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Abstract

Relaxation of an optimization problem under parametrized
LMI constraint is discussed in this paper. Relaxation meth-
ods are based on convexfication using difference of convex and
multiconvex techniques, thus the relaxed problems become nu-
merically tractable. The d.c. relaxation is generalized and is
imported into the multiconvex relaxation, then the difference of
multiconvex relaxation is naturally defined. These two relax-
ation methods are applied to stability and state-feedback con-
trol synthesis of linear parameter varying systems. Numerical
examples are illustrated for the applications to show the effec-
tiveness of these methods.

1 Introduction

It is known that stability and performance analysis problems
of linear time invariant systems are represented by feasibil-
ity problems or minimization problems under linear matrix in-
equality (LMI) constraint, that is, LMI problems [5]. LMI
problems can be solved by efficient interior-point methods with
worst-case polynomial complexity. Some LMI solvers [6] are
available and are widely used. On the other hand, control prob-
lems, for example, stability analysis of linear parameter vary-
ing (LPV) systems are not LMI problems. These problems are
represented by feasibility problems under parametrized LMI
(PLMI) constraint, that is, PLMI problems [2]. PLMI includes
a infinite number of LMIs, so that PLMI problem is NP-hard
in general. Therefore, some relaxation methods reducing a
PLMI constraint to a finite number of LMIs constraint have
been proposed [1, 2]. Convexfication technique using differ-
ence of convex (d.c.) function [1] is efficiently used for relax-
ation. From global optimization point of view, d.c. structure
[3] is a methodology for non-convex optimization problem. On
the other hand, multiconvex (m.c.) function [2] is also used for
relaxation. Multiconvexity is a result of non-convex quadratic
optimization problems[4].

In this paper we propose two relaxation methods of parameter-
ized LMI (PLMI) constraint on optimization problem. One is
a generalized d.c. relaxation and the other is an unified method
between the generalized d.c. and the m.c. relaxation, thus
PLMI constraint becomes a finite number of LMIs. These two

relaxation methods are applied to stability analysis and state-
feedback control design of LPV systems.

The notation in this paper is as follows. R is the set of real
scaler value. The set of n × m real matrices is denoted by
Rn×m. A � 0 means that the matrix A is positive definite. Sk

is the set of the k dimensional symmetric matrices and S++ =
{X ∈ S : X � 0}. Ω is hyper-rectangle, then vert Ω indicates
the set of vertices of Ω. ForZ ∈ Rk×k, He{Z} meansZ+ZT

.

2 PLMI Problems

We consider an optimization problem to find decision vari-
ables such that PLMI constraint with quadratic parameter de-
pendence. The problem is of the form

find z
such that M(z, θ) ≺ 0 ∀θ ∈ Ω, (1)

where c is a given vector, z is a vector of decision variables,
θ=[θ1, · · · , θN ]T ∈ Ω is a parameter vector,

M(z, θ) =M0(z) +
N∑

i=1

θiMi(z) +
N∑

i=1,i≤j

θiθjMij(z), (2)

Mi(z), Mij(z) ∈ Sk are affine symmetric matrix-valued func-
tions of z. In this paper, we call it PLMI problem.

As θ is the uncertain parameter vector, a PLMI constraint
means an infinite number of LMIs constraint, so that PLMI
problems (1) are hard to solve generally. If we relaxed a PLMI
constraint to a finite number of LMIs, we can solve it tractably
and would have an solution of the original PLMI problem (1).
Therefore, our aim is to formulate a problem as follows.

Describe a relaxation problem of PLMI problem (1) defining a
LMI problem as

find z̃

such that M̃(z̃, θ) ≺ 0 ∀θ ∈ Ω.
(3)

Then M(z, θ) 	 M̃(z̃, θ) ≺ 0 for all θ ∈ Ω.

3 Relaxation methods

3.1 D.C. Relaxation

Definition 1 (D.C. Functions). [3] A function f(θ) is d.c. if it
can be expressed as the difference of two convex functions, i.e.,



if f(θ) = f1(θ)− f2(θ), where f1, f2 are convex functions.

Lemma 1 (Quadratic D.C. Functions). fzx(θ) =
xTM(z, θ)x is quadratic d.c. function in the form fzx(θ) =
f1zx(θ) − f2zx(θ) if there exists Ri ∈ Sk

++ (i = 1, . . . , N)
such that Hessian matrix ∇2f1zx(θ) is positive semi-definite,
where

f1zx(θ) = fzx(θ) +
N∑

i=1

θ2i x
TRix, (4)

f2zx(θ) =
N∑

i=1

θ2i x
TRix, (5)

and x is arbitrary nonzero vector.

A convex upper-bound of the concave function −f 2zx(θ) is
given by the next lemma.

Lemma 2 (Affine Upper Bound). For θi ∈ R , Ri ∈ Sk
++

and Bi ∈ Rk×k, we have

−θ2iRi 	 −(θiBT
i Ri + θiRiBi − BT

i RiBi). (6)

The lemma is shown from the quadratic form (θ iI −
Bi)TRi(θI − Bi) ≥ 0.

Now that the relaxed PLMI constraint is convex on parameter
set, we can give the following relaxation of the PLMI problem
(1).

Theorem 1 (Generalized D.C. Relaxation). The following
LMI problem is a relaxation of PLMI problem (1).

find z, Ri ∈ Sk
++, Qi ∈ Rk×k

such that (7) and (8) ∀θ ∈ vert Ω,

where


2(M11(z) +R1) M12(z)
M12(z) 2(M22(z) +R2)

...
M1N (z) M2N(z)

· · · M1N(z)
M2N(z)

. . .
...

· · · 2(MNN(z) +RN )


 � 0 ,

(7)




M(z, θ) ∗ · · · ∗
QT

1 − θ1R1 −R1 0 0
... 0

. . . 0
QT

N − θNRN 0 0 −RN


 ≺ 0 (8)

for all θ ∈ vert Ω .

Proof. From (4), we have

f1zx(θ) = xTM0(z)x+
N∑

i=1

θix
TMi(z)x

+
N∑

i=1,i≤j

θiθjx
TMij(z)x+

N∑
i=1

θ2i x
TRix. (9)

If Hessian matrix ∇2f1zx(θ) is positive semi-definite, i.e.

∇2f1zx(θ) = AT (x)M(z)A(x) � 0,

where M(z) and A(x) are matrices of dimension kN × kN
and kN × k respectively, defined by

M(z) =




2(M11(z) +R1) M12(z)
M12(z) 2(M22(z) +R2)

...
M1N (z) M2N (z)

· · · M1N (z)
M2N (z)

. . .
...

· · · 2(MNN(z) +RN )


 ,

A(x) =



x 0 · · · 0
0 x 0

0 0
. . . 0

0 0 · · · x


 ,

then f1zx(θ) is convex function. M(z) � 0 stands for (7).
Then fzx(θ) is quadratic d.c. function from Lemma 1. On the
other hand, from (5) and Lemma 2, we have a convex upper
bound of −f2zx(θ) as

−f2zx(θ) ≤ −
N∑

i=1

xT (θiBT
i Ri + θiRiBi − BT

i RiBi)x.

Then the right hand side of the following inequality

fzx(θ) ≤ f1zx(θ)

−
N∑

i=1

xT (θiBT
i Ri + θiRiBi − BT

i RiBi)x (10)

is convex function of θ. If the right hand side of (10) is negative
for all θ ∈ vert Ω, then fzx(θ) < 0 for all θ ∈ Ω. Now (10)
means the following inequality

M(z, θ) ≺M(z, θ) +
N∑

i=1

(θiI − Bi)TRi(θiI − Bi) ≺ 0.

(11)

Applying Shur complement [5] to the right hand side of (11),
we have


M(z, θ) ∗ · · · ∗

R1B1 − θ1R1 −R1 0 0
... 0

. . . 0
RNBN − θNRN 0 0 −RN


 ≺ 0. (12)

Replacing BT
i Ri with matrices Qi, we obtain (8).

Remark 1. Although z,Ri, andBi are decision variables, (11)
is not affine on Bi, so that (11) is not LMI when θ ∈ vert Ω.



Remark 2. Relaxation variables Ri and Bi in Theorem 1 are
correspond to scaler riI and 0.5I in the article [1] respectively.
Adopting matrix variables, we can earn a small relaxation term
that is added to M(z, θ) on PLMI constraint, hence a tight re-
laxation can be achieved. In this sense, Theorem 1 generalizes
the d.c. relaxation method [1] and gives a less conservative
relaxation.

3.2 Difference of Multiconvex Relaxation

Definition 2 (M.C. Functions). [2] A function f(θ) is multi-
convex if f(θi) (i = 1, . . . , N) is convex on R.

Lemma 3 (Quadratic M.C. Functions). [2] Assume that a
quadratic function fzx(θ) is multiconvex, that is

∂2

∂θ2i
fzx(θ) ≥ 0 (i = 1, . . . , N). (13)

Then, fzx(θ) < 0 for all θ ∈ Ω is if and only if fzx(θ) < 0 for
all θ ∈ vert Ω.

Definition 3 (D.M.C. Functions). A function f(θ) is differ-
ence of two multiconvex functions (d.m.c.) if f(θ) = f1(θ) −
f2(θ), where f1, f2 are multiconvex functions.

Lemma 4 (Difference of Quadratic M.C. Functions). fzx(θ)
is difference of quadratic multiconvex function in the form
fzx(θ) = f1zx(θ)−f2zx(θ) if there exists positive definite sym-
metric matrix Ri (i = 1, . . . , N) such that (13) are satisfied.

Theorem 2 (D.M.C. Relaxation). The following LMI problem
is a relaxation of PLMI problem (1).

find z, Ri ∈ Sk
++, Qi ∈ Rk×k

such that (14) and (8) ∀θ ∈ vert Ω,

where

Mii(z) +Ri � 0 (i = 1, · · · , N). (14)

Remark 3. Relaxation variables Bi in Theorem 2 are corre-
spond to 0 in article [2]. For the same reason with Remark
2, Theorem 2 generalizes the m.c. relaxation method [2] and
gives a less conservative relaxation.

Remark 4. As (14) is the block diagonal elements of (7), The-
orem 2 gives a less conservative relaxation rather than Theorem
1.

4 Control Applications

We consider a LPV system as follows.

Π ẋ(t)=A(θ)x(t) +B(θ)u(t)

where, x ∈ Rn, u ∈ Rm and

[
A(θ) B(θ)

]
=

[
A0 B0

]
+

N∑
i=1

θi

[
Ai Bi

]

+
N∑

i=1,i≤j

θiθj

[
Aij Bij

]
,

θ(t) = [ θ1(t) , . . . , θN (t) ]T ,
Ω : θi(t) ∈ [ θi θ̄i ] ∀t ≥ 0.

For the system Π, stability analysis based on Lyapunov func-
tion V (x)= xTP−1x such that V > 0 and V̇ < 0 along all
admissible parameter trajectories and for all initial conditions
are discussed in this section.

4.1 Stability Analysis

Lemma 5 (Stability). The system Π is stable if there exists P
∈ Sn

++ such that

He {A(θ)P} ≺ 0 (15)

for all θ ∈ Ω.

As (18) is a parameterized LMI condition with non-convex or
non-multiconvex on parameter space Ω generally, we could not
solve it ready. Applying Theorem 1 to Lemma 5, we have a
tractable sufficient stability condition.

Proposition 1 (Stability with D.C. Relaxation). The system
Π is stable if there exists z , R1, . . . , RN ∈ Sn

++, Q1, . . . , QN

∈ Rn×n such that (7) and (8) for all θ ∈ vert Ω are satisfied,
where z = (P ∈ Sn

++) and

M0(z) = He {A0P}
Mi(z) = He {AiP} (1 ≤ i ≤ N)
Mij(z) = He {AijP} (1 ≤ i < j ≤ N)
Mii(z) = He {AiiP} (1 ≤ i ≤ N) .

(16)

The proof is obtained by identifying the terms in (18) with
M(z, θ). In the same way, applying Theorem 2, we have an-
other relaxation.

Proposition 2 (Stability with D.M.C. Relaxation). The sys-
tem Π is stable if there exists z, R1, . . . , RN ∈ Sn

++,
Q1, . . . , QN ∈ Rn×n such that (14) and (8) for all θ ∈ vert Ω
are satisfied, where z = (P ∈ Sn

++) and (16) .

4.2 State-Feedback Control

For the system Π, we design a static state-feedback controller

u = Kx . (17)

Then a controller with infinite number of LMI condition is
given by the following lemma.

Lemma 6 (State-Feedback Stabilization). The closed-loop
system consisted of the system Π and (17) is stable if there ex-
ists P ∈ Sn

++ and S ∈ Rm×n such that

He
{[

A(θ) B(θ)
] [

P
S

]}
≺ 0 , (18)

for all θ ∈ Ω. Then a state-feedback controller is

K = SP−1 . (19)



We apply Theorem 2 to Lemma 6 and have tractable condition.

Proposition 3 (State-Feedback Stabilization with D.M.C.
Relaxation). The closed-loop system consisted of the system
Π and (17) is stable if there exists z , R1, . . . , RN ∈ Sn

++,
Q1, . . . , QN ∈ Rn×n such that (14) and (8) for all θ ∈ vert Ω
are satisfied, where z = (P ∈ Sn

++, S ∈ Rq×n) and

M0(z) = He
{[

A0 B0

] [
P
S

]}

Mi(z) = He
{[

Ai Bi

] [
P
S

]}
(1 ≤ i ≤ N)

Mij(z) = He
{[

Aij Bij

] [
P
S

]}
(1 ≤ i < j ≤ N)

Mii(z) = He
{[

Aii Bii

] [
P
S

]}
(1 ≤ i ≤ N)

(20)

Then a state-feedback gain is given by (19).

5 Numerical Examples

We consider stability analysis and state-feedback control de-
sign with respect to the system Π. The following results
are obtained by LMI Toolbox[6] on a PC with CPU Athlon
MP1900+(Dual).

5.1 Stability Analysis

We consider the system Π with the following[
A0 A1 A2 A11 A22 A12

]
=

[ −1 1 1 0 0 0.2
−1 −5 0.1 −0.2 0.1 0.3

−0.3 0 0.3 0.5 −2 0.4
0 0.2 −0.3 −0.1 −0.2 −1.2

]
.

The region of the parameter is

θ1 ∈ [ −2.0 −0.5 ] , θ2 ∈ [ 0.5 0.5 + 9.5α ]

where α takes 0 ≤ α ≤ 1. For this system, the following four
relaxation methods are applied.

• d.c. relaxation (Tuan 1999) [1]

• generalized d.c. relaxation (Proposition 1)

• m.c. relaxation (Gahinet 1996) [2]

• d.m.c. relaxation (Proposition 2)

The maximum α is computed by dichotomy, then the maxi-
mum θ2 is shown by Table 1.

5.2 State-Feedback Control

We consider the system Π with the following[
A0 A1 A2 A11 A22 A12

]

Table 1: Maximum value of θ2: θ̄2

Relaxation method θ̄2
d.c. 0.5557
generalized d.c. 1.0938
m.c. 0.7783
d.m.c. 1.1309

=
[

1 1 1 0 0 0.2
−1 4 0.1 −0.2 0.1 0.3

−0.3 0 0.3 0.5 −2 0.4
0 0.2 −0.3 −0.1 −0.2 −1.2

]
,[

B0 B1 B2 B11 B22 B12

]
=

[
0 0 −0.2 0.5 −0.1 1
1 0.1 0 0.1 0.4 −0.2

]
.

The region of the parameter is given by

θ1 ∈ [ −0.3 −0.1 ] , θ2 ∈ [ 0.1 0.3 ] .

Then we have a state-feedback gain by Proposition 3.

K=[ −13.0297 −14.7593 ]

6 Conclusion

We proposed a generalized d.c. relaxation and a difference
of multiconvex relaxation of PLMI problems. Generalizing
d.c. relaxation, we have a less conservative relaxation. More-
over, introducing d.c. structure into multiconvex relaxation, we
obtain another less conservative relaxation. These relaxation
methods are applied to stability analysis and state-feedback
control synthesis of LPV systems. Numerical examples show
the effectiveness of our relaxation methods.
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