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tems, invariant sets We consider robust receding horizon control based on fexdba

min-max model predictive control [7] for piecewise linegess
Abstract tems as extending the class of system. However since in [7]
. . . ) _the system is restricted to linear time invariant disctete
This paper considers an approximate robust receding hD”Zs?/stems the control can not deal with hybrid systems djrect
control algorithm for a class of hybrid systems by explcgjtinan a m,ethod to construct the end set constraint is not given
the equivalence between piecewise linear systems and mié fly. Then we proposed the robust receding horizon con-

logical dynlamu(:jal sysr;[_err?s. The cont;ol g:)gorlfhm gonmits trol for piecewise linear systems using the constrainttpasy
two.contro. modes which are a state fee ack mode ana a;fRe iant sets [9]. However, its on-line computation is deak-
ceding horizon control mode. In the receding horizon cdntr;

de. th ined itively i . H 91g because of integer variables. Further, if we obtain the e
mode, the constrained positively invariant sets are uselleas ; ; representation of the solution as piecewise lineaction

end set constraint and the control law is obtained as anauxplf e implementation of the algorithm is still computatidgiale-
form off-line. To reduce the computations we propose an fanding

gorithm that will determine the approximate solution byngsi

orthogonal partitioning. In this paper, we propose a min-max approach for calculation
of the min-max solution which moves the implementation off-
line. Further, an approximate robust receding horizonrobnt
algorithm for piecewise linear systems is considered. We co

In recent years, model predictive control (receding harizétruct the algorithm by two control modes: the state feedkbac
control) has attracted the attention of researchers [1Jm-Bemode for keeping the state in a set and the receding horizon
porad et al. have proposed the explicit controller for raugd control mode for steering the state to the set. In the control
horizon control problems to reduce the computational corlgorithm we employ the equivalence [10] of the piecewise li
plexity of on-line optimization [2]. This result is a break-ear system form and the mixed logical dynamical (MLD) sys-
through in the research of receding horizon control. Thegentem form [11] to extend the system form. In receding horizon
alization of the problem is reported [3, 4] and the sub-optimcontrol mode we construct the end set constraint by using the
problem is developed [5]. Further it is well known that, i thintersection of the constrained positively invariant $&2s 13].
practical applications, the control law is required to guaee This control algorithm guarantees convergence to the uifion
that the closed-loop system fulfills constraints. The rahess the constrained positively invariant sets and satisfyfregdon-

is important since when disturbances or model mismatch &taints in spite of existence of disturbance. Further wpleyn
present closed-loop performance can be poor with likeljavio the min-max approach for the control algorithm to reduce the
tions of the constraints and no convergence can be guacant®8-line computation. We use the algorithm using vertices of
For the issue the terminal penalty and constraints play impéhe polyhedron for calculating the optimal input sequenue a
tant role [6]. In [7] feedback min-max model predictive amht the worst disturbance and present the necessary and suffficie
for linear time invariant discrete-time systems is propbaed condition for the relation between the min-max solution and
the control algorithm which guarantees a convergence timthe Vertices of the polyhedron. By the algorithm we can obtaén th
variant set with no constraint violation. On the other hand, OPtimal input sequence as the piecewise affine form with re-
brid systems arise in a large number of application areas, &Pect to the state. Exploiting approximate algorithm [14] w
are attracting increasing attention. The hybrid systerméa Propose a partitioning algorithm for an approximate sotutb
work allows to model a broad class of systems arising maf§duce the complexity in terms of less regions.

applications and to address the cooperative control pnuble

and reconfigure problems [8]. It is known that a class of hybri

1 Introduction



2 Preliminary control. Consider the control input= K,z for the system (1)

) ) . . . then the system can be rewritten as
2.1 Piecewise Linear Systems with Disturbance

In this paper, piecewise linear systems with disturbaneelar ot +1) = (Ai + BiKi)a(t) + Buw(t) (7)
scribed by the following equation, Ye(t) = (C + DK)x(t) + Dyw(t). 8

2(t+1) = A;z(t) + Bau(t) + Bow(t) forz(t) € X; (1) For each closed-loop system, we define a state constraint set

wherez(t) € R™ is the statex(t) € R™ is the input,X; is the Definition 1 [12, 13] State constraint set X((C +
partition of the state set which satisfi#nNx; = D andVi # j, DK;), D,,Y, W) is defined by

Ui_, X; = X and we assume thétl,, B;) is controllable. The

vectorw(t) € W c R! is an unknown bounded disturbance ~ X; = {z|(C + DK;)z + Dyw € Y,Vw € W}. 9)
and the setW is convex and contains the origin. In addition

the system is subject to constraints on either or both thessteRemark 1 Necessary and sufficient conditign(t) € Y for
and the control inputs i.ex(t) € X, u(t) € U, vVt € N. We possible disturbance(t) € Wis z(t) € X;.

assumeX andU are convex polyhedral. Consider the output to

be constrained Definition 2 [12, 13] O; C R™ contains origin in its interior.

_ O; is a constrained positively invariant set, if it is a posétiy
t) = Cx(t) + Du(t) + Dyjw(t). 2) M - ) .
be(?) ®) ®) ®) @ invariant set and is contained i; ((C' + DK;), Dy, Y, W).

By an appropriate choice of matrX, D and a setY, all con-

straints mentioned can be summarized by If a constrained positively invariant set exists, for anitiah
statez(0) € O; andw(t) € W, thenz(t) € O; forall t € Z+,
ye(t) € Y. ®) whereZ™ denotes the set of nonnegative integer.

Assume that the séf is convex and contains the origin. o ) _ N ) ) )
Definition 3 Maximal constrained positively invariant set is

2.2 The Mixed Logical Dynamical Form of Piecewise Lin- defined as follows

ear Systems Osoi = {2(0)|ye(t|z(0),w) € Y,Vt € Z,Yw € W}. (10)

Here the mixed logical dynamical form [11] which is equiv-
alent to piecewise linear systems is introduced. Constuer Maximal constrained positively invariant séX,,; can be ob-
following general piecewise linear system tained by recursive process proposed in [12, 13]. Next we de-
fine a set which is used for an end set constraint of receding
z(t+1) = A;x(t) + Biu(t) forz(t) € X;  (4) horizon control as
y(t) C’Lz(t) + Dlu(t) (5) P .— m,?:lOOOi. (11)

wherez(t) € R™ is the staten(t) € R™ is the input,X; is a
partition of the state set which satisfi#nX; = D and¥i # j, 3 Robust Receding Horizon Control Problem
Ui_, X; = X and we assume thé#l;, B;) is controllable.

The piecewise linear system (1) can be transformed mixed I(%sg1 Robust Receding Horizon Control Law

ical dynamical system formulation. The mixed logical dyransince the state can not be steered to the origin due to eistin
ical system [11] form is disturbancew(t), the control objective is to drive the state of

the system to the set which is constructed by invariant $ets.
w(t+1)=Az(t) + Buu(t) + BA(t) + By (t) + Byw(t)  (68) g paper, we propose 2 modes for the control law.

mode 1 The control law is the form, = K.

where?: € R is the Stf‘te of the syrstem € R™ is the COM- ' mode 2 Attimet, predictions for possible disturbance are rep-
ma’?‘,’ |nput.§ € {0,1}" qndz €R represent reSpeCtIVEIyresented by w,}, and{u:4« } denotes the input sequence for
auxiliary logical and continuous variables. Assume that SYthe disturbance realization. For the sake of simplicity e
tem (6) is completely well-posed [11], which in words meanxswk‘t = a(t + k,z(t) k=1 wkq) and {z 410} {Orsie)
that for allx, u, w within a bounded set the variablész are 5o’ Gimiiarly defined regp(Ject{ve?y.
uniquely determined.

The prediction for state, , |, is defined as follows

2.3 Constrained Positively Invariant Set
y Tiph1)t = ATipr)e + Brugpr + Balppe+

The constrained positively invariant set [12, 13] is expéai B3zt + Bpweyk (12a)
in order to use it for an end set constraint of receding horizo Esdy ¢ + E3ziqp)e < Eiugpr + Eqzppg + B (12b)



At current timet, let z(¢) be the current state. Consider thevherep. denotes the continuous component§©GfV, A, Z)

following min-max problem, andp, denotes discrete ones and the vegtarpresents a com-
ponent ofiV.
minmax J(U, W, A, Z, x(t)) (13) _ " :
u w By relaxing the conditions for the discrete compongptas
i < <1 in- i
subject to { t(r;j e(r%()j set constraint (14) 0 < pg < 1, the min-max problem (21) can be rewritten as

J* =minmax J(p,q) st. (p,q) €S’ (22)
P g

J(U7VV7AJ’\E>1$(75)) = [|Prig Nyt oot Jpq) = [fT fF] BZ] +g7q
Z {1Q1 4kt lloo + | Ruty k]|t = [fp+g'q (23)
T Qutiile +lsile} @9 S = {wa):n R[] v cos fa <o)
where a notation||v||» denotes|v|| = max;|v;| for = A9 Fp+Ga < Ha(t) +17}, (24)
L el andU s Qb V7 wneref = (41 g1 1vi= ) = (R F)
{z4)t> -+ ze4n—1)t )+ N is predictive horizon and® € R"*",

Q1 € RY™™, R € Rmetmxmetmi (), ¢ RIXT, Qg € 3.2 The control algorithm

oxre . N i i _ . . . .
R are nonsingular weighting matrices respectively. A robust receding horizon control algorithm for the piecssvi

The formulation (13), (14) can be written as a mixed integéinear systems (1) with disturbaneg(t) € W is presented as
linear programming by using following approach. First we irfollows. Suppose:; denotes the first element of optimal input

troduce a vectol sequence for the optimization problem (22).
s Algorithm 1:
{607" 8N5507'-~7€N—17 Data:x(t)
€ree s SN e} (16) Algorithm: IFz(t) e P

wheree satisfies the following inequalities THEN (mode l)ug ) = Kix(t).

ELSE (mode 2)(t) = ;.
_EN]‘ < ith+N‘t; Ek]‘ < in.’L‘t+k|t
—efly < Ry, —edly, < £Qa20;4k:  (17) Theorem 1 Suppose thaty = 0 Va(k) € Ui Ouci, u(k) =

—eily, < £Q324 4k K;z(k). Then the control law given by Algorithm 1 satisfies
the constraints (3) and drives the statét) to the union of
1 is a column vector of ones of length, i.e. 1, := constrained positively invariant set§_, O.;.
[11,...,1]7 € R*. Then the vectol represents an upper

bound onJ(U, W, A, Z, (1)) as Proof: At time ¢ state z(¢), let V7 =

N J(U, Af, ZF, VWi, z(t)) denotes the optimal cost
JUW,A, Z,V,x(t ZE + Z (e + el +¢7). (18) Which responds to the optimal input sequentgs A;, Z,
=0 =0 ;V and the disturbance sequendg®. At time ¢, the first
element of the optimal sequence is applied, and disturbance

Concluding, the min-max problem (13), (14) can be denoted @&es a certain value(t).

) - At time ¢ + 1, consider an input sequencE.;; =
mpnmax JUW,A,Z,V,x(t)) (19) {ues1, upq2, -+ un—1, Kizy vy} in which the last element
might not be optimal. If the input sequentl,; is used we
obtain the following inequality.
Ty = () -
St TN €P (20) Vitr < J(Upr, Al Zia, Vi, Wi, et +1)) - (25)

(3), (12), (17) : . : .
The right hand side of inequality (25) leads
By plugging (12) into (19) and (20), and by defining the ma-

tricesG, S, F respectively the min-max problem (19) and (20)
can be rewritten in the more simple form

rhs =V — (8 + ey +el+ed) + ek (26)

At time stepN + 1 we will obtainz € P because of the ter-
min max j(pc,pd,q) s.t. (pesparq) €S minal constraintc;, yy1 € P Then the input must be(k) =
Pespa 4 Kixyy nj¢41 from the Algorithm 1. We leadsy,, ; = 0, and
J(pespaq) = fe e + fipa+9"a , 5

S = {(Pe» pa> q) : Fepe + Fapa + Gq < Hx(t) + r)(21) Vip S Vi — (g5 + &6 + €5+ €0)- (27)



Because: > 0, the cost is monotonically nonincreasing. As ithe stater(t) and the verteXp, ¢) are satisfy
is bounded below by zero, it must consequently converge to a
constant value, so thaf* — V%, — 0 ast — oo. Then we {p} = (z(t))
have q

5 G(a(t) = (VA Va) VA (Hax(t) +7a).  (33)

gg+eg +egt+eg V-V, (28)

Proof: When(p, q) is a vertex of the polyhedroR, the matrix
V4 is full rank. HenceV IV, is nonsingular and we obtain
the equation (33). By substituting the equation (33) int® th
uation (31) the region (32) is obtained. O

This leadssg + ¢f + &) + ¢ — 0, ¢ — oo. Hence by the defi-
nitions ofe the state converges @ which includes the origin.
Further when the state in the sBt the control law changes
tou = K;x. Consequently the control algorithm satisfies thed
constraints and drives the state.if. ; O; and in the control al- By theorem 2 the vertices &' are piecewise affine with re-
gorithmt the constraints is satisfied since the two contimiies spect to the state(t) and the objective functiod for the ver-
guarantee the constraints satisfaction. O  tex(p,q) can be denoted as

Theorem 1 guarantees that the state of the system can bedsteer j*(x(t)) — [fT gT] D(z(t)). (34)
to the setU?_, O; with no constraint violation in spite of ex-

istence of disturbance. The s8t.; is depend on the design of j« js ais0 piecewise affine with respect to the stetd. From

feedback gairk;, X andU and we can design the galty. The  hese properties the following theorem can be obtained.
control mode 1 is mode for keeping the state in the/3eind

mode 2 is mode for steering the state to the7/@etHowever, . .
. . . . . Theorem 3 Let (p1, ¢1) be the min-max solution for the state
the computation of the algorithm is demanding since mode . ; .

t) in the set of vertices of the polyhedr6hand (p;, ¢;),i =

Ives the min-max optimization problem h tim .t .
solves the ax optimization problem each time steps 2,3,...,s denote other vertices. And lep;,q;),i =

. . i 2,3,...,k be the vertices which have intersecting poiptéor
3.3 Piecewise Affine Controller the sefll,(S’) and D(z(t)), ¥(z(t)) and J obtained by theo-

Here we consider the off-line computation of (21) to redume t rem 2 are denoted with appropriate subscripts.

on line computation. We can obtain the min-max solution byhen the conditions for the vector
calculating the vertices because the min-max problem @1) i
linear [16]. The sequence is summarized algorithm 2. [m] = 1 (2(1)) (35)

Algorithm 2: n

being the min-max solution for problem (21) are
1) Obtain vertices of the polyhedra®f [17].

necessary condition)z(¢) € D t
2) By the vertices obtained 1), define the verti¢ps ¢;), i = ( y (1) 1@ ()

1,2,...,1 which satisfy (sufficient condition)
;= inJ(p,q), st.(p,q)edS. 29 k 7 a
pi = argmin J(p, q), st.(p,g:) € ( )x(t) . (ﬂDi(x(t))> m{ 2(t) : Jl(ac(ti):>2 z(x(t))ki }
i=1 Yy

3) The vertex which maximizd is a min-max solution.

Proof: Necessary condition: Active constraints must be invari-
Theorem 2 Let the vectofp, q) be one of a vertex of the poly-ant when the min-max solutiofp,, ¢:) is given by the equa-
hedrons’ for z(t). For the vertex(p, q) let Fy, Ga, Ha, v, UON (35). Hence by the theorem 2 the necessary condition is

represent the matrices corresponding to active constsgint oPtained. - _ .
denotes inactive constraints) Sufficient condition: If the vertexp:, ¢;) is the min-max so-

lution, then the object/; must be larger than other objects

p| for other verticeqp;, ¢i), i = 2,3,...,k. Hence the vertices
[Fa Gal {q] = Haz(t) + 74 (30) (pi, ¢;) is represented by equation (33), ahd> J;. O
[Fxy Gy] {p} < Hyz(t) + 7y (31) By theorem 3 the linear min-max solutidp, q) is piecewise
q] affine with respect to the statgt). Once we obtain the min-
) . max solution for the state(¢) the min-max solution for other
And matricesV, and Vy are defined ad/y := [Fa Gal,

Ry O state can be obtained by using the equation (35). Hence the
Vv =[Fy Gnl. min-max problem can be solved for each state by using theo-
Then in the regiorD(z) rem 2. The min-max model predictive control lamt) is the

component of)(z(t)) which corresponds to;
D(l) _ {(E(t) : {VN(VEVA)_”/}HA — HN}.’E(t) } 32)

<rn —VN(VIVA)"Wiry wt)=[0 --- 010 --- 0]Y(x(t)). (36)



Hence when we implement the control mode 2, only a piec8enstraint Violation : Here we consider violation of the con-
wise affine function needs to be evaluated at each time stsfaints by using the approximate solution. In the min-max

Hence algorithm 1 can be modified as follows. problem the constraints is represented as

Algorithm 1’ : p

Data: z(t) [F G] [q} < Hz+r. (44)
Algorithm: IF ()

ePp
THEN (mode 1)u(t) = K;z(t).
ELSE (mode 2u(t) =[0 --- 0 I 0 --- 0]¥(x(t)).

The Algorithm 1’ can be implemented using the pre-computed 6(z) = D([FF Glz(z) — Hz — 1) (45)
off-line explicit solution(z(¢)) and real time optimization
can be avoided. However implementation of the Algorithm
may still require a significant amount of computations.

The vectord(z) is defined by

where D is a diagonal scaling matrix with positive elements.
The maximum violation of each constraint within a polyhedro
Xy is computed by solving the following LP:

3.4 Approximate Algorithm 5; = fé%(xo 5;(x), j=1,2...,q. (46)
In this section, we consider an approximate algorithm fodeno

2 control law by exploiting the approximate algorithm [14]. |, rger to reduce the computation we consider orthogonal pa

Error bounds: When constructing approximate min-max sotitioning (Figure 1). This partitioning method is porposed
lutions it is necessary to compute the approximation effoe  [14]. We construct approximate solutiap(x) in polyhedron
approximate solutiory(z) = [pd ¢¢]” is defined on an arbi- X C R™. First the algorithm will consider the whole region

trary polyhedronX, ¢ R™ and the corresponding cost is given
by

Jo= fTpo+ 9" qo. (37)
We will compute bounds on the errdt — J,. Ei
Let the polyhedronX, be represented by its vertices =

{v1,v2,...,va }. Define the linear functiod (x) = Loz + Io e H jﬁ

as the solution to the following LP: | |

min (Eov + Zo) Figure 1: Partition of a rectangular region in a 2-dimenalon

Lo,lo
- - " .
st Lovi+ 1o > J(v), Yie{l,2,...,M}. (38) sate space

Similarly, define the linear function X, = X. The algorithm computes min-max solutions of the
J(z) = j*(v) + vTj*(U)(I — ) = Loz + 1, (39) problrem (22) at the™ verteces of the hypercub,.

wherev € X is arbitrary. For the linear functions, J we 2)(x) = Kz + g) (47)
obtain the following theorem. i _
Then construct the approximate solution as

Theorem 4 For all x € X, the following inequalities hold

2n 2m
_ I 1 0 1 0
1(2) < T (2) < J(@). (40) fol@) =5 X Klet 3> gl (48)
i=1 =1
Proof: The upper bound is obtained from the constaint in LBsing the mesurementsandd; the partitioning algorithm is
(38). The lower bound is derived as follows obtained.
J () > J*(v) + VT J*(0)(x — v) (41) Algorithm 3 (Partitioning Algorithm):

. ’\* .
sinceJ" Is convex.tl 1) Initialize the partition to the whole hypercube, i.& =

It follows thate; < J* — Jy < £ Where {X}. Mark the hypercub& as unexplored.
€9 = mé)m(x(j —Jo), &1 = mz}m{x(jo —J). (42) 2) Select any unexplored hypercub® € X. If no such hy-
z€Xp reXo

percube exists, terminate with the partitiah

Then we introduce an valueas the error bound. ) .
3) Compute the solution to the problem (21) at fevertices

e = max(—ey,e3) (43) of the hypercubeX,.



4) From the min-max solutions at the vertices of the hyper{5] T. A. Johansen, |. Petersen and O. Slupphaug, “On Ex-
cube, compute a state feedback as an approximate solution plicit Suboptimal LQR with State and Input Constraints, ”
for the regionX. Proc. of the 39th IEEE Conference on Decision and Con-

trol, pp. 662—-667, 2000.
5) Determine if the hypercube needs to be split in order to re- PP

duce the approximate error bounar the constraint vio- [6] A. Bemporad and M. Morari, “Robust Model Predic-

lations bound. If ¢ < £, § < ¢ holds then go to step 6. tive Control: A Survey,’Robustness in Identification and

Otherwise, markX, explored and to step 2. Control, A. Garulli, A. Tesi and A. Vicino (Eds.), Lecture
6) Split the hypercubeX, 2" cubes X;, X, ..., Xy ?8?_52'2%Cé’;‘fﬁ?é?ﬂie'ﬂ;";”l"";g‘;” Sciences, vol. 245, pp.

Mark them all unexplored, remov&, form X, add ’ ’ ’

X1, X2, ..., Xon to X and go to step 2. [7] P. O. M. Scokaert and D. Q. Mayne, “Min-Max Feed-

back Model Predictive Control for Constrained Linear
The Algorithm 3 will not terminate before the cost and con-  Systems,1EEE Transactions on Automatic Contyaol.
straint errors respect their bounds in all hypercubes gbéng- 43, no. 8, pp. 1136-1142, 1998.
tion. In the Algorithm 3D > 0, € andé > 0 can be considered
as design parameters. For the min-max problem (22) the partf] J. Bellingham, A.Richards and J. How, “Receding Hori-

tioning algorithm terminates after a finite number of stejithw zon of Autonomous Aerial VehiclesProc. of the 2002
an approximate solutiofy, and associate cogj that satisfies American Control Conferencep. 3741-3746, 2002.
5 o _ [9] M. Mukai, T. Azuma and M. Fujita, “Robust Receding
- <
EZE Jo—JH <€ (49) Horizon Control for Piecewise Linear Systems based on
q . o Constraint Positively Invariant SetsProc. of the 2002
and constraints satisfying American Control Conferen¢cep. 2348-2353, 2002.
sup D([F" G]éo(2) — Hz — 1) < 0. (50) [10] W. P. M. H. Heemels, B. De Schutter, and A. Bemporad,

zeX
“Equivalence of Hybrid Dynamical ModelsRutomatica

4 Conclusion vol. 37, no. 7, pp. 1085-1091, 2001.

A. Bemporad and M. Morari, “Control of Systems Inte-

grating Logic, Dynamics, and Constraint&utomatica
vol. 35, no. 3, pp. 407-427, 1999.

In this paper, we propose an approximate robust recedirig h(gjrl]
zon control algorithm for piecewise linear systems affddig
additive bounded disturbances. It has two control modesdas

on feedback min-max model predictive control, in the recefro1 Kk Hirata and M. Fujita, “Control of Systems with State
ing horizon control mode we employ the equivalence of piece- ~ ang Control Constraints via Controller Switching Strat-

wise linear systems and MLD systems and propose the end egy.” Workshop on Systems with time-domain constraints
set constraint which consists of constrained positivelsiin Eindhoven. the Netherlands. 2000.

ant sets. To reduce computations we propose an algorithm tha

will determine the approximate solution by using orthodonfl3] I. Kolmanovsky and E. G. Gilbert, “Maximal Output
partitioning. Admissible Sets for Discrete-Time Systems with Distur-
bance Inputs,” IfProceedings of the 1995 American Con-
trol Conferencepp. 1995-2000, 1995.
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