
LONG HORIZON MODEL PREDICTIVE CONTROL FOR
NONLINEAR INDUSTRIAL PROCESSES

A.A. Tiagounov∗, J. Buijs†, S. Weiland∗, B. De Moor†

∗ Department of Electrical Engineering,
Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven,

The Netherlands
a.tiagounov@tue.nl, fax: +31 40 243 45 82

† Department of Electrical Engineering, ESAT-SISTA,
Katholieke Universiteit Leuven

Kasteelpark Arenberg 10,
3001 Heverlee (Leuven), Belgium

Keywords: Model predictive control, quadratic programming.

Abstract

This paper considers an MPC algorithm for nonlinear plants.
The MPC problem amounts to solving a quadratic programming
problem. A structured interior-point method (IPM) is proposed
to solve the MPC optimization problem so as to obtain a fea-
sible computational effort for longer prediction horizons. We
compare the proposed method with standard QP solvers. The
choice of the QP optimizer is investigated for two nonlinear in-
dustrial cases, namely an evaporation process and a high-purity
distillation column. The effectiveness of the structured IPM is
demonstrated for long horizon MPC controller design of the
first process.

1 Introduction

Model Predictive Control (MPC), also known as moving or re-
ceding horizon control, has originated in industry as a real-time
computer control algorithm to solve linear multi-variable con-
trol problems subject to constraints and time delays. MPC has
received a great deal of attention and receives an ever growing
interest for applications in industrial process control. Various
MPC algorithms differ mainly in the type of model used to
represent the process and its disturbances, as well as the cost
functions to be minimized subject to constraints. In this paper
we consider a nonlinear MPC scheme where the predicted fu-
ture process behaviour is represented as a cumulative effect of
a nonlinear prediction component and a component based on
linear models defined along the predicted trajectory [2, 3, 11].
The first component constitutes a future output prediction us-
ing nonlinear simulation models, given past process inputs and
measured disturbance signals. The second component uses lin-
earized models for prediction of future process outputs as re-
quired for calculation of optimum future process inputs that
bring the process behavior closest to the desired behavior. The
online optimization can be typically reduced to either a lin-
ear program or a quadratic program (QP). The MPC controller
solves online a constrained optimization problem and deter-

mines optimal control inputs over a fixed future time-horizon,
based on the predicted future behaviour of the process, and
based on the desired reference trajectory. Certain problems
may require longer prediction horizons to cover a broader range
of dynamics, due to performance specifications or for stability
reasons [4, 9]. Sometimes it is rather difficult to implement
long horizon MPC controllers online, since the optimization
programs (typically constrained QP’s) tend to become too large
to be solved in real-time when standard QP solvers are used.
To reduce computational complexity we propose to solve the
QP problem using a structured interior-point method [1, 8].
The computational cost of this approach is linear in the horizon
length, whereas standard approaches have a computational cost
which is cubic in the horizon length. It will be shown that in
some cases the structured method can solve MPC problem much
faster for longer prediction horizons than standard QP solvers.
The effectiveness of the proposed method will be demonstrated
for an industrial evaporation process. At the same time the struc-
tured IPM will not prove to be a good choice for a distillation
column.

2 Nonlinear MPC algorithm

Consider the system equations of a nonlinear process model

ẋ = f(x, u), u ∈ R
nu (1)

y = g(x), y ∈ R
ny . (2)

For digital MPC controller design the control signal can be as-
sumed to be constant between the sampling intervals. We define
the one-step ahead prediction of the states as

x(k + 1|k) = FT (x(k|k), u(k)), (3)

where FT (x(k|k), u(k)) denotes the terminal state vector ob-
tained by integrating (1) for one sample interval T with the
initial condition x(k|k) and constant input u(k).

We consider an MPC problem which amounts to finding an
optimal control sequence {u(k+j)}N−1

j=0 at the current moment

k minimizing the performance index

Jk(u) =
N∑

j=1

[∥∥y(k + j) − yref(k + j)
∥∥2

Q
+ (4)

∥∥u(k + j − 1) − uref(k + j − 1)
∥∥2

R

]

subject to the constraints

ymin ≤ y(k + j) ≤ ymax (5)

umin ≤ u(k + j) ≤ umax (6)

∆umin ≤ ∆u(k + j) ≤ ∆umax (7)

for allk and for j = 0, . . . , N−1, where∆u(k+j) = u(k+j)−
u(k+j−1). Here, ‖x‖2

Q will mean x�Qx. The MPC is trying to
make inputs and outputs follow its reference trajectories uref(k+
j) and yref(k+j). The design parameters include the prediction
horizon N and positive semi-definite weighting matrices Q ∈
R

ny , R ∈ R
nu .

More generally we define

FjT (x(k|k), {u(k + i)}j−1
i=0) =

FT (. . . (FT (x(k|k), u(k)), . . .), u(k + j − 1))

as j compositions of FT to represent the terminal states ob-
tained by integrating (1) for j sampling intervals with initial
condition x(k|k) and piecewise constant input. Note from (3)
that the state x(k+1|k) is related to the undecided manipulated
variable u(k) through nonlinear integration. This makes the op-
timization required for the input move computation a nonlinear
problem. To prevent this we further approximate the equation
by linearizing FT (x(k|k), u(k)) at some nominal input value
unom(k) (its choice will be explained later):

x(k + 1|k) ≈
FT (x(k|k), unom(k)) + Bk(u(k) − unom(k)), (8)

where Bk represents a discretized version of one of the follow-
ing Jacobians:

Ac
k =

∂f

∂x

∣∣∣∣
x(k|k),unom(k)

Bc
k =

∂f

∂u

∣∣∣∣
x(k|k),unom(k)

.

We can generalize this idea to develop multi-step predictions.
Note from (3) that

x(k + 2|k) = FT (x(k + 1|k), u(k + 1)), (9)

where x(k + 2|k) is related in a nonlinear fashion not only
to u(k + 1), but also to u(k) appearing in expression (3) for
x(k + 1|k). By appropriate linearization, we would like to
derive an approximation that is linear with respect to the un-
decided inputs u(k) and u(k + 1). The linear relationship that
approximates the local behavior can be obtained by lineariz-
ing the expression FT (x(k + 1|k), u(k + 1)) with respect to
x(k+1|k) = FT (x(k|k), unom(k)) and u(k+1) = unom(k+1)
as follows

FT (x(k + 1|k), u(k + 1)) ≈ F2T (x(k|k), unom)
+Ak+1(x(k + 1|k) − FT (x(k|k), unom(k)))
+Bk+1(u(k + 1) − unom(k + 1)), (10)

where Ak+1 and Bk+1 represent discretized versions of the
following Jacobians:

Ac
k+1 =

∂f

∂x

∣∣∣∣
x=FT (x(k|k),unom(k)),unom(k+1)

Bc
k+1 =

∂f

∂u

∣∣∣∣
x=FT (x(k|k),unom(k)),unom(k+1)

.

Note that unom is a piecewise constant input taking, for instance,
values of {unom(k), unom(k +1)} at the time interval [k, k +2].

Note from (8) that x(k + 1|k) − FT (x(k|k), unom(k)) ≈
Bk(u(k) − unom(k)). Substitute the affine approximation (10)
into (9) to obtain that

x(k + 2|k) ≈ F2T (x(k|k), unom)

+
[

Ak+1Bk Bk+1
] [

u(k)−unom(k)
u(k+1)−unom(k+1)

]
.

Carrying out the same derivations for x(k+j|k), j = 1, . . . , N ,
we obtain

x(k + j|k) ≈ FjT (x(k|k), unom))
+

[∏j−1
i=1 Ak+iBk

∏j−1
i=2 Ak+iBk+1 . . . Bk+j−1

]

×




u(k)−unom(k)
u(k+1)−unom(k+1)

...
u(k+j−1)−unom(k+j+1)


 , (11)

where Ak+i and Bk+i represent discretized versions of the fol-
lowing Jacobians:

Ac
k+i =

∂f

∂x

∣∣∣∣
x=FiT (x(k|k),unom),unom(k+i)

Bc
k+i =

∂f

∂u

∣∣∣∣
x=FiT (x(k|k),unom),unom(k+i)

. (12)

Note that the expression (11) requires integration of the ODE
(1) for j sample time steps into the future and computation of the
matrices for each of the j sample times (i.e., Ak+i and Bk+i for
i = 0, . . . , j − 1). To reduce the computational complexity, the
matrices Ak+i and Bk+i are often kept constant at the initial val-
ues of Ak and Bk throughout the prediction horizon. To avoid
the computational complexity, we will adapt this simplification.
Hence, (11) simplifies to

x(k + j|k) ≈ FjT (x(k|k), unom) (13)

+
[
Aj−1

k Bk Aj−2
k Bk . . . Bk

]

×




u(k)−unom(k)
u(k+1)−unom(k+1)

...
u(k+j−1)−unom(k+j+1)


 .

Similar techniques as described above can be found in, for ex-
ample [3, 10].

In order to develop a prediction for the output that is linear with
respect to the undecided input moves, we linearize equation (2)
with respect to x(k|k):

y(k) ≈ g(x(k|k)) + Ck(x(k) − x(k|k)),

where Ck is a Jacobian matrix defined as

Ck =
∂g

∂x

∣∣∣∣
x(k|k)

.

Carrying out with the same idea,

y(k + j|k) = g(x(k + j|k)) ≈ g(x(k|k))
+ Ck(x(k + j|k) − x(k|k)). (14)

Define the so-called optimizing control input as

δu(k + j) = u(k + j) − unom(k + j)

and combine (14) with the optimal multi-step prediction equa-
tion (13) for x(k + j|k) to obtain




y(k+1|k)
y(k+2|k)

...
y(k+N |k)


 =




I
I
...
I


 (g(x(k|k)) − Ckx(k|k))

+




CkFT (x(k|k),unom)
CkF2T (x(k|k),unom)

...
CkFNT (x(k|k),unom)


 (15)

+




g1 0 ··· 0
g2 g1 ··· 0
...

...
...

...
gN gN−1 ··· g1







δu(k)
δu(k+1)

...
δu(k+N−1)


 ,

where gj = CkAj−1
k Bk, j = 1, . . . , N represent the Markov

parameters. Note that FNT (x(k|k), unom) can be computed
recursively since

FNT (x(k|k), {unom(k + i)}N−1
i=0) =

FT (F(N−1)T (x(k|k), {unom(k + i)}N−2
i=0),

unom(k + N − 1)).

Note also that the first term of the right-hand side of (15) drops
out if the output vector consists of linear combinations of the
state (i.e., y(k) = Ckx(k)). In order to keep the notation simple,
we will denote (15) in the matrix notation as

Y = Ynom + GuδU.

Note that Ynom can be computed from the state estimate x(k|k)
by performing an integration of the nonlinear ODE. Matrix Gu

must be recomputed at each time step based on the updated
Jacobian matrices.

Remark 1 The local linearization in (11) makes sense only when
the computed inputs {u(k + i)}j−1

i=0 do not deviate much from
unom. For nonlinear models this can be achieved by finding a
nominal trajectory unom(k+j|k) which is as close as possible to
the optimal strategy uopt(k+j|k). A simple but effective choice
is to start with unom(k+j|k) = uopt(k+j|k−1), i.e. the optimal
control policy derived at the previous sample. Naturally, the
input trajectories computed in the subsequent optimization is
likely to be a better approximation of the actual future input
sequence [2, 11].

Remark 2 Note that a simple relationship exists between the
control actions ∆u and δu:

∆u(k) = u(k) − u(k − 1)
= unom(k) + δu(k) − u(k − 1)

∆u(k + 1) = u(k + 1) − u(k)
= unom(k + 1) + δu(k + 1)
− unom(k) − δu(k)

etc.

Then 


∆u(k)
∆u(k+1)

...
∆u(k+N−1)


 = E




δu(k)
δu(k+1)

...
δu(k+N−1)


 + F,

with

E =




I 0 0 ··· 0
−I I 0 ··· 0
...

...
... ···

...
0 0 ··· −I I


 , F = EUnom −




u(k−1)
0
...
0


 ,

where Unom = [unom(k) unom(k+1) ... unom(k+N−1)]�. The latter
relationship will be used to formalize constraints on input in-
crements.

Once Unom has been specified, the objective function (4) be-
comes a quadratic form in δU :

J(δU) =
(Ynom + GuδU − Yref)�Q̄(Ynom + GuδU − Yref)
+(Unom + δU − Uref)�R̄(Unom + U − Uref),

where Q̄ = diag(Q, . . . , Q) ∈ R
Nny×Nny and R̄ =

diag(R, . . . , R) ∈ R
Nnu×Nnu . The objective can easily be

transformed into the standard quadratic cost index

1
2
U�HU + f�U + c, (16)

where

H = 2(G�
u Q̄Gu + R̄) (17)

f = G�
u Q̄(Ynom − Yref) + R̄(Unom − Uref) (18)

c = (Yu − Yref)�Q̄(Yu − Yref)
+ (Unom − Uref)�R̄(Unom − Uref). (19)

Then the optimization problem amounts to solving a quadratic
programing problem with the objective function (16) with (17)–
(19) subject to the constraints (5)–(7). The constraints can be
transformed into the following form




E
−E
I

−I
G

−G


 δU ≤




b1−F
−b2+F
d1−Unom

−d2+Unom
y1−Ynom

−y2+Ynom


 , (20)

where b1, b2, d1 and d2 are of dimension Nnu and consist of
N copies of ∆umax, ∆umin, umax and umin respectively. In the
same way, vectors y1 and y2 are of dimension Nny and consist
of N copies of ymax, ymin.

3 Quadratic Optimization: Structured IPM

The constrained quadratic optimization problem formulated in
section 2 can be solved in various ways. First of all, one can
choose to eliminate the states and solve (4). If the states are
eliminated, one can either use an active set method or an interior-
point method [5, 7]. In this section we shortly discuss the
properties of the various algorithms. In particular, active set
methods (ASM) try iteratively to find the set of constraints that
are active at the optimum. To obtain that goal they solve an
equality constrained problem at each time step to determine a
new search direction. The set of equality constraints consists
of the guess at that iteration of which constraints will be active
in the optimum. This means that in each iteration a dense set
of equations in Nnu variables has to be solved. Moreover,
the total number of iterations will increase with the number
of active constraints since typically in each iteration only one
or some constraints will become active. This leads to the fact
that ASMs (such as MATLAB’s “quadprog” routine), though
still widely used as the standard methods for solving QPs in
the MPC algorithms, may lead to very expensive combinatorial
procedures if applied to large MPC optimization problems. At
the same time we may be able to provideASMs initial guesses of
the active set or the optimal point to the algorithm (hot starting)
based on the previous MPC solution.

Interior-point methods (IPM) try to solve the non-linear set
of Karush-Kuhn-Tucker equations iteratively by making lin-
ear approximations to this set. An advantage over ASMs is that
interior-point methods (such as Mosek) can efficiently make use
of sparsity, e.g. in the constraints, and will therefore often be
faster for solving MPC related problems, since bound or rate of
change constraints on the control inputs give rise to sparse con-
straint matrices. Also the number of iterations to reach a point
close to the optimum is typically independent of the number of
constraints and will be smaller than ASMs. A main disadvan-
tage is that they are less suited to use a priori information and
difficulties may arise finding a good starting point.

The advantage of the methods with state variables eliminated
is the smaller number of decision variables. The major prob-
lem is that solving QPs with these methods typically requires
a computational time that increases with the third power of the
number of variables. An other way to solve the constrained
quadratic optimization problem is to retain the states as opti-
mization variables. The advantage of this approach is that for
MPC related problems the structure in the given QP, originating
from the system dynamics, can be exploited to develop meth-
ods that have a computational time increasing linearly with the
horizon length. Sometimes it may be difficult to solve the QP
optimization problem with long prediction horizon in the given
time using standard optimization techniques, so we propose an
other method that will give a faster solution for some specific
cases. This algorithm is trying to exploit the relation between
the optimization variables as given by the model equations, in
order to reduce the number of operations in the optimization.
We again consider the nonlinear MPC optimization problem

with the quadratic cost function at time k:

min
{δu(j)}N−1

j=0

N∑
j=1

[∥∥(ynom(j) + y(j) − yref(j))
∥∥2

Q
+ (21)

∥∥(unom(j − 1) + δu(j − 1) − uref(j − 1))
∥∥2

R

]

subject to

Cc(k + j) ≥ Cu(k+j)δu(k + j) + Cx(k+j)x(k + j),
x(k + j + 1) = Ak+jx(k + j) + Bk+jδu(k + j),

y(k + j) = Ck+jx(k + j) + Dk+jδu(k + j)

for j = 0, . . . , N − 1. Note that constraints (20) can easily
be rewritten in the given above form. Since QP comes from
the dynamic MPC optimization problem, it is clear that the
state space equations give a relation between the optimization
variables. Moreover, considering all the constraints and the cost
function, it is clear that there are typically only constraints and
cost terms connecting variables at time step j with variables at
time step j − 1 or j + 1. Once the state space equations are
used to eliminate the states, the number of variables is highly
reduced, but then all variables are interconnected since the state
space equations were used to write every state x(k) as a function
of all inputs up to k. If this elimination is not carried out,
the structure given by the dynamics of the plant (i.e. states
and inputs at time step k only interact with states and inputs
of the nearest time steps) will reflect in the KKT equations,
as can be seen in [8]. The result is a linear set of equations
which is much larger than for standard methods, but having a
banded structure. To solve this new set of linear equations more
efficiently than the smaller non-structured set, the interior-point
optimizer exploits the banded structure by following a discrete
Riccati recursive scheme at each iteration. The details of the
optimization algorithm can be found in [1, 8].

4 Design case studies

Example 1 The first nonlinear process is based on the forced-
circulation evaporator described in [6], and shown in Figure 1.
A feed stream enters the process at concentration X1 and tem-
perature T1, with flow rate F1. It is mixed with a recirculating
liquor, which is pumped through the elevator at flow rate F3.
The evaporator itself is a heat exchanger, which is heated by
steam flowing at a rate F100, with entry temperature T100 and
pressure P100. The mixture of feed and recirculating liquor
boils inside the heat exchanger, and the resulting mixture of
vapor and liquid enters a separator, in which the liquid level is
L2. The operating pressure inside the evaporator is P2. Most
of liquid from the separator becomes the recirculating liquor. A
small portion of it is drawn off as product, with concentration
X2, at a flow rate F2 and temperature T2. The vapor from the
separator flows to a condenser at flow rate F4 and temperature
T3, where it is condensed by being cooled with water flowing
at a rate F200, with entry temperature T200 and exit temperature
T201. State variables L2, X2 and P2 are the controlled outputs
for this process. The manipulated variables are chosen to be

��

�

�
�

�

�

�

�

� �

�

�
�

�

��

�

F2, X2, T2F1, X1, T1

F200, T200
F4, T3

T201

L2 F5

F3

P100
T100

F100

P2

Evaporator

Condensate

Feed Product

Steam

Separator

Condensate

Vapour

Cooling water

Condenser

�

Figure 1: Evaporation process.

F2, P100 and F200. There are five disturbance signals, namely
F3, F1, X1, T1 and T200, which are left fixed at their equilib-
rium values. Input and output constraints are imposed in the
optimization. Figure 2 shows the controlled outputs after using
MPC described in the previous sections. The level L2 is kept
at the value of 1m. The setpoint for X2 is ramped down lin-
early from 25% to 15% over a period of 20 minutes, and the
operating pressure P2 is simultaneously ramped up from 50.5
kPa to 70 kPa. Different QP solvers gave good performance
results, where the reference trajectories were followed quite
closely. Figure 3 gives the comparison of the maximal time re-

0 10 20 30 40 50 60 70 80 90 100
0.8

1

1.2

1.4

L 2 [m
]

Separator level

0 10 20 30 40 50 60 70 80 90 100
10

15

20

25

30

X
2 [%

]

Product concentration

0 10 20 30 40 50 60 70 80 90 100

50

60

70

Time [min]

P
2 [k

P
a]

Operating pressure

Figure 2: MPC simulation of the evaporation process.

quired to solve one MPC problem using ASM, Mosek IPM and
structured IPM with different number of variables (Nnu). We
see that although Mosek is much faster than ASM, these two
standard QPs exhibit the behaviour related to the third power
of the number of variables. At the same time we also noticed
that it took the structured IPM in the MPC controller approxi-
mately 5 seconds to solve each optimization problem. The tests
also showed that the time increased linearly with the horizon
length. For horizons N > 25 the structured IPM became faster
than MATLAB’s ASM, and so it could be implemented online

30 45 60 75 90 105 120 135 150
0

2

4

6

8

10

12

14

16

18

20
MPC time

tim
e

[s
ec

]

Number of variables

MATLAB’s ASM

Structured IPM

Mosek IPM

Figure 3: MPC time comparison for the evaporation process.

with longer horizons, if required, considering the sampling time
T = 1 min for this process. The structured IPM algorithm also
became faster than Mosek for N > 160. Thus the evaporation
process is an example which can prove the efficiency of the
structured IPM for longer prediction horizons in certain cases.

Example 2 The second case study is concerned with MPC con-
troller design for a high purity distillation column. Figure 4
presents the distillation process, its 82-state nonlinear model
can be found in [12]. The column contains 41 trays that are

D, Xd

Mb
�

�

� �B, Xb

Vb

�

�

�

�

�

Md

�
V

F, zf, q

L

�

�

Vb, Yi

L, Xi

�

�

V, Yi

Lb, Xi

Reflux

Distillate
product

product
Bottom

Feed

Condenser

Boilup

Reboiler

holdup

Xnf , Ynf

Figure 4: Binary high-purity distillation column.

located along its length. The raw material enters the column at
a flow rate of F and with composition zf. The top product, the
distillate, is condensed and removed at a flow rate of D and with
composition Xd. The bottom product is removed as a liquid at
a flow rate of B and with composition Xb. The operation of the
column requires that some of the bottom product is reboiled at a
rate of Vb to ensure the continuity of the vapor flow. In the same
way, some of the distillate is refluxed to the top tray at a rate of

L to ensure the continuity of the liquid flow. The vapor boilup

0 10 20 30 40 50 60 70 80 90 100
0.5

1

1.5

2

Time [min]

Bottom product composition

0 10 20 30 40 50 60 70 80 90 100
98

98.5

99

99.5

Time [min]

Distillate product composition

Figure 5: MPC simulation of the distillation column.

V and the reflux flow L are the manipulated variables. Feed
flow rate F with composition zf act as disturbances. The MPC
objective is to bring the controlled outputs Xb and Xd to the
setpoints of 1% and 99%, respectively (see Figure 5). Figure 6

50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300
MPC time

tim
e

[s
ec

]

Number of variables

MATLAB’s ASM

Structured IPM

Figure 6: MPC time comparison for the distillation process.

gives the comparison of the maximal time required to solve one
MPC problem using ASM and the structured IPM with different
number of variables (Nnu), where we have similar behavior to
the one in the previous example. We also found that it took
the structured IPM in the MPC controller approximately 10.6
seconds to solve each optimization problem for the distillation
column. We noticed that the structured IPM became faster than
MATLAB’s ASM only for N > 140 and it failed to compete
with Mosek even for much longer horizons. This could defi-
nitely be attributed to the fact that the algorithm retains states as
optimization variables. In this process we have 2 inputs and 82
states which give this big increase in the number of optimization
variables. So, the structured IPM is definitely not a good choice
for the MPC optimizer of the distillation process.

5 Conclusions

In this paper a structured IPM was proposed to solve the nonlin-
ear MPC problem. The algorithm explicitly takes the structure
of the given problem into account such that the MPC controllers
will be able to solve a dynamic optimization problem in shorter
time. The first example proved that for MPC problems with long
horizons, naive implementations of standard QP solvers could
be inefficient. So, in this paper we showed that for certain sys-
tems, the structured IPM could give a real-time optimal MPC
solution within the available time for much longer horizons.

References

[1] J. Buijs, J. Ludlage, W. van Brempt, and B. De Moor.
Quadratic programming in model predictive control for
large scale systems. In Proc. IFAC World Congress,
Barselona, Spain, 2002.

[2] R. de Keyser. A gentle introduction to model based pre-
dictive control. In EC-PADI2 Int. Conference on Control
Engineering and Signal Processing, Peru, 1998.

[3] J.H. Lee and N.L. Ricker. Extended kalman filter based
nonlinear model predictive control. Ind. Eng. Chem. Res.,
33:1530–1541, 1994.

[4] D.Q. Mayne, J.B. Rawlings, C.V. Rao, and P.O.M.
Scokaert. Constrained model predictive control: Stability
and optimality. Automatica, 36:789–814, 2000.

[5] S.G. Nash and A. Sofer. Linear and nonlinear program-
ming. The McGraw-Hill Companies, Inc., 1996.

[6] R.B. Newell and P.L. Lee. Applied process control. A case
study. Prentice Hall, 1989.

[7] J. Nocedal and S.J. Wright. Numerical optimization.
Springer Series in Operations Research, 1999.

[8] C.V. Rao, S.J. Wright, and J.B Rawlings. Application of
interior-point methods to model predictive control. Jour-
nal of Optimization Theory and Applications, 99:723–757,
1998.

[9] J.B. Rawlings and K.R. Muske. Stability of constrained
receding horizon control. IEEE Transactions on Automatic
Control, 38(10):1512–1516, 1993.

[10] N.L. Ricker and J.H. Lee. Nonlinear model predictive
control of the tennessee eastman challenge process. Com-
puters and Chemical Engineering, 19(9):961–981, 1995.

[11] L.O. Santos, N.M.C. de Oliveira, and L.T. Biegler. Re-
liable and efficient optimization strategies for nonlinear
model predictive control. In Proc. of the IFAC Symposium
DYCORD+95, pages 33–38, Helsingor, Denmark, 1995.

[12] S. Skogestad and I. Postlethwaite. Multivariable feedback
control. Wiley, 1996.

	Session Index
	Author Index

