
NONLINEAR TRAJECTORY GENERATION FOR THE
CALTECH MULTI-VEHICLE WIRELESS TESTBED

Jonathan Chauviny, Laure Sinègrey, Richard M. Murrayz

y École Nationale Supérieure des Mines de Paris, 60 bd St Michel, 75272 Paris, France
fjonathan.chauvin,laure.sinegreg@ensmp.fr

z Control and Dynamical Systems, California Institute of Technology, Pasadena, CA 91125, USA
murray@cds.caltech.edu

Keywords: Trajectory planning, Optimal control,
Nonlinear control, Model Predictive Control, Real-time

Abstract

The Caltech Multi-Vehicle Wireless Testbed (MVWT) is
a platform designed to explore theoretical advances in
multi-vehicle coordination and control, networked
control systems and high confidence distributed
computation. The contribution of this report is to
present simulation and experimental results on the
generation and implementation of optimal trajectories
for the MVWT vehicles. The vehicles are nonlinear,
spatially constrained and their input controls are
bounded. The trajectories are generated using the NTG
software package developed at Caltech. Minimum time
trajectories and the application of Model Predictive
Control (MPC) are investigated.

1 Introduction

In this article, the problem we are interested in is
relative trajectory generation for flight control systems.
As the vehicles have second order dynamics and are
underactuated we cannot rely on AI style planning. We
have to call on optimization based trajectory generation
and advanced control techniques. Like in the case of the
Caltech Ducted Fan experiment [9] we use the Nonlinear
Trajectory (NTG) software package. Our goal is also
the same: being able to generate and to implement
trajectories as aggressive as possible that the vehicles
can actually follow i.e. trajectories that satisfy every
constraint of the testbed. Those constraints can either
be linear, like the boundaries of the testbed or nonlinear
like the constraints on the input. The main difference and
also difficulty in our case is that the system is not linearly
controllable around its equilibrium.
In Section 2 we will give a quick description of the system
properties and in Section 3 and 4 we will describe the
progression which led us from the optimization problem

to the implementation on the real vehicles. In Section
5 other optimization problems such as minimum time
trajectory generation and model predictive control are
investigated.

2 Description of the System’s Properties

The vehicle we are working on consists of a laptop
mounted on three low-friction, omni directional caster
[1]. Two ducted fans are mounted on the top of the
vehicle, each of them capable of producing from 0 to 4.5
N of continuous thrust, as shown on Figure 1. The vehicle
has three degrees of freedom, two of translation: x and y
and one of rotation: �, as shown on Figure 2. The second
order dynamics, assuming viscous friction, is:

8<
:

m�x = � _x+ (Fs + Fp) cos �

m�y = � _y + (Fs + Fp) sin �

J �� = _� + (Fs � Fp)rf

Notice that the system is not linearly controllable

Figure 1: picture of the vehicle

around any equilibrium point, corresponding to
(x; y; �; _x; _y; _�) = (c1; c2; c3; 0; 0; 0) for any
(c1; c2; c3) 2 R

2 � S
1 with equilibrium inputs

(Fs; Fp) = (0; 0). Besides the system is differentially
flat [2, 3], i.e the whole state and the inputs can be
parameterized by two flat outputs. Let z1 be x and z2 be

y, we have:�
z1; z

(1)
1 ; z

(2)
1 ; z

(3)
1 ; z

(4)
1 ; z2; z

(1)
2 ; z

(2)
2 ; z

(3)
2 ; z

(4)
2) =

�(x; y; �; _x; _y; _�; Fs; Fp)

As we would like to have those two sets of coordinates

Vel

FP

FsFf

Ff

Ff

X

Y

Mf

θ

Figure 2: schematic of the vehicle

linked by a diffeomorphism, we have to add two
more parameters in the first set, for examples
d(Fs + Fp)=dt and d

2(Fs + Fp)=dt
2. Let ~� denote

this linking function. The determinant of its jacobian

is: det(Jac(~�)) = �2
(Fs+Fp)

3
rf

m6J
. So ~� defines a

diffeomorphism as long as Fs or Fp remain striclty
positive; equilibrium points are singularities. Given
that (Fs; Fp) 2 [0; 4:5]2, instead of trying to generate
a trajectory from an equilibrium point to an another
equilibrium point, we generate a trajectory starting from
a point on a given circular trajectory and ending at a
given point on an another circular trajectory [1]. This
makes sense because we already know how to stabilize
the error dynamics around a circular trajectory with an
LQR controller and also because in some contexts it is
more useful to have a vehicle circling instead of staying
in one position.

3 Trajectory Generation

The goal of this section is to describe the optimization
problem whose resolution will give us an admissible
trajectory that will be applied to the vehicle. We
would like to generate a trajectory that satisfies the
environmental contraints: the limits of the testbed, the
presence of an obstacle in the middle of the testbed
linked to an unrelated experiment and also the physical
constraints due to the fact that the thrust produced by the
fans is limited. So we will describe two optimization
problems, one which is using the flat coordinates and
one which is not and we will discuss the advantages and

disadvantages of each parameterization.

3.1 Optimization problem in usual coordinates

We would like to minimize:

min
�X

Z
T

0

q(X(t); u(�X(t))dt+ V (X(T); u(�X(T))

under the constraints:
8<
:

X(0) = X0 initial constraints
tc(X(t); u(t)) = 0; 8t 2 [0; T] trajectory constraints
X(T) = XT final constraints

Where X is the state (x; y; �; _x; _y; _�), �X an extension of
the state (x; y; �; _x; _y; _�; �x; �y; ��) and u is the input, u =

(Fs; Fp). The cost functions in this case are :

q(X; u) = (X �XT)
t
Q(X �XT) + (u� uT)

t
R(u� uT)

V (X; u) = (X �XT)
t
Q

0(X �XT)

With Q, Q0, R some definite positive diagonal matrices
and:

u(X) =
1

2

�

(x) cos� +
(y) sin � + (J �� + _�)rf

(x) cos� +
(y) sin � � (J �� + _�)rf

�

where
(x) = m�x+ � _x.
Explicitly, the trajectory constraints can be divided into
two categories. A linear constraint that corresponds to
staying on the testbed means that we have to satisfy :

8t 2 [0; T] 0 < x(t) < xmax and 0 < y(t) < ymax

The nonlinear constraints are:
8<
:

(m�x+ � _x) sin � � (m�y + � _y) cos � = 0 dynamics
(x� xpost)

2 + (y � ypost)
2
> R

2
post

post
0 � Fs � Fmax and 0 � Fp � Fmax forces

3.2 Optimization problem in flat coordinates

In this case what we would like to minimize is:

min
Z1;Z2

Z
T

0

q(Z1(t); Z2(t))dt+ V (Z1(T); Z2(T))

under the constraints :
8<
:

Z(0) = Z0 initial constraints
tc(Z1(t); Z2(t)) = 0; 8t 2 [0; T] trajectory constraints
Z(T) = ZT final constraints

Where Z = (Z1; Z2), Z1 = (z1; z
(1)
1 ; z

(2)
1 ; z

(3)
1 ; z

(4)
1) and

Z2 = (z2; z
(1)
2 ; z

(2)
2 ; z

(3)
2 ; z

(4)
2). The cost functions in this

case are :

q(Z1; Z2) = (X(Z1; Z2)�X(ZT)tQ(X(Z1; Z2)�X(ZT))
+(u(Z1; Z2) � u(ZT))tR(u(Z1; Z2)� u(ZT))

V (Z1; Z2) = 0

With Q and R some definite positive diagonal matrix. The
trajectory constraints are given by:

0 < z1(t) < xmax and 0 < z2(t) < ymax; 8t 2 [0; T]

And the nonlinear constraints are :�
(z1 � xpost)2 + (z2 � ypost)2 > R

2
post post

0 < Fs < Fmax and 0 < Fp < Fmax forces

The fact that we are now using a system of coordinates
with no obvious physical meaning makes the equations, and
particularly the expression of the forces much more complex
than previously. That is why we have not explicitly written the
link between the forces and Z in this paragraph. Moreover,
losing some of our physical intuition sounds like an argument
in favor of the usual coordiantes. Nevertheless this method
has some considerable advantages: there is no more dynamical
constraint and the trajectory generated will necessarily match
the dynamics of the system automatically. As a result,
computation times are generally shorter, which explains why
we chose to use the flat coordinates.

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

X position

Y
 p

os
iti

on

phi=0, T=10s
phi=pi/3, T=10s
phi=2pi/3, T=9s
phi=pi, T=9s
phi=4pi/3, T=8s
phi=5pi/3, T=9s

Figure 3: Six of the twelve trajectories we run on the
vehicle -to go-

3.3 Problem set-up

We are using NTG (Nonlinear Trajectory Generation) [4, 5],
which is a software package used for trajectory generation
that combines elements of geometric control and B-splines A
complete treatment of these functions can be found in (de Boor,
1978). The two inputs, Z1 and Z2, are projected on a basis of
26 7th order B-splines and we are looking for their coefficients.
What remains to define is the time T , the initial and final
position of the vehicle and the initial guess for the coefficients.

We note that some of those parameters are very sensitive,
particularly the time horizon T . If for some T NTG is not able
to find a solution it can be because the horizon is to short but
also because it is to long. We want to reach a non equilibrium
point, so if it is possible to reach the final point in a certain
amount of time t1, NTG may not converge for t1 + � as going
to the final point in t1 and staying at this position during � is
not a valid solution. A straight line linking the starting and the
ending point is a good enough initial guess for the problem. So,
what we decided to implement on the real vehicles is a program
which lets the user choose between twelve different trajectories
to go from one predefined circle to another predefined circle.
These trajectories are not precomputed. NTG is generating the
coefficients in real time. The only thing NTG already knows is
the amount time a specific trajectory can take.

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

X position

Y
 p

os
iti

on

phi=0, T=9s
phi=pi/3, T=10s
phi=2pi/3, T=10s
phi=pi, T=8s
phi=4pi/3, T=9s
phi=5pi/3, T=9s

Figure 4: Six of the twelve trajectories we run on the
vehicle -return-

4 Implementation on the Experimental Testbed

4.1 Finding an appropriate controller

As the dynamic equations we are using cannot fully describe
the real vehicle, it is important to find a way to stabilize the
system around the trajectory generated by NTG. The first idea
was to approximate the trajectory by the tangent circle at each
point and to stabilize the system with an LQR controller around
the corresponding circular trajectory. But what if the portion
of the trajectory we are trying to approximate by a circle is
almost a straight line? Also, following a circular trajectory
means having one’s acceleration orthogonal to one’s velocity
which is not necessarly the case for any point on the nonlinear
trajectory. Let us rather have a look at the error dynamics:

_e = Ae+ B(F ref
s + F

ref
p ; �ref)(u� uref)

where e = X �Xref

Moreover, 8(�ref ; F ref
s + F

ref
p) 2 S

1
� R

� the pair (A;B)

is controllable. So assuming that F ref
s + F

ref
p and �ref are

known, which is the case since these parameters are given
by NTG, it is possible to design an LQR controller for this
problem. On the real system it is not possible to compute the

gain matrix K on-line, so we made a gain scheduling for 16
values of �ref (linearly spaced between 0 and �

2
) and for 24

values of F ref
s + F

ref
p (linearly spaced between 0 and 12),

where the other values for �ref , in [�
2
; 2�], are obtained by

symmetries.

4.2 Implementation

The program is written in C++ and is running under the QNX
real time operating system. It is also using the RhexLib
robot programming suite [6] which facilitates a modular
programming style. This has been very useful since this has
let us use a controller that had already been programmed in
order to stabilize a vehicle around a circular trajectory. The
structure we set up consists of one thread running NTG in
real time and two controller modules: modulecontroller,
one stabilizing the vehicle around a circular trajectory and
one around the trajectory generated by NTG. On top of that
we have one module called SwitchController which
switches between the two controller modules, by activating one
and deactivating the other. So by default, when the programm
is launched, the vehicle tries to follow a certain predefined
circular trajectory. It keeps on following this trajectory until
a key is pressed. At this moment we know the grid number
which corresponds to the vehicle position on the circle, NTG
computes the trajectory starting two grid numbers ahead, so
that when the vehicle reaches the starting point the nonlinear
trajectory has already been generated. The circular controller is
deactivated and the reference trajectory becomes the nonlinear
one. After following the trajectory generated by NTG during a
certain time, we switch back to the first controller, which has
now been set up so that the vehicle aims at following the second
predefined circle. We could have defined the second condition
differently, for example as the first one, as a space condition,
X � Xfinal < ", but as the controller stabilizing around the
nonlinear trajectory is gain scheduled we fear it may not bring
the vehicle close enough to the final point. In fact we tried both
solutions and even if both worked, the first one seems to be
more efficient.

4.3 Experimental results

Figure 5 and Figure 6 show data that has been taken from an
experiment conducted on the MVWT testbed. What we can
notice is the fact that the controller is tracking � very well.
This is due to the fact that the dynamics of � is linear and
independant from the other outputs, so the controller that we
apply on � is a normal LQR one without any gain scheduling.
This is a first step but this is still far from what is needed.
Actually it is not acceptable to have to know the time that the
trajectory will take before computing it. We should be able to
compute trajectories in reconfigurable environments with the
minimum knowledge of what will happen in the future, so
we should not have to make assumption for the duration of
the trajectory. Furthermore, what we have implemented yet
does not take into account the fact that the environnement can
change as soon as the trajectory has been computed. So the
next section presents an overview of what could be the future

0 50 100
0

1

2

3

4

5

6
x
x

ref

0 50 100
0

1

2

3

4

5
y
y

ref

0 50 100
−4

−2

0

2

4
th
th

ref

0 50 100
−10

−5

0

5

10
thdot
thdot

ref

20 40 60
−1

0

1

2

3

4

5

6
F

p
F

s

Figure 5: data from the experiment

research directions.

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

x position (meters)

y
po

si
tio

n
(m

et
er

s)

Vehicle Path
Desired Path

Figure 6: comparison between the trajectory followed by
the real vehicle and its reference

5 Other Trajectory Generation

5.1 Minimum time trajectory generation

A way to fix the time problem is to incorporate it in the optimal
problem, not as a constant but as a new variable. Let us
pose: � = t=T , (~x(�); ~y(�); ~�(�)) = (x(t); y(t); �(t)) and
(~Fs(�); ~Fp(�)) = (Fs(t); Fp(t)). As � is the new time variable
the dynamics become:

8><
>:

m
�~x(�)

T2 = �
_~x(�)

T
+ (~Fs + ~Fp) cos ~�(�)

m
�~y(�)

T2 = �
_~y(�)

T
+ (~Fs + ~Fp) sin ~�(�)

J

�~�(�)

T2 =

_~�(�)

T
+ (~Fs � ~Fp)rf

Notice that the problem is still flat with the 3 outputs ~x, ~y and
T .

5.1.1 Optimization problem

We would like to minimize:
Z 1

0

Td�

under the constraints:8<
:

8t 2 [0; T] 0 < z1(t) < xmax and 0 < z2(t) < ymax

(z1 � xpost)
2 + (z2 � ypost)

2
> R

2
post post

0 < ~Fs < Fmax and 0 < ~Fp < Fmax forces

The main difference between this problem and the one we
previously solved is that, in this case, 16 of the 20 initial and
final position constraints are nonlinear which make the problem
much more difficult.

5.1.2 Problem set-up in NTG

We solved this problem using NTG with 9th order B-splines for
~x and ~y to be able to have a very aggressive trajectory and we
set a 1st order B-splines to have T as a constant. The first idea
was to set the coefficients for ~x and ~y linearly spaced between
their initial and final point. These initial guesses for the
coefficients worked sometimes depending on the initial guess
on the final time we gave to NTG. It seems that there are a lot
of local minima with relatively small basin of attraction. This
problem comes from the fact that, as the vehicle are running on
the horizontal plane, there is no gravity term in the dynamics.
As the two directions x and y are equivalent,there are a lot of
local minima which do not necessarly satisfy the constraints.
Therefore different initial guesses for the time can lead to very
different trajectories that are not always admissible. Since, a
priori, we have no idea of what the optimal time should be, we
decided to give a better initial trajectory. Instead of taking the
straight line between the initial and final x we compute a 9th

order polynomial which verifies :

P (0) = xi; P
(1)(0) = x

(1)
i ; P

(2)(0) = x
(2)
i ; P

(3)(0) = x
(3)
i ;

P
(4)(0) = x

(4)
i ; P (Tpoly) = xf ; P

(1)(Tpoly) = x
(1)

f ;

P
(2)(Tpoly) = x

(2)

f ; P
(3)(Tpoly) = x

(3)

f ; P
(4)(Tpoly) = x

(4)

f

Where Tpoly is a constant and [0; Tpoly] the domain of
definition of the polynomial. We make the projection of our
polynomial on the B-splines basis. So we have now the
coefficients of x and ~x, as they have the same projection on
the B-splines basis.

5.2 Simulation results

Figure 7 and Figure 8 show the new trajectories computed by
NTG. They satisfy the same constraints as previously. In order
to find the polynomial that is used as initial guess, we have set
Tpoly to 10s. The initial guess for the last coefficient, which
determined the value of the duration of the trajectory has been
also set to 10s. Let us call this initial guess Tntg and the
final value of the coefficient Topt. In fact it is not always as
easy as in this case to find a solution. The different times,
Topt, Tpoly and Tntg are not necessarly equal. Figure 9 and

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

X position

Y
 p

os
iti

on

phi=0, T=9.376460s
phi=pi/3, T=6.676137s
phi=2pi/3, T=8.017962s
phi=pi, T=7.126465s
phi=4pi/3, T=5.785969s
phi=5pi/3, T=7.532198s

Figure 7: Six of the twelve trajectories NTG computes
with minimum time -to go-

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

X position

Y
 p

os
iti

on

phi=0, T=7.311531s
phi=pi/3, T=7.346385s
phi=2pi/3, T=9.560876s
phi=pi, T=7.871747s
phi=4pi/3, T=6.394639s
phi=5pi/3, T=6.630654s

Figure 8: Six of the twelve trajectories NTG computes
with minimum time -return-

Figure 10 show the influence of these parameters on the final
trajectory. In the case of Figure 9 just Tpoly is varying. There
are two sets, one for each value of Tpoly of two curves, one
is the initial guess (magenta and cyan) and the other is the
computed trajectory (respectively red and blue). On this figure
little crosses can also been seen, these are the coefficients that
are actually given to NTG, they can be blue, which means that
at these points the constraints on the forces are verified or red
which means the contrary. What is interesting to notice on this
figure is that the computed trajectory stays very close to the
initial guess, this is an illustration of the important number of
minima in this problem. Figure 10 shows the influence of Tntg.
The trajectories that are in blue are those which satisfy the
constraints, those which are in red do not satisfy the constraints.
The green one is the initial guess. The good value of Tntg
may not be Tpoly since the initial guess may not satisfy the
constraints at all. As previously we notice that whatever the
value of Tntg is the general shape of the computed trajectory is
never far from the shape of the initial guess.

As the vehicle is running on the horizontal plan there is no

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

X position

Y
 p

os
iti

on

T
poly

=4s
T

opt
=8.258s

T
poly

=15s

T
opt

=8.268s

Figure 9: computed trajectories for different values of
Tpoly

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

X position

Y
 p

os
iti

on

1− T
ntg

=5s T
opt

=5.07s
2− T

ntg
=6.4s T

opt
=8.27s

3− T
ntg

=7.8s T
opt

=11.38s
4− T

ntg
=9.2s T

opt
=9.35s

5− T
ntg

=10.6s T
opt

=10.31s

2−

1−

3−

4−

5−

initial guess

Figure 10: computed trajectories for different values of
Tntg

gravity term in his dynamics. Therefore the x and y axis are
equivalent, which explains partially the existence of a lot of
local minima. In order to be sure to converge to a minimum
which satisfies the constraints we could either find a way to
figure out a better initial guess or set the problem differently.
One of the only parameter left to play on is Tpoly , and we
have seen the importance it can have. Experimentally we have
noticed that for Tpoly = 10s NTG was converging to a proper
solution almost every time (cf Figure 11, Topt = �1 means
that NTG has not been able to find a proper solution). This
sounds logical since 10s can be considered as a characteristic
time for the system and the testbed. So a solution could be to
figure out what this characteristic time is for a given situation.
But another one could also be to add a term to the cost function
so that the system is not symmetric anymore. Anyway in both
cases it lacks the capacity of facing changing environments, the
MPC will fill this lack.

0 5 10 15 20 25
−2

0

2

4

6

8

10

T
op

t

T
ntg

Figure 11: Topt = f(Tntg) for Tpoly = 10s

0 5 10 15 20 25
−2

0

2

4

6

8

10

12

14

16

T
ntg

T
op

t

Figure 12: Topt = f(Tntg) for linearly spaced coefficients

5.3 Model Predictive Control

In Model Predictive Control, the current control action is
determined by solving a finite horizon open-loop optimal
control problem on-line ([9] and [10]). Each optimization
yields a control law that is applied to the plant until the
next sampling instant. MPC is traditionally applied to plants
with dynamics slow enough to allow computations between
samples. It is also one of few suitable methods in applications
that can impose constraints on the states and or inputs, as
the constraints are directly enforced in the on-line optimal
control problem. With the advent of faster modern computers,
it has become possible to extend MPC to systems governed
by faster dynamics that warrant this type of solution. An
example of such a system was the Caltech ducted fan, a thrust-
vectored flight control experiment where actuation and spatial
constraints are present[8].

5.3.1 MPC used as a controller

The first controller used to follow a circle was a LQR controller,
as the error system is controllable around zero and is easy to

implement in polar coordinates. Before trying to use the MPC
to go from one circle to an other circle, let us try to use this
technique as a simple controller to follow a circle. Besides
when we will be able to generate a trajectory from one point on
a circle to an other point on another circle, we will only have
to switch controller as we made for the LQR controllers.

Optimization problem Stabilizing the vehicle around a
circular trajectory is equivalent to stabilizing the error of the
state around zero. So we pose the problem as :

min
�Xe

Z t0+T

t0

(�Xe(t)
t
Q �Xe(t))dt+ V (�Xe(T + t0))

Under the constraints :

�X(t0) = �Xt0

where �Xe = �X �
�Xref ,with �X the extended state, �Xref the

extended reference’s state and �Xt0 the real state of the vehicle.

Resolution We solve this problem using the semi-flat
system (3 outputs: x,y and �). For that we use 57 7th B-
splines whith 21 breakpoints. The semi-flat system seems to
be the simplest and fastest way to implement it. The semi-
flat system has simpler expression than the flat one, because
we want quadratic costs (unintegrated and final) to assure the
stability around the circle. Indeed, the error dynamics is C1

and controllable around any equilibrium point, the unintegrated
cost isC1 and convex for bothX and u, and we use a final cost
such that :

8X 6= Xf min
u2Uadm

[_V + q](X;u) < 0

By using the Riccatti solution for the error dynamic, we are
guaranteed to converge([9] and [10]).
With the flat system, we would have 4 nonlinear initial
constraints (�, _�,Fs and Fp) and the two last one are very
difficult to compute. Instead we have only 2 nonlinear
constraints (Fs and Fp), and one nonlinear constraint (the
dynamic constraint) which seems to be easier.
Moreover, the MPC controller is in theory better than the LQR
controller because the MPC controller looks at the future of the
trajctory and tries to minimize the error along the trajectory.
The main advantage of MPC over LQR is that it handles
nonlinear plants and constraints.

5.3.2 Generation and control of nonlinear
trajectories with MPC

The quality of the MPC is not only to be a very good controller.
We can use it as a way to generate a trajectory from one point to
an other one, without adding a controller. A feasible trajectory
is computed from the current position to the desired position
over a finite time horizon T , used for a short period of time
� < T , and then recomputed based on the new position. The
main advantage of this technique is that the system can react
to new situations (presence of an obstacle,movement of this

obstacle, changement of the capacity of a vehicle (a fan can
be dammaged and have a lost of thrust, : : :). However to
be able to use that, we must garantee the convergence of the
algorithm at each computation, and garantee the fastness of the
convergence (How can we face a varying environment if we
need 5s to compute a trajectory ?).

Optimization problem In MPC, the current optimal
control

min
Z1;Z2

Z T+t0

t0

q(Z1(t); Z2(t))dt+ V (Z1(T + t0); Z2(T + t0))

under the constraints:�
Z(t0) = Zt0 initial
8t 2 [t0; T + t0] tc(Z1(t); Z2(t)) = 0 trajectory

No terminal constraint is enforced in this study. In theory, the
resulting control �

T (�) is instantaneously applied until a new
state update occurs, usually at a prespecified sampling interval
of time � seconds. Repeating these computations yields a
feedback control law.

Resolution We solve this problem using flat coordinates
with 26 7th order B-splines and with 31 breakpoints. The
horizon time is T = 12s, and we apply it during � = :5s.
Unfortunately we cannot garantee the convergence of this
technique in a finite time because the system’s dynamics is not
controllable around any equilibrium point.
Moreover, if the algorithm does not converge to an optimal
solution (it can find a local minima, or no admissible solution),
we stay on the previous trajectory.

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

8

Time (s)

X
 P

os
iti

on
 (

m
)

Figure 13: evolution of x with the MPC method

Simulation Results Figure 13, Figure 14 and Figure 15
represent all the results of the computations (a new color
represents a new computation). One important thing to notice
is the continuity of x and the discontinuity of F p. These come
from the initial constraint we impose. We only impose the new
trajectory to have the same position (x and y) and the same

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time (s)

F
p(

 N
)

Figure 14: evolution of Fp with the MPC method

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

trajectory

X position

Y
 p

os
iti

on

Figure 15: evolution of trajectories with the MPC method

velocity (_x and _y) as the previous one after �. This allow the
vehicle to have a smooth trajectory, but this does not guarantee
the continuity of the forces. That is why we want to recompute
it as often as we can in order to have admissible jumps on the
forces. Besides we can see on Figure 16 (each arrow represents
the position where we begin of a new computation) that we do
not converge on the circle. Even if we try a longer simulation
time, we will not go to the circle, but we will get closer. As we
keep the same time horizon, the problem is that there are two
many solutions for the problem and we are only sure that we
get closer to the circle. We have the asymptotic convergence
of the vehicle. As we showed previously that we have a robust
controller to track a circle, the idea is to switch the two MPC
as soon as we are close enough to the circle.
With this method, we are sure that we will get closer and
closer to the circle, but we have no guarantee of the fastness
of the convergence. We would have better results if we had
a very small time horizon T (2s for example), so that even
if the vehicle is close the optimization problem still makes
sense. A way to solve this problem can be to have a varying
time horizon. Thanks to the optimal principle,we know that
if we have a solution for a time horizon T, by following this

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

real trajectory

X position

Y
 p

os
iti

on

Figure 16: trajectory of the vehicle with the MPC method

trajectory during �s, we will have a solution for the new
problem with a time horizon T1 = T � � which will be the
same trajectory on [�; T]. As we are fixing the time horizon,
we do not take the distance we must do into account. It
seems more logical to have a time horizon proportionnal to to
distance to the final point.

6 Conclusion and Future work

The contents of this report summarize the evolution of the
trajectory generation on one vehicle. Due to the nonlinear
controllability, we realized in Section 3 trajectories from
one circle to an other circle. We implemented this type of
trajectories in Section 4 but for each trajectory, we need to
fix by hand a parameter which needs to be solved by an
other formulation of the problem. Moreover we can not face
a varying environment. Section 5 exposes how we tried to
solve this problem. We first tried to implement minimum time
trajectories in order not to have to fix the time’s parameter,
and then Model Predictive Control to be able to face a varying
environment.
Distributed systems that are dynamic, particulary multi-
vehicle coordination problems, are becoming more important
in engineering applications. Many of these systems are
governd by constraints, e.g. network band-width, control input
saturation, and spatial limitations on the state of the system.
The MPC theory is very attractive, thanks to improvements
of computing power, and seems to be a bright way to face a
varying space. The Caltech Ducted Fan showed us that it is
possible to recompute trajectories on-line for a dynamical fast
system. A part of the challenge of the MVWT project is the
extention of this success to a nonlinearly controllable system.
The future of the project seems clear. It is the most natural
to continue the research on both themes that are minimum
time and MPC. Future work on minimum time will consist in
still searching to understand the problem of the situation. The
problem is to know precisely the influence of each B-spline’s
coefficients on the trajectory and to have a better numerical

conditionment for the problem. This will answer the question:
”Do we have to break the symmetry by using a final cost?”.
Future work on MPC consists in finding a good final cost for
the optimization problem in order to be able to have the fastest
solution we can. This will be linked to an improvement on
the theory on Model Predictive Control when the system is not
linearly controllable.

References

[1] L. Cremean and al. The Caltech multi-vehicle wireless
testbed. In Submitted: 2002 Conference on Decision and
Control, Las Vegas, NV, 2002

[2] M. Fliess, J. Lévine, P. Martin, and P. Rouchon. Flatness
and defect of non-linear systems: introductory theory and
examples. International Journal of Control, 61(6):1327-
1360, 1995.

[3] M. Fliess, J. Lévine, P. Martin, and P. Rouchon. A
Lie-Backlund approach to equivalence and flatness of
nonlinear systems.IEEE Trans. Auto. Cont., 44(5), 928-
937.

[4] Mark B. Milam, Kudah Mushambi, and
Richard M. Murray. A computational approach to real-
time trajectory generation for constrained mechanical
systems. In Proceedings of the 2000 Conference on
Decision and Control, Sydney, Australia, 2000.

[5] Nicolas Petit, Mark B. Milam, Richard M. Murray.
Inversion based constrained trajectory optimization.
IFAC Symposium on Nonlinear Control Systems Design,
(NOLCOS),2001.

[6] E. Klavins and U. Saranli. Object orient state machines.
Embedded Systems Programming Magazine, 2002. In
Press.

[7] U. Saranli, M. Buehler, and D. E. Koditschek. RHex:
A simple and highly mobile hexapod robot. The
International Journal of robotics Research, 20(7):616-
631, July 2001.

[8] Ryan Franz, Mark B. Milam and John Hauser. Applied
receding horizon control of the Caltech ducted fan.

[9] William B. Dunbar, Mark B. Milam, Ryan Franz, and
Richard M. Murray. Model predictive control of a thrust-
vectored flight control experiment. In 2002 IFAC World
Congress, Barcelona, Spain, 2002.

[10] William B. Dunbar and Richard M. Murray.
Model predictive control of coordinated multi-
vehicleformations. In 2002 Conference on Decision
and Control, Las Vegas, NV, 2002.

	Session Index
	Author Index

