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Abstract

A robust MPC for constrained nonlinear system with uncertain-
ties is presented. Uncertain evolution sets are used to predict
the evolution of the system under any admisible uncertainty.
The robust stability is guaranteed by a terminal and contractive
constraint that drives the system to a robust positively invari-
ant set. A new method to calculate the uncertain evolution sets
is used. The method uses zonotopes to represent the uncertain
sets.

1 Introduction

Model Predictive Control is a control strategy that has been
widely adopted in industry and academia. The reason for this
success is the ability to deal with constraints and multivariable
systems [2].

When uncertainties are present, they must be taken into account
in the computation of the control law in order to get robust
stability. Some authors have tackled this problem as in [11]
where a dual-mode receding horizon controller is proposed and
robustness under decaying additive uncertainties is achieved by
a proper choice of the terminal region. In [9] a robust MPC
strategy based on H∞ cost function is presented and in [13] a
closed-loop min-max technique is shown.

In [10] a robust dual MPC based on uncertain evolution sets is
presented. The control of a discrete nonlinear plant with ad-
ditive uncertainty is considered. Uncertain evolution sets are
used to represent all possible states of the system when un-
certainty is considered. While traditional MPC use a nominal
prediction to calculate the optimal input, in this case the pre-
diction is based on the uncertain evolution sets. Obtaining the
uncertain evolution sets to form the prediction is difficult when
the system is nonlinear. In order to reduce the complexity of
the computation, these sets are substituted by conservative ap-
proaches. Some of them are based on the linear differential
inclusion of the non linear system [1][3][4]. In this paper, nat-
ural interval extension is used to bound the uncertain evolu-
tion of the system. When natural interval extension is used,

an overestimation of the exact uncertain evolution set that is
accumulative is produced. The consequence can be an unfea-
sible optimization problem. In this work, the uncertain evolu-
tion sets are approximated by zonotopes [7] that provide better
approximation. In [10] the prediction horizon decreases each
sample time. In this work, a new formulation is presented that
provides a constant prediction horizon and hence, an improve-
ment of the perfomance. The proposed controller is applied to a
highly nonlinear system: an simulation model of a CSTR for a
exothermic reaction. The results are compared to the controller
proposed in [10].

2 Problem statement

2.1 System description

Consider an uncertain nonlinear discrete-time system of the
form:

xk+1 = f (xk,uk,wk) (1)

where xk ∈ IRn is the state of the system and uk ∈ IRm is the
control vector at sample time k. The vector wk ∈ IRn is the
uncertainty. It is assumed that the uncertainty is bounded in
a compact set wk ∈ W that contains the origin. The system
is subject to constraints on the state an on the control action:
xk ∈ X and uk ∈U where X is a closed set and U a compact set,
both containing the origin.

The model given by x̂k+1 = f (xk,uk,0) is the nominal model
of the system. If xk is the state of the system at sample time
k, and given a sequence of control inputs denoted u(k)N−1

0 =
{u(k|k),u(k +1|k), . . . ,u(k +N −1|k)}, the sequence of future
states of the nominal system is denoted x(k)N

0 = {x(k|k), x̂(k +
1|k), . . . , x̂(k +N|k)}, where x(k|k) = xk.

2.2 Uncertain evolution sets

Definition 1 (Range). The range of a continuous function f :
IRn −→ IR over a set X ⊂ IRn is defined as f (X) = { f (x) |x ∈
X}.

Definition 2 (Exact uncertain evolution set). Consider a sys-



tem given by (1), consider also that the state at sample time
k is xk and that a sequence of control inputs u(k) j−1

0 is given,
then the uncertain evolution set at sample time k + j is Xj =
f (Xj−1,u(k + j−1|k),W ) where X0 = {xk} .

Note that the set Xj, also denoted by X(k+ j|k), is the set of all
states that can be reached by the evolution of the uncertain sys-
tem at sample time k + j applying the sequence control inputs
u(k) j−1

0 .The exact computation of these sets is a difficult task
due to the nonlinear nature of the model. In order to reduce the
complexity of the computations of these sets, these can be sub-
stituted by conservative approaches. These approximate sets,
denominated uncertain evolution sets, may be computed more
easily.

Definition 3 (Uncertain evolution set). Consider a system
given by (1) and method Ψ(·, ·, ·) to bound the function f (·, ·, ·).
Consider also that the state at sample k is xk and that a se-
quence of control inputs u(k j−1

0 ) is given, then the uncertain
evolution set at sample time k + j is X̃ j = Ψ(X̃ j−1,u(k + j −
1|k),W ) where X̃0 = xk and X̃i ⊆ Xi, i = 0, . . . , j.

Direct natural interval extension has been used to calculate the
uncertain evolution sets in [10]. Although it is an efficient solu-
tion, direct natural interval extension can produce a large over-
estimation of the exact uncertain evolution set. To obtain better
approaches in this paper it is proposed to use zonotopes [7].

3 Kuhn’s method for computing uncertain evo-
lution sets

3.1 Interval arithmetic

An interval number X = [a,b] is the set { x : a≤ x≤ b } of real
numbers between and including the endpoints a and b. Interval
arithmetic is an arithmetic defined on sets of intervals, rather
than sets of real numbers. The interval arithmetic is based on
operations applied to sets of intervals.

Let II be the set of real compact intervals [a,b] with a,b ∈ IR .
Operations in II satisfy the expression:

A op B = { a op b : a ∈ A,b ∈ B } (2)

In this way, the four basic interval operations [12] are:

[a,b]+ [c,d] = [a+ c,b+d] (3)

[a,b]− [c,d] = [a−d,b− c]

[a,b]∗ [c,d] = [min(ac,ad,bc,bd),max(ac,ad,bc,bd)]

[a,b]/[c,d] = [a,b]∗ [1/d,1/c], if 0 /∈ [c,d]

An extension of the interval arithmetic to include 0 in divi-
sion can be found in [5]. The interval extension of standard
functions {sin,cos, tan,arctan,exp, ln,abs,sqr,sqrt} is possi-
ble too.

Definition 4 (Box) A box is an interval vector. An interval
hull of a set X ⊆ IRn , denoted by �X , is a box that satisfies
X ⊆ �X. Given a box �X = ([a1,b1], . . . , [an,bn])�, mid(�X)
denotes its center and diam(�X) = (b1 −a1, . . . ,bn −an)�.

Definition 5 (Interval Matrix) . An interval matrix is a ma-
trix whose components are intervals.

Definition 6 (Natural interval extension) If f : IRn → IR is a
function computable as an expression, algorithm or computer
program involving the four elementary arithmetic operations
interspersed with evaluations of standard functions then, a nat-
ural interval extension of f , denoted � f , is obtained replacing
each occurrence of each variable by the corresponding interval
variable, by executing all operations according to formulas (3)
and by computing ranges of the standard functions.[6]

Theorem 1 A natural interval extension � f of a continuous
function f : IRn → IR over a box X ⊆ IRn satisfies that f (X)⊆
� f (X) . This is the fundamental theorem of the interval arith-
metic [12].

Theorem 2 (Mean Value Theorem) Let f : IRn → IR be dif-
ferentiable at every point in an open set containing the line seg-
ment L joining two vectors x,y ∈ IRn. There is a vector x0 ∈ L
such that: f (x)− f (y) = ∇ f (x0)(x− y).

Definition 7 (Minkowski sum) The Minkowski sum of two
sets X and Y is defined by X ⊕Y = { x+ y : x ∈ X , y ∈ Y }.

Definition 8 (Mean value extension) Suppose a function f :
IRn → IR with continuous derivatives in X ∈ IIn. Suppose also
a real vector c ∈ X . Then, the mean value extension for f
over X is defined by f (X) ⊆ f (c)⊕�∇x f (X)(X − c), where
�∇x f (X) is an interval enclosure for the range of ∇x f (X) over
X.

3.2 Künh´s method

The Künh´s method is a procedure that allows us to bound the
orbits of discrete dynamical systems [7]. The evolution of the
system is approximated by a high order zonotope. A zono-
tope is the Minkowski sum of a set of parallelepipeds. In [7]
sub-exponential overestimation is proven. These concepts are
defined below.

Definition 9 (Zonotope of order m) A zonotope Z of order m
is the Minkowski sum of m parallelepipeds: Z = P1 ⊕P2 ⊕ ...⊕
Pm

A parallelepiped is a linear image P = MI where M is a square
matrix and I is the unitary box. The order m is a measure for
the geometrical complexity of the zonotopes.

The uncertain evolution sets at time k are represented by X̃ j =
z j +Zj where z j ∈ IRn is a real vector and Zj a centered zono-
tope. The exact calculation of the next uncertain evolution set



Xj+1 = f (Xj,u,W ) is a difficult task. It is possible to approxi-
mate Xj+1 by a bound X̃ j+1 where the non lineal function f (·)
is substituted by a lineal transformation.

Theorem 3 Let Xj be a set, W a box, T a matrix, X̃ j = z j +Zj

a zonotope such that Xj ⊆ X̃ j and a system given by (1). Then
Xj+1 = f (Xj,u j,W ) ⊆ X̃ j+1 where X̃j+1 is a zonotope that is
given by � f (z j,u j,W )⊕TZj ⊕ (�∇ f (�X̃ j,u j,W )−T )�Zj

Proof:

Let

Xj+1 = f (Xj,u j,W ) ⊆ f (X̃ j,u j,W ) ⊆

f (z j,u j,W )⊕∇ f (X̃ j,u j,W )(X̃ j − z j) =

f (z j,u j,W )⊕ (∇ f (X̃ j,u j,W )−T +T )Zj ⊆
f (z j,u j,W )⊕TZj ⊕ (∇ f (X̃ j,u j,W )−T )Zj ⊆

� f (z j,u j,W )⊕TZj ⊕ (�∇ f (�X̃ j,u j,W )−T )�Zj

Note that X̃ j+1 is a zonotope because the Minkowski sum of
two zonotopes is a zonotope. So it can be rewritten as X̃ j+1 =
z j+1 +Zj+1 where z j+1 = mid(X̃ j+1) and Zj+1 = X̃ j+1 − z j+1.
A possible selection for T is mid(�∇ f (�X̃ j,u j,W )−T )).

Note that this inclusion is not very conservative because it
makes a sort of linearization of the range of the function. With
this proposal, at each sample time, the order of the zonotope is
increased. The computational cost increases quadratically, so it
is interesting to dispose of an algorithm to bound a high order
zonotope by a lower order one. This algorithm can be found in
[7].

4 Robust MPC

4.1 Robust MPC dual

If the system is uncertain, then the stability, and probably the
feasibility, may be lost. In order to achieve robustness, the con-
troller must stabilize the system and satisfy robustly the con-
straints for all possible realizations of the uncertainty along the
prediction horizon.

This section presents a dual predictive controller [11]. These
controllers split the space into two parts. One of them is a con-
trol invariant set around the origin that constitutes the terminal
region Ω. In the terminal region a local control law is used
u = h(x). In the rest of the state space, a predictive controller
with terminal region Ω is used.

The predictive controller has finite horizon N. The first of the
sequence of controls signal calculated solving the optimization
problem is applied each sample instant. In the prediction the
uncertainties are included, obtaining the uncertain evolution

sets presented. So, if in the initial state, the optimization prob-
lem is feasible then there is a sequence of control signals that
drives the system to the terminal region in M sample instants.
This means that the future feasibility of the optimization prob-
lem is guaranteed.

The optimization problem at instant k is represented by P(xk,k)
and it is defined by:

P(xk,k) = min
u(k)N−1

0

J(k,x(k)N
0 ,u(k)N−1

0 )

=
i=N−1

∑
i=0

L(x̂(k + i|k),u(k + i|k))+V (x̂(k +N)|k)

subject to:

u(k + j|k) ∈U, j = 0, . . . ,N

X̃j(xk,uF(k)) ⊆ X , j = 1, . . . ,M

X̃M(xk,uF(k)) ⊆ Ω

JEXT (k, X̃(k)M
0 ,u(k)M−1

0 )−

JEXT (k−1, X̃(k−1)M
0 ,u∗(k−1)M−1

0 ) < −α i f k > 0

where L(·, ·) is the positive definite state cost, V (·) is a posi-
tive definite terminal cost, α ∈ IR,α > 0 is a parameter that it
will be defined below and JEXT (·, ·, ·) is a cost function to as-
sure convergence to the terminal region and represents the cost
of the uncertain prediction horizon that is out of the terminal
region. It is defined by:

JEXT (k, X̃(k)M
0 ,u(k)M−1

0 ) = JEXT (k,u(k)M−1
0 ) =

LEXT (xk)+ sup(
i=M

∑
i=0

�LEXT (�X̃i))

with LEXT (·) a positive definite state cost function. JEXT (·)
is evaluated with interval arithmetic to obtain an upper bound.
The parameter α is a scalar such that α < LEXT (x) ∀x ∈ X ,x /∈
Ω. The optimization algorithm, to obtain a smaller cost as pos-
sible, adjusts the parameter M.

A new constraint is added to the optimization problem when
k > 0. This constraint assures convergence to the terminal re-
gion. As it will be shown in the next section, this contractive
constraint assures convergence to the terminal region. The sys-
tem reaches the terminal region in a finite number of sample
instants. The constraints are applied to the uncertain evolution
sets so, given an initial state and a sequence of control signals,
it is assured that the state satisfies the constraints for any un-
certainty considered. The dual controller applies the control
signal uk = Kd

MPC(xk) at time k. The next algorithm calculates
the control signal:



ControllerAlgorithm(k)
Alg

if xk ∈ Ω u = h(xk)
if xk /∈ Ω

if (k = 0)
u∗(k)N−1

0 = P(x0,0)
else

uF(k)N−1
0 = u∗(k)N−1

1 ,h(x̂(N|k−1))
u0(k)N−1

0 = P(xk,k)
if J(k,x(k)N

0 ,uF(k)N−1
0 ) < J(k,x(k)N

0 ,u0(k)N−1
0 )

u∗(k)N−1
0 = uF(k)N−1

0
else

u∗(k)N−1
0 = u0(k)N−1

0
endif

endif
u = u∗(0|k)

End

4.2 Stability analysis

Since the uncertainties are merely bounded and they may not
be decaying, the origin is not a steady state of the uncertain
system. Hence, the aim of a stabilizing controller is to steer to
a neighborhood of the origin and keep the state evolution in it.
This set is a robust positively invariant set for the closed loop
system, and its size depends on the bound on the uncertainties.

The controller proposed in this paper steers the uncertain sys-
tem to the terminal region, which is a robust invariant set.

Assumption 1 There is a region Ω ⊆ X such that it is a ro-
bust positively invariant set for the uncertain system and the
associated local control law u = h(x) ∈U for all x ∈ Ω.

Theorem 4 Consider a system given by (1). Consider a robust
invariant set for the system Ω with an associated local con-
troller u = h(x) ∈U such that the assumption is satisfied. Con-
sider the proposed procedure to compute the uncertain evolu-
tion sets, then the system controlled by uk = Kd

MPC(xk) is ulti-
mately bounded for all x0 such that the optimization problem
P0(x0,0) is feasible.

Proof:

To prove theorem 4 two lemmas are enunciated below.

Lemma 1 Let α ∈ IR,α > 0 be such that α < LEXT (x) ∀x ∈
X ,x /∈ Ω. If ∀k JEXT (k, X̃(k)M

0 ,u(k)M−1
0 ) − JEXT (k −

1, X̃(k − 1)M
0 ,u∗(k − 1)M−1

0 ) < −α for every xk−1 /∈ Ω, then
there exists Nα such that xNa ∈ Ω.

This can be proved by means of the following relation:

0 < JEXT (k,u∗(k)M−1
0 ) < JEXT (k−1,u∗(k−1)M−1

0 )−α <

.. . < JEXT (0,u∗(0)M−1
0 )− kα

There is a i < JEXT (0)
α that makes the cost function JEXT (i) neg-

ative, which is a contradiction, therefore, xi ∈ Ω. The value α
can be considered a performance parameter that must be cho-
sen conveniently in order to assure feasibility.

Lemma 2 If P(x0,0) is feasible then, the constraint
JEXT (k, X̃(k)M

0 ,u∗(k)M−1
0 ) − JEXT (k − 1, X̃(k − 1)M

0 ,u∗(k −
1)M−1

0 ) < −α with α ∈ IR,α > 0 and α < LEXT (x)
∀x ∈ X ,x /∈ Ω, is fulfilled for the closed loop evolution of
the system out of the terminal region.

In effect,when the algorithm selects u0(0|k), the constraint is
satisfied by the optimization problem definition. If the algo-
rithm selects uF(0|k), each uncertain evolution region can be
built by the expression X̃(i|k) = X̃(i|k)⋂

X̃(i + 1|k − 1) and
then X̃(i|k) ⊆ X̃(i + 1|k− 1). The consequence of this is that
the constraint JEXT (k,u∗(k)M−1

0 )−JEXT (k−1,u∗(k−1)M−1
0 )is

satisfied. So if α < LEXT (x) ∀x ∈ X ,x /∈ Ω then the constraint
is fulfilled if P0(x0,0) is feasible.

Note that the stability is guaranteed by the feasibility of the
computed control action at each sample time. The optimality
is not required and a suboptimal solution of the optimization
problem suffices to guarantee stability. Furthermore, the elec-
tion of the cost function affects only the performance but not
the stability of the closed-loop system.

5 Example

The proposed MPC controller is applied to a highly nonlin-
ear system: a continuos stirred tank reactor (CSTR) simulation
model. The continuous time model of a CSTR for an exother-
mic, irreversible reaction A −→ B with constant liquid volume
is given by [8] :

dCA

dt
=

q
V
·(CA f −CA)− k0·exp

(
− E

R·T
)
·CA

d T
dt

=
q
V
·(Tf −T )− ∆H·k0

ρ·Cp
·exp

(
− E

R·T
)
·CA+

U ·A
V ·ρ·Cp

·(Tc−T )

where CA is the concentration of A in the reactor, T is the reac-
tor temperature and Tc is the temperature of the coolant stream.
The parameters of the model are: ρ = 1000 g/l, Cp = 0.239
J/g K, ∆H = −5× 104 J/mol, E/R = 8750 K, k0 = 7.2× 1010

min−1, U ·A = 5× 104J/min K. The nominal operating condi-
tions are given by: q = 100 l/min, Tf = 350 K, V = 100 l,
CA f = 1.0 mol/l. The steady state is Co

A = 0.5 mol/l, T o = 350
K, T o

c = 300 K. The temperature of the coolant is constrained
to 280K ≤ Tc ≤ 370. The state of the system is defined as
x = [CA −Co

A,T −T o]T , and the input as u = Tc −T o
c .



The model is discretized with a sampling period Ts = 0.03 min.
The additive uncertainty on the discrete-time model of the sys-
tem are bounded by

In Fig 1 the solution of P(x0,0) is shown. It can be seen the
cloud of points that represent the exact uncertain evolution set
and two sequences of uncertain evolution sets. The first se-
quence are boxes calculated by natural interval extension [10].
The overestimation makes P(x0,0) infeasible X̃11 
⊂ Ω. The
second sequence are zonotopes calculated by Kühn’s method.
P(x0,0) is now feasible because the approximation to the ex-
act uncertain evolution set is better and X̃11 ⊆ Ω. The result is
tighter envelopes that enlarge the feasible region. The proposed
method is a better solution to calculate uncertain evolution sets.

Figure 1: Uncertain evolution sets

Figure 2: Closed loop trajectories

In Fig 3 closed loop trajectories of the system are shown. A
nominal trajectory without uncertainties is shown. Two kind of
trajectories with random bounded uncertainties are calculated
too. The first kind uses the contractive horizon proposed in

[10], the second uses the fixed horizon proposed here. The con-
clusion is that a fixed horizon provides a better performance.
For all the uncertainties, the optimization problem is feasible
and hence, the system is steered to Ω despite the uncertainties.

6 Conclusion

A robust dual-mode MPC controller for constrained discrete-
time nonlinear system with uncertainties has been presented.
Uncertain evolution sets has been added to the MPC optimiza-
tion problem. Terminal and contractive constrains have been
considered to obtain robust stability. A new technique for the
computation of the uncertain evolution set has been applied.
This technique is based on zonotopes. The proposed controller
has been compared to the controlled presented in [10].
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