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Keywords: lll-posed inverse problem, nonlinear system, regut is well known that under certain conditions the relationship
larization, Volterra model between the output(¢) and the input:(¢) of a nonlinear time
invariant system can be written in the Volterra series form :

Abstract y () =yo+ [3 hi (m)u(t —m)dn

In this paper, a nonlinear inverse problem is proposed. The +f(f f(f ho (11, 72) X

main idea is to apply the well known Tikhonov regularization w(t—7)u(t—m)drdr +--- Q)
to a Volterra model. The Volterra model allows to represent a + f(f ... f[)t B (T4, -+, Tn) X

large variety of nonlinearities, but for inverse problem, a non- w(t—7)---u(t —7p)dr - dry 4 - -

linear optimization procedure must be used and an important

computational burden is required. A particular computationghereh,, (i, - - -, 7,) is called thenth-order Volterra kernel.
implementation is proposed to reduce the computational bgthe condition,, (T1,---,7m) = 0if 7y < 0fori =0,...,n

den and to simplify the use. Here the Volterra model consistsrequired in order to assure the causality of the system. For
in an approximation of each Volterra kernel by a multidimensimplicity let us assume thgt, = 0.
sional orthonormal basis expansion.

2.2 Volterramodel

1 Introduction _ e .
The \Volterra series (1) has an infinite dimension. For a prac-

In many fields of science one is interested in inverse protieal use, a truncation is necessary. Théh-order truncated
lems. These ones allow to reconstruct a quantity which lterra series can be written as

not directly accessible by using an experimentally measurable
guantity. They are generally known to be ill-posed problems.
The solution is to use a prior knowledge in a criterion op-
timization approach to change the ill-posed problem into a
better-conditioned problem. The most popular method is the
Tikhonov regularization method[. where

In this paper we propose a regularization method for nonlin-

ear systems by using a black-box continuous-time model. This H,[u(t)] = fOt o fOt B (T1,+ s T)

latter consists in modelling each kernel of truncated Volterra xut—m1)u(t—r)dn---dm ©))
series of the nonlinear system by a multidimensional orthonor-

mal basis. Many Volterra kernel modelling methods exist in literature. We

This paper is organized as follows. The next section presents, quote Hammerstein, Wiener or Uryson models which are
the modelling used in this approach. In the section 3, a re ibclasses of Volterra model |

ularization method with a particular formulation is describedrt o ~ontinuous-time Volterra mode? [2] considered in this

S'mUIit'o_n res;J.Its gre presented in section 4 and ConCIUd'BQper consists of an expansion on multidimensional orthonor-
remarks in section . mal basis for each kernel.
The n-dimensional orthonormal basis i?(7™"), whereT is

(1) @

2 Volterraseriesmodelling the set of timeq” = [0, oc[, can be obtained from monodimen-
_ sional orthonormal basis{¢,,(t)} in L?(T) by forming the
21 Volterraseries products{¢,,, @ --- ® ¢, }. We denote byw the Hadamar

Volterra series allow to represent the input-output behaviour BfPduCLi-&. given two vectors), w, thenv © w is the vector
nonlinear systems. There is a large literature on \olterra serié@quwh c.omponent i%;w;. Then-dimensional orthonormal
e.g. 2, ?, ?, ?]. Here, we are considered the continuous-tim asiS 1S W”tterwml:“m" (t)}i .

case, but the regularization described below can also be applyga use the generalized basis functidhs
to the discrete-time case.

(s) [?, ?] defined by

Lpm (t) is response of the ortonormal functid®y, (s) to the inputu(t)



a well-posed problem. There exists at least two general ap-
proaches that are different by the kind of considered prior in-

formation. The first approach uses a deterministic prior infor-

mation and is generally called regularization method. The sec-
ond uses a probabilistic prior information and we can quote

whereay, denotes complex conjugate @f. They allow to in- Bayesian approaches or maximum entropy metheids [

troduce a variety of poles. In this paper, a regularization method is proposed.

Notice that orthonormal basis functions can be different fgg general approact?] to find regularized solutions to linear

each kernel in order to fit at best nonlinear dynamics. inverse probleny = Au is to minimize a criterion as follows
Each kernelH,, [u (t)] withn = 1,---, N is modelled by

By (s) = V2Re{a,} 1 s —ar

s+ am s+ ag

(4)

k=1

u 4 = argmin Jy (u) (8)
Hofu(t),0n] = > -+ X bmyoom, 5 .
mi=1 my=1 ( ) with
X Gy (1) @ -+ @ i, (1) Ian(w) = [ly* — Aull> + A Luf* A > 0 9)

whered,, is the vector composed of parametgfs ..., -
Hence the truncated \Volterra series (2) is approximated by

y* denotes the finite data vector of the output measurements.
The scalar) is the so-called regularization parametdr. is
an operator for which the identity or the second derivative is

v (t,u,0) = Hy [u(t),0:] + -+ Hy, [u(t), 0] frequently used. The first term on the right-hand side in (9)

4o+ Hy [u(t), O] (6) _represents the data_ adequation part, whereas the second termis
introduced to penalize the roughness of the estimate.
with The solution of (8) is
0:[017"'70N] (7)

a=[A'A+\L'L] " A'y* (10)
The Volterra model (6) is linear in parameters. Thus the param-

eter estimate is performed by least-squares. Notice that ifA = 0 the equation (10) is the least-squares solu-
The main advantage of this modelling is that no hypothesistion.

needed on kernel structure. The drawback is that an a priori

knowledge is necessary about the dominant modes of the n@»  problem for mulation

linear system to choose the orthonormal basis function poles.

In practice, to choose the numkrof kernels and the number In this paper, an extension of classical regularization method

M,; of basis functions for each kernel, one must proceed emp() to nonlinear Volterra models is provided.

ically by increasing progressively andM; fori =1,--- N.

Remark 1 Noticethat, for the regularization described below,
the Volterra series modelling may be different from the one de-
scribed in this section. The sole constraint is that from model
we can compute discrete-time impul se response coefficients.

Remark 2 We chose this model for several reasons.
Continuous-time model has been preferred to discrete-
time for both the independence from sample time choice
and the relative parsimony, i.e. the relative small number of
parameters. Orthonormal basis expansion can be viewed like
black-box model and, despite the multidimensional basis, the
model remains easily usable. Lastly, such a model allows to
represent a large class of nonlinear system.

3 Regularization method

3.1 Preliminaries

In the criterion (9), the linear regressign= Au is replaced
with the nonlinear Volterra model outpyt= F[u] given by

(6). Then the criterion is nonlinear in parametersand a
nonlinear optimization scheme is required to solve the inverse
problem. Classical optimization algorithms require at least the
computation of the gradient vector defined by

81F[U]
VF [u] = : (11)

8Ns F [u]

where N denotes the number of samples where the input is
estimated, generally the number of output measurements.
There are two main problems for the numerical implementa-
tion of nonlinear regularization. The first is to have a nonlinear
model that allows to compute each component of the gradient
vector. The second problem is the computational burden im-
posed by gradient vector simulation.

3.3 Computational implementation

For inverse problems, the difficulty is the ill-posedness. An orderto apply the Volterra model inversion to a set of experi-
least one of the three necessary conditions of existence, unigoental data, we must compute the gradient vector of the model
ness and stability of Hadamard is not satisfied. The solutiondstput (6) with the derivative variable(t). Hence we are

to use prior knowledge to change the ill-posed problem inithoosing to simulate each orthonormal basis funcfigp(s)



by using the discrete convolution and the impulse response éb- Simulation results

efficients as follows

where®,,, (res. U) is a vector composed af,,, (kTs) ( res.
u(kTs)) with k = 0,---, Ny — 1. K, is Ny x Ny matrix

defined by
[ ho O 0 T
h1  ho
K, = hr (13)
0
. . . ho 0
L 0 -~ -« hr -+ hi ho |

The objective of this section is to illustrate the regularization
method we proposed in previous section.
The system we will study is a quadratic system given by

(19)

{ i =x+ 2%+ u(t),z(0) =0
y==x

The simulated input range is definedb¥ « < 1. The sample
time is0.01s. The data sequence used to estimate the model is
not the same that the one used to apply the inverse problem.
The model is defined by (6) wittv = 2, i.e. two Volterra
kernels are considered, and each kernel is given by (5) with
M, = M, = 4. The orthonormal function poles are the same
for the two kernelsi; = 0.5,a> = 1,a3 = 1.5,a4 = 2. The

size of the parameter vector (7) is 14. Notice that the fact to
increase the number of kerné¥sor the number of orthonormal
functionsM; does not allow to obtain a better estimate.

To compute the discrete impulse response coefficients (13), we
assume a zero order hold on the input and the sample time is

whereh; are the impulse response coefficients of the orthonsgual to0.01s.

mal basis functiorB,, (s).

In the optimization algorithm (17), the initial value of the input

Then, the model of theth-order Volterra kernel given by (5) vector ist/, = [0,---,0], i.e. not any a priori knowledge is

can be rewritten as

ma—1

> bmyeemn

mi=1 mnp=1

X (Kp,U)® -+ ® (K, U)

(14)

Remark 3 This formulation presents two main interests. The
first is that the simulation consists only in doing matrix prod-
ucts. The second is the easiness to compute the gradient vector

0%,

2 _K,, 15
U (15)
and
(®m;@Pm;) _ 0P,
oU = 20 @ Py (16)
o
+ 5 © Pm;

3.4 Optimization algorithm

To perform the minimization of the criterion (9), we consider

the Levenberg - Marquardt algorithr#] [given by

U1 =U; + AU a7
whereAU is the solution of
(i + J\(U)] AU = —J\(Us) (18)

used.

4.1 Deterministic case

In this section, a deterministic case is considered to validate
both model and inversion method. For this we minimize the
criterion (9) without regularization term, i.e\ = 0. Figure

1 shows the inverse problem result. The real input is correctly
represented by the input obtained by inversion.
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Figure 1: Inverse problem result in deterministic case. The
dashed curve is real input. The solid curve is the input obtained
by inversion.

The gradient/} (U;) is computed by using (15) and (16). They 5  gtgchastic case

hessian is given by the Gauss-Newton approximation.

Notice that unfortunately global minimization is not guaranh this section, a stochastic case is considered to show the be-
teed but classical tools or strategies can be used to approhatiour of the above method in the presence of noisy data. A
the optimal solution. white Gaussian noise such that SNR = 20dB is added to the



simulated output sequence.

The minimization of criterion (9) is performed with different Lij = 712 (5ij + 0(i42)j — 25(i+1)j) )
regularization parameter valuasand two different operators i=1,---,N,j=1,---,Ng, (21)
L Ny = Ng —2.

In a first time, the operatak is the identity, i.e.L is a matrix

. - Th [ iven in fi ??. W hat th
with the coefficients e results are given in figuré€® and e can see that the

second derivative operator gives more smooth results.

Lij:6ij7i:1,"',Nl,j:1,"‘,Ns 0sl
Ni =N, @

0.6

Figures 2 and 3 show the influence of regularization parameter  osy
A upon the obtained input smoothness.\Ifs too small, the oal
regularization effect vanishes and an ill-conditioned solution is
obtained. On the other hand, too large values\gfroduce
smooth estimates that may be unable to represent input vari-
ation. This observation is classical in regularization and the o1r
choice of) is the crucial point of regularization methods. 0
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Figure 4: Second derivative operatbrand A = 0.005. The
dashed curve is real input. The solid curve is the input obtained
by inversion.
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Figure 2: Identity operatal and\ = 0.005. The dashed curve o2
is real input. The solid curve is the input obtained by inversion. o1}
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Figure 5: Second derivative operatbrand A = 0.001. The
dashed curve is real input. The solid curve is the input obtained
by inversion.

5 Conclusions

oal | A regularization method for nonlinear inverse problems has
o i 2 s P 5 6 7 s been presented. The solution is based on Tikhonov regular-
Time (seconds) . . . . .
ization, and it presents the particularity to use the well known
\olterra model. The method was tested using simulated data

Figure 3: Identity operatok and\ = 0.02. The dashed curve and led to good results. The choice of the regularization pa-

is real input. The solid curve is the input obtained by inversiof@Meter presents the same difficulty as in linear case.
The prospects are to optimize the regularization parameter

In a second time, the operatbtis the second derivative, i.€&. choice, to reduce the computational burden and to extend to
is a matrix with the coefficients an iterative scheme for a real time application.
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