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Abstract

In this paper, a nonlinear inverse problem is proposed. The
main idea is to apply the well known Tikhonov regularization
to a Volterra model. The Volterra model allows to represent a
large variety of nonlinearities, but for inverse problem, a non-
linear optimization procedure must be used and an important
computational burden is required. A particular computational
implementation is proposed to reduce the computational bur-
den and to simplify the use. Here the Volterra model consists
in an approximation of each Volterra kernel by a multidimen-
sional orthonormal basis expansion.

1 Introduction

In many fields of science one is interested in inverse prob-
lems. These ones allow to reconstruct a quantity which is
not directly accessible by using an experimentally measurable
quantity. They are generally known to be ill-posed problems.
The solution is to use a prior knowledge in a criterion op-
timization approach to change the ill-posed problem into a
better-conditioned problem. The most popular method is the
Tikhonov regularization method [?].
In this paper we propose a regularization method for nonlin-
ear systems by using a black-box continuous-time model. This
latter consists in modelling each kernel of truncated Volterra
series of the nonlinear system by a multidimensional orthonor-
mal basis.
This paper is organized as follows. The next section presents
the modelling used in this approach. In the section 3, a reg-
ularization method with a particular formulation is described.
Simulation results are presented in section 4 and concluding
remarks in section 5.

2 Volterra series modelling

2.1 Volterra series

Volterra series allow to represent the input-output behaviour of
nonlinear systems. There is a large literature on Volterra series,
e.g. [?, ?, ?, ?]. Here, we are considered the continuous-time
case, but the regularization described below can also be applied
to the discrete-time case.

It is well known that under certain conditions the relationship
between the output���� and the input���� of a nonlinear time
invariant system can be written in the Volterra series form :
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where�� ���� � � � � ��� is called the�th-order Volterra kernel.
The condition�� ���� � � � � ��� � � if �� 	 � for 
 � �� � � � � �
is required in order to assure the causality of the system. For
simplicity let us assume that�� � �.

2.2 Volterra model

The Volterra series (1) has an infinite dimension. For a prac-
tical use, a truncation is necessary. The� th-order truncated
Volterra series can be written as
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Many Volterra kernel modelling methods exist in literature. We
can quote Hammerstein, Wiener or Uryson models which are
subclasses of Volterra models [?].
The continuous-time Volterra model [?, ?] considered in this
paper consists of an expansion on multidimensional orthonor-
mal basis for each kernel.
The�-dimensional orthonormal basis in������, where� is
the set of times� � �����, can be obtained from monodimen-
sional orthonormal basis1 ������� in ���� � by forming the
products����

� � � � � ���
�. We denote by� the Hadamar

product,i.e. given two vectors�, �, then� � � is the vector
whose
th component is����. The�-dimensional orthonormal
basis is written���������

����.
We use the generalized basis functions����� [?, ?] defined by

1����� is response of the ortonormal function����� to the input����
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where�� denotes complex conjugate of��. They allow to in-
troduce a variety of poles.
Notice that orthonormal basis functions can be different for
each kernel in order to fit at best nonlinear dynamics.
Each kernel
� �� ���	 with � � 
� � � � � � is modelled by
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where�� is the vector composed of parameters��������
.

Hence the truncated Volterra series (2) is approximated by
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with
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The Volterra model (6) is linear in parameters. Thus the param-
eter estimate is performed by least-squares.
The main advantage of this modelling is that no hypothesis is
needed on kernel structure. The drawback is that an a priori
knowledge is necessary about the dominant modes of the non-
linear system to choose the orthonormal basis function poles.
In practice, to choose the number� of kernels and the number
�� of basis functions for each kernel, one must proceed empir-
ically by increasing progressively� and� � for 
 � 
� � � � � � .

Remark 1 Notice that, for the regularization described below,
the Volterra series modelling may be different from the one de-
scribed in this section. The sole constraint is that from model
we can compute discrete-time impulse response coefficients.

Remark 2 We chose this model for several reasons.
Continuous-time model has been preferred to discrete-
time for both the independence from sample time choice
and the relative parsimony, i.e. the relative small number of
parameters. Orthonormal basis expansion can be viewed like
black-box model and, despite the multidimensional basis, the
model remains easily usable. Lastly, such a model allows to
represent a large class of nonlinear system.

3 Regularization method

3.1 Preliminaries

For inverse problems, the difficulty is the ill-posedness. At
least one of the three necessary conditions of existence, unique-
ness and stability of Hadamard is not satisfied. The solution is
to use prior knowledge to change the ill-posed problem into

a well-posed problem. There exists at least two general ap-
proaches that are different by the kind of considered prior in-
formation. The first approach uses a deterministic prior infor-
mation and is generally called regularization method. The sec-
ond uses a probabilistic prior information and we can quote
Bayesian approaches or maximum entropy methods [?].
In this paper, a regularization method is proposed.
A general approach [?] to find regularized solutions�� to linear
inverse problem� � �� is to minimize a criterion as follows
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�� denotes the finite data vector of the output measurements.
The scalar� is the so-called regularization parameter.� is
an operator for which the identity or the second derivative is
frequently used. The first term on the right-hand side in (9)
represents the data adequation part, whereas the second term is
introduced to penalize the roughness of the estimate.
The solution of (8) is

�� � ����� ����	
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���� (10)

Notice that if� � � the equation (10) is the least-squares solu-
tion.

3.2 Problem formulation

In this paper, an extension of classical regularization method
(8) to nonlinear Volterra models is provided.
In the criterion (9), the linear regression� � �� is replaced
with the nonlinear Volterra model output� � � ��	 given by
(6). Then the criterion is nonlinear in parameters� and a
nonlinear optimization scheme is required to solve the inverse
problem. Classical optimization algorithms require at least the
computation of the gradient vector defined by

	� ��	 �

�
��

��� ��	
...

���
� ��	

�
	
 (11)

where�
 denotes the number of samples where the input is
estimated, generally the number of output measurements.
There are two main problems for the numerical implementa-
tion of nonlinear regularization. The first is to have a nonlinear
model that allows to compute each component of the gradient
vector. The second problem is the computational burden im-
posed by gradient vector simulation.

3.3 Computational implementation

In order to apply the Volterra model inversion to a set of experi-
mental data, we must compute the gradient vector of the model
output (6) with the derivative variable����. Hence we are
choosing to simulate each orthonormal basis function�����



by using the discrete convolution and the impulse response co-
efficients as follows
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where�� are the impulse response coefficients of the orthonor-
mal basis function�����.
Then, the model of the�th-order Volterra kernel given by (5)
can be rewritten as
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Remark 3 This formulation presents two main interests. The
first is that the simulation consists only in doing matrix prod-
ucts. The second is the easiness to compute the gradient vector
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3.4 Optimization algorithm

To perform the minimization of the criterion (9), we consider
the Levenberg - Marquardt algorithm [?] given by

 ��� �  � �� (17)

where� is the solution of
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The gradient� �	� �� is computed by using (15) and (16). The
hessian is given by the Gauss-Newton approximation.
Notice that unfortunately global minimization is not guaran-
teed but classical tools or strategies can be used to approach
the optimal solution.

4 Simulation results

The objective of this section is to illustrate the regularization
method we proposed in previous section.
The system we will study is a quadratic system given by�
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The simulated input range is defined by� 
 � 
 
. The sample
time is���
�. The data sequence used to estimate the model is
not the same that the one used to apply the inverse problem.
The model is defined by (6) with� � 
, i.e. two Volterra
kernels are considered, and each kernel is given by (5) with
�� � �� � �. The orthonormal function poles are the same
for the two kernels�� � ���� �� � 
� �� � 
��� �	 � 
. The
size of the parameter vector (7) is 14. Notice that the fact to
increase the number of kernels� or the number of orthonormal
functions�� does not allow to obtain a better estimate.
To compute the discrete impulse response coefficients (13), we
assume a zero order hold on the input and the sample time is
equal to���
�.
In the optimization algorithm (17), the initial value of the input
vector is � � ��� � � � � �	, i.e. not any a priori knowledge is
used.

4.1 Deterministic case

In this section, a deterministic case is considered to validate
both model and inversion method. For this we minimize the
criterion (9) without regularization term, i.e.� � �. Figure
1 shows the inverse problem result. The real input is correctly
represented by the input obtained by inversion.
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Figure 1: Inverse problem result in deterministic case. The
dashed curve is real input. The solid curve is the input obtained
by inversion.

4.2 Stochastic case

In this section, a stochastic case is considered to show the be-
haviour of the above method in the presence of noisy data. A
white Gaussian noise such that SNR = 20dB is added to the



simulated output sequence.
The minimization of criterion (9) is performed with different
regularization parameter values� and two different operators
�.
In a first time, the operator� is the identity, i.e.� is a matrix
with the coefficients
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Figures 2 and 3 show the influence of regularization parameter
� upon the obtained input smoothness. If� is too small, the
regularization effect vanishes and an ill-conditioned solution is
obtained. On the other hand, too large values of� produce
smooth estimates that may be unable to represent input vari-
ation. This observation is classical in regularization and the
choice of� is the crucial point of regularization methods.
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Figure 2: Identity operator� and� � �����. The dashed curve
is real input. The solid curve is the input obtained by inversion.
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Figure 3: Identity operator� and� � ���
. The dashed curve
is real input. The solid curve is the input obtained by inversion.

In a second time, the operator� is the second derivative, i.e.�
is a matrix with the coefficients
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The results are given in figures?? and??. We can see that the
second derivative operator gives more smooth results.
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Figure 4: Second derivative operator� and� � �����. The
dashed curve is real input. The solid curve is the input obtained
by inversion.
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Figure 5: Second derivative operator� and� � ����
. The
dashed curve is real input. The solid curve is the input obtained
by inversion.

5 Conclusions

A regularization method for nonlinear inverse problems has
been presented. The solution is based on Tikhonov regular-
ization, and it presents the particularity to use the well known
Volterra model. The method was tested using simulated data
and led to good results. The choice of the regularization pa-
rameter presents the same difficulty as in linear case.
The prospects are to optimize the regularization parameter
choice, to reduce the computational burden and to extend to
an iterative scheme for a real time application.
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linéaires par d´eveloppement sur les s´eries de volterra”,
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