too small
for a non-damped limit cycle, the slope of saturation k
should be increased. However for the systems presented in
Section 5 the saturation slope did not need to be readjusted
during the experiment.

Note at this point that the experiment duration is usually rea-
sonable. The only part of the procedure which is time consum-
ing is Step 5, where α should be increased slowly from αu to
γ for a good measurement. However αu is close to γ for many
systems.

Figure 6: Sensitivity function



K(jω)G(jω) γe γm Err(%) ω∞e
ω∞m

Err(%) Gme
Gmm

Err(%)
1

(s+1)3 1.28 1.28 - 1.12 1.13 0.9 8 7.67 4.3
1

(s+1)5 1.65 1.61 2.4 0.631 0.628 0.5 2.89 3 3.8
0.5

s(s+1)2 1.84 1.84 - 0.601 0.607 0.99 4 4.03 0.75
0.5s+1

s(0.2s+1)(s+1)e
−0.5s 2.01 2.00 0.5 1.15 1.17 1.7 2.61 2.88 10.5

Figure 7: Simulation results

Notice also that αu is equal to Gm

Gm−1 , where Gm is the gain
margin of K(jω)G(jω) defined as:

Gm = −
1

K(jωu)G(jωu)
(18)

where the critical frequency ωu is the frequency where
∠K(jω)G(jω) = −π. The phase of the sensitivity function
at this frequency ∠

1
K(jωu)G(jωu)+1 is obviously zero. The ex-

periment provides also the value of the gain margin at no ex-
tra cost. The method is restricted to system for which the fre-
quency of the sensitivity infinity norm is smaller than the crit-
ical frequency. However this constitutes a large class of plants
encountered in practice.

5 Simulation Results

The proposed method has been tested by simulation on differ-
ent systems. The results and comparisons with exact values
are shown in Fig 7. γe and γm are the exact and the measured
values of the infinity norm of the sensitivity function, respec-
tively. ω∞e

and ω∞m
are the exact and measured values of

the corresponding frequency. Gme
and Gmm

are the exact and
measured gain margins. Small relative errors (Err(%)) between
exact and measured values show the accuracy of the proposed
method.

6 Conclusion

A feedback structure containing a saturation nonlinearity has
been proposed for infinity norm measurement of sensitivity
function. It has been shown that the scheme may produce limit
cycles at a frequency where the sensitivity function achieves
a selected magnitude. The use of a saturation nonlinearity in-
stead of a relay brings following improvements to the scheme:
On the one hand a judicious choice of the saturation slope can
improve in a significant way the measurement accuracy. On the
other hand a passivity property is added for the case where the
magnitude is chosen larger than the sensitivity infinity norm.
Stability analysis have been carried out to show the sufficient
conditions for the occurrence of limit cycles. Based on these
considerations, a simple procedure has been proposed to mea-
sure the infinity norm of the sensitivity function for a large class
of practical systems. Simulation results show the effectiveness
of the proposed method. This method can be used in the iden-
tification step of an auto-tuning procedure.
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