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Abstract

Relaxation of an optimization problem under parametrized
LMI constraint is discussed in this paper. Relaxation meth-
ods are based on convexfication using difference of convex and
multiconvex techniques, thus the relaxed problems become nu-
mericaly tractable. The d.c. relaxation is generalized and is
imported into the multiconvex relaxation, then the difference of
multiconvex relaxation is naturally defined. These two relax-
ation methods are applied to stability and state-feedback con-
trol synthesis of linear parameter varying systems. Numerical
examples are illustrated for the applications to show the effec-
tiveness of these methods.

1 Introduction

It is known that stability and performance analysis problems
of linear time invariant systems are represented by feasibil-
ity problems or minimization problems under linear matrix in-
equality (LMI) congtraint, that is, LMI problems [5]. LMI
problems can be solved by efficient interior-point methods with
worst-case polynomial complexity. Some LMI solvers[6] are
available and are widely used. On the other hand, control prob-
lems, for example, stability analysis of linear parameter vary-
ing (LPV) systems are not LMI problems. These problems are
represented by feasibility problems under parametrized LMI
(PLMI) constraint, that is, PLMI problems[2]. PLMI includes
a infinite number of LMIs, so that PLMI problem is NP-hard
in general. Therefore, some relaxation methods reducing a
PLMI constraint to a finite number of LMIs constraint have
been proposed [1, 2]. Convexfication technique using differ-
ence of convex (d.c.) function [1] is efficiently used for relax-
ation. From global optimization point of view, d.c. structure
[3] isamethodol ogy for non-convex optimization problem. On
the other hand, multiconvex (m.c.) function [2] is also used for
relaxation. Multiconvexity is a result of non-convex quadratic
optimization problemg[4].

In this paper we propose two relaxation methods of parameter-
ized LMI (PLMI) constraint on optimization problem. Oneis
ageneralized d.c. relaxation and the other is an unified method
between the generalized d.c. and the m.c. relaxation, thus
PLMI constraint becomes a finite number of LMIs. These two
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relaxation methods are applied to stability analysis and state-
feedback control design of LPV systems.

The notation in this paper is as follows. R is the set of rea
scaler value. The set of n x m real matrices is denoted by
R™ ™. A = 0 meansthat the matrix A is positive definite. S*
isthe set of the k£ dimensional symmetric matricesand S =
{X € S: X > 0}. Qishyper-rectangle, then vert  indicates
the set of verticesof 2. For Z € R¥** He{Z} meansZ + 27

2 PLMI Problems

We consider an optimization problem to find decision vari-
ables such that PLMI constraint with quadratic parameter de-
pendence. The problem is of the form
find z 1)
such that M(z,0) <0 Vo € Q,

where ¢ is a given vector, z is a vector of decision variables,
0=[01,--- ,0n]T € Q isaparameter vector,

N N
]W(z,@) = Mg(Z) + ZQIMI(Z) + Z QIGJMU(Z), (2)
i=1 i=1,i<j
M;(z), M;;(z) € Sk are affine symmetric matrix-valued func-
tionsof z. Inthis paper, we cal it PLMI problem.

As @ is the uncertain parameter vector, a PLMI constraint
means an infinite number of LMIs constraint, so that PLMI
problems (1) are hard to solve generaly. If werelaxed a PLMI
constraint to afinite number of LMIs, we can solveit tractably
and would have an solution of the original PLMI problem ().
Therefore, our aim isto formulate a problem as follows.

Describe arelaxation problem of PLMI problem (1) defining a
LMI problem as

find 2

such that M(Z,6) <0 Vo € Q. &

Then M (z,0) < M(%,6) < 0foral 6 € Q.

3 Reaxation methods
3.1 D.C.Reaxation

Definition 1 (D.C. Functions). [3] Afunction f(0) isd.c. if it
can be expressed as the difference of two convex functions, i.e.,



if £(0) = f1(0) — f2(0), where f,, f» are convex functions.

Lemma 1 (Quadratic D.C. Functions). f..(0) =
2T M (z,0)z is quadratic d.c. function in the form f..(0) =
fi20(0) — fo.0(0) if thereexists R; € Sk (i = 1,...,N)
such that Hessian matrix V2 f;.,.(0) is positive semi-definite,
where

N

flzw(g) = fza:(e) + Z 9,?{17TRZ‘IE, (4)
N =1

foux(0) = > 072" Rix, (5)

=1
and z isarbitrary nonzero vector.

A convex upper-bound of the concave function — fo..(0) is
given by the next lemma.

Lemma 2 (Affine Upper Bound). For §; € R, R; € Sk |
and B, € R***, we have

The lemma is shown from the quadratic form (6,1 —
Bi)TRi(GI — Bl) > 0.

Now that the relaxed PLMI constraint is convex on parameter
set, we can give the following relaxation of the PLMI problem
D.

Theorem 1 (Generalized D.C. Relaxation). The following
LMI problemis a relaxation of PLMI problem (1).

find z, R; € Slj__i_, Qz € RFxk

such that (7) and (8) VO € vert €,
where
2(M11(z) + Rl) Mlg(Z)
Mlg(z) Q(MQQ(Z) + Rg)
Min(z) Man(2)
Min(2) )
MQN(Z)
t 0 b
(M () + Ry)
QY —0.R, —-R, 0 0
. <0 (8)

: 0 0
Q%—HNRN 0 0
forall 0 cvert(.

—Ry

Proof. From (4), we have

N
flzm(a) = xTMO(Z)l’ + Z HleMl(z)a:

i=1

N N
+ Z GieijMij(z)x—i—ZGfxTRix. (9)

i=1,i<j i=1

If Hessian matrix V2 f1.,.(0) is positive semi-definite, i.e.
V2 f1.0(0) = AT (2)M(2) A(z) = 0,

where M(z) and A(x) are matrices of dimension kN x kN
and kN x k respectively, defined by

2(M11(Z)+R1) Ml?(z)

Mia(z 2(Maa(z) + Ro
e ) 2]+ )
MlN(Z) MQN(Z)
MlN(Z)
MQN(Z)
(M (2) + Rn)
x 0 0
A B 0 =z 0
()= 0 0 0’
0 0 T

then f1...(6) is convex function. M(z) > 0 stands for (7).
Then f...(0) is quadratic d.c. function from Lemma 1. On the
other hand, from (5) and Lemma 2, we have a convex upper
bound of — f5,,.(0) as

N
=1

Then the right hand side of the following inequality
fz.r (9) < flzr (9)

N
=Y "(0:BF Ri + 0,R;B; — B[ R;B)x  (10)

i=1

is convex function of 4. If theright hand side of (10) isnegative
foral 6 € vert 2, then f,,(6) < 0foral 8 € Q. Now (10)
means the following inequality

N
M(z,0) < M(z,0) + > (0,1 — B:)" Ri(6:I — B;) < 0.
- (11)

Applying Shur complement [5] to the right hand side of (11),
we have

M(z,0) ke *
RiB1—0Ry —-Ri O 0
. < 0. (12
: 0 "
RnBy —OnvRy O 0 —Ry
Replacing BT R; with matrices Q;, we obtain (8). O

Remark 1. Although z, R;, and B, aredecision variables, (11)
isnot affine on B;, so that (11) isnot LMI when 6 € vert Q.



Remark 2. Relaxation variables R; and 5; in Theorem 1 are
correspond to scaler ;I and 0.51 inthe article[1] respectively.
Adopting matrix variables, we can earn asmall relaxation term
that is added to M (z, #) on PLMI constraint, hence a tight re-
laxation can be achieved. In this sense, Theorem 1 generalizes
the d.c. relaxation method [1] and gives a less conservative
relaxation.

3.2 Difference of Multiconvex Relaxation

Definition 2 (M.C. Functions). [2] A function f(6) is multi-
convexif f(0;) (i =1,...,N)isconvexonR.

Lemma 3 (Quadratic M.C. Functions). [2] Assume that a
quadratic function f,.(6) is multiconvex, that is

82

o fa() =0 (i=1,...,N). (13)

ol
Then, f...(6) < 0forall 8 € Qisifandonlyif f.,(9) < 0 for
all 6 € vert Q.

Definition 3 (D.M.C. Functions). A function f(8) is differ-
ence of two multiconvex functions (d.m.c.) if f(0) = f1(0) —
f2(0), where f1, f, are multiconvex functions.

Lemma4 (Difference of QuadraticM.C. Functions). f.,(0)
is difference of quadratic multiconvex function in the form
f22(0) = f122(0)— fa2.(0) if there exists positive definite sym-
metric matrix R; (i = 1,..., N) such that (13) are satisfied.

Theorem 2 (D.M.C. Relaxation). Thefollowing LMI problem
isarelaxation of PLMI problem (1).

find z, R; € Sk, Q; e RM>*
such that (14) and (8) V6 € vert Q,

where

M;ii(z)+ R = 0 (i=1,---,N). (14)

Remark 3. Relaxation variables B; in Theorem 2 are corre-
spond to 0 in article [2]. For the same reason with Remark
2, Theorem 2 generalizes the m.c. relaxation method [2] and
gives aless conservative relaxation.

Remark 4. As(14) isthe block diagona elements of (7), The-
orem 2 givesaless conservative relaxation rather than Theorem
1

4 Control Applications
We consider aLPV system as follows.
Im @(t)=A(0)z(t) + B(O)u(t)

where, z € R, v € R™ and
N

[A(0) B(0)]=[A40 By |+> 6:[ A B;]

i=1

N
+ Y 60 Ay By ],

i=1,i<j

o) =[ 0u(t) ..., On(t) ],

S
Q: 0t e[ 8 6 ]vt>o.

For the system I, stability analysis based on Lyapunov func-
tion V(z)=2TP 'z suchthat V > 0and V < 0 aong all
admissible parameter trgjectories and for all initial conditions
are discussed in this section.

41 Stability Analysis

Lemma 5 (Stability). The systemII is stable if there exists P
€ S' , such that

He {A(0)P} <0 (15)

for all 6 € Q.

As (18) is a parameterized LMI condition with non-convex or
non-multiconvex on parameter space €2 generally, we could not
solve it ready. Applying Theorem 1 to Lemma 5, we have a
tractable sufficient stability condition.

Proposition 1 (Stability with D.C. Relaxation). The system
ITisstableif thereexists z , Ry,..., Ry € S, Q1,...,0QN
€ R™*™ such that (7) and (8) for all 6 € vert () are satisfied,
wherez = (P € S* | ) and

MO(Z) = He {AQP}

The proof is obtained by identifying the terms in (18) with
M(z,0). Inthe same way, applying Theorem 2, we have an-
other relaxation.

Proposition 2 (Stability with D.M.C. Relaxation). The sys-
tem II is stable if there exists z, Ry,...,Ry € S%_,
Q1,...,QN € R™™™ suchthat (14) and (8) for all € vert Q
are satisfied, where z = (P € 8", ) and (16) .

4.2 State-Feedback Contral
For the system II, we design a static state-feedback controller
u=Kzx . an

Then a controller with infinite number of LMI condition is
given by the following lemma.

Lemma 6 (State-Feedback Stabilization). The closed-loop
system consisted of the system IT and (17) is stable if there ex-
ists P € S, and S € R™*" such that

P
He{[A(G) B(G)][S]}<O, (18)
for all 8 € Q. Then a state-feedback controller is
K=s8P ! . (19)



We apply Theorem 2 to Lemma 6 and have tractable condition.

Proposition 3 (State-Feedback Stabilization with D.M.C.
Relaxation). The closed-loop system consisted of the system
IT and (17) is stable if there exists z , Ry,..., Ry € ST,
Q1,-..,Qn € R ™ suchthat (14) and (8) for all 8 € vert Q2
are satisfied, where z = (P € S |, S € R7*") and

MO(Z)ZHG{[ Ao By | [ ]; ]}

M;;(z) = He {[ A Bij |

M;i(2) = He{[ Aii Bii |

Then a state-feedback gain is given by (19).

Table 1: Maximum value of 05: 65

Rel axation method 0

d.c. 0.5557
generalized d.c. 1.0938
m.c. 0.7783
d.m.c. 1.1309

-1 4101 -02]01 0.3
—-03 0 0.3 0.5 -2 0.4
0 02]-03 —0.1 ‘ —0.2 —12 } :
[ Bo | Bi | B2 | Bui | Baz | Baz |

[1 1‘1 o‘o 0.2‘

_ 0|0 |-02(05]-01| 1
110.1 0 0.1] 04 |—-0.2
The region of the parameter is given by
01 € [ —-0.3 —-0.1 ] s 0, € [01 03} .

Then we have a state-feedback gain by Proposition 3.

5 Numerical Examples

We consider stability analysis and state-feedback control de-

K=[ —13.0297 —14.7593 |

sign with respect to the system II. The following results 6 Conclusion

are obtained by LMI Toolbox[6] on a PC with CPU Athlon
MP1900+(Dual).

We proposed a generalized d.c. relaxation and a difference
of multiconvex relaxation of PLMI problems. Generalizing

- _ d.c. relaxation, we have aless conservative relaxation. More-
5.1 Stability Analysis over, introducing d.c. structure into multiconvex relaxation, we
obtain another less conservative relaxation. These relaxation

We consider the system IT with the following

methods are applied to stability analysis and state-feedback

[ Ao | Ay | Ao | Avy | Asz | Aro | contral synthesis of LPV systems. Numerical examples show
-1 1] 1 0 0 02 the effectiveness of our relaxation methods.
- [ ~-1 =5 ‘ 0.1 —02 ‘ 0.1 03 ‘
-03 0 0.3 0.5 -2 0.4 References
0 02|-03 -01|-02 -12

(1]

The region of the parameter is
6, € [ 20 —-05], 62 € [05 0.5+9.5a ]

2
where o takes 0 < « < 1. For this system, the following four 2

relaxation methods are applied.
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3
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mum 65 is shown by Table 1.

5.2 State-Feedback Control
We consider the system IT with the following (6]
[ Ao | A1 | Ao | Avy | Az | Aro ]
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