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Abstract

This paper considers an approximate robust receding horizon
control algorithm for a class of hybrid systems by exploiting
the equivalence between piecewise linear systems and mixed
logical dynamical systems. The control algorithm consistsof
two control modes which are a state feedback mode and a re-
ceding horizon control mode. In the receding horizon control
mode, the constrained positively invariant sets are used asthe
end set constraint and the control law is obtained as an explicit
form off-line. To reduce the computations we propose an al-
gorithm that will determine the approximate solution by using
orthogonal partitioning.

1 Introduction

In recent years, model predictive control (receding horizon
control) has attracted the attention of researchers [1]. Bem-
porad et al. have proposed the explicit controller for receding
horizon control problems to reduce the computational com-
plexity of on-line optimization [2]. This result is a break-
through in the research of receding horizon control. The gener-
alization of the problem is reported [3, 4] and the sub-optimal
problem is developed [5]. Further it is well known that, in the
practical applications, the control law is required to guarantee
that the closed-loop system fulfills constraints. The robustness
is important since when disturbances or model mismatch are
present closed-loop performance can be poor with likely viola-
tions of the constraints and no convergence can be guaranteed.
For the issue the terminal penalty and constraints play impor-
tant role [6]. In [7] feedback min-max model predictive control
for linear time invariant discrete-time systems is proposed and
the control algorithm which guarantees a convergence to thein-
variant set with no constraint violation. On the other hand,hy-
brid systems arise in a large number of application areas, and
are attracting increasing attention. The hybrid system frame-
work allows to model a broad class of systems arising many
applications and to address the cooperative control problems
and reconfigure problems [8]. It is known that a class of hybrid

models can be described by the piecewise linear systems.

We consider robust receding horizon control based on feedback
min-max model predictive control [7] for piecewise linear sys-
tems as extending the class of system. However since in [7]
the system is restricted to linear time invariant discrete-time
systems, the control can not deal with hybrid systems directly
and a method to construct the end set constraint is not given
clearly. Then we proposed the robust receding horizon con-
trol for piecewise linear systems using the constraint positively
invariant sets [9]. However, its on-line computation is demand-
ing because of integer variables. Further, if we obtain the ex-
plicit representation of the solution as piecewise linear function
the implementation of the algorithm is still computationally de-
manding.

In this paper, we propose a min-max approach for calculation
of the min-max solution which moves the implementation off-
line. Further, an approximate robust receding horizon control
algorithm for piecewise linear systems is considered. We con-
struct the algorithm by two control modes: the state feed back
mode for keeping the state in a set and the receding horizon
control mode for steering the state to the set. In the control
algorithm we employ the equivalence [10] of the piecewise lin-
ear system form and the mixed logical dynamical (MLD) sys-
tem form [11] to extend the system form. In receding horizon
control mode we construct the end set constraint by using the
intersection of the constrained positively invariant sets[12, 13].
This control algorithm guarantees convergence to the unionof
the constrained positively invariant sets and satisfying the con-
straints in spite of existence of disturbance. Further we employ
the min-max approach for the control algorithm to reduce the
on-line computation. We use the algorithm using vertices of
the polyhedron for calculating the optimal input sequence and
the worst disturbance and present the necessary and sufficient
condition for the relation between the min-max solution and
vertices of the polyhedron. By the algorithm we can obtain the
optimal input sequence as the piecewise affine form with re-
spect to the state. Exploiting approximate algorithm [14] we
propose a partitioning algorithm for an approximate solution to
reduce the complexity in terms of less regions.



2 Preliminary

2.1 Piecewise Linear Systems with Disturbance

In this paper, piecewise linear systems with disturbance are de-
scribed by the following equation,

x(t+1)=Aix(t) +Biu(t)+Bww(t) for x(t) ∈ Xi (1)

wherex(t) ∈ R
n is the state,u(t) ∈ R

m is the input,Xi is the
partition of the state set which satisfiesXi∩Xj = ∅ and∀i 6= j,
∪s

i=1Xi = X and we assume that(Ai, Bi) is controllable. The
vectorw(t) ∈ W ⊂ R

l is an unknown bounded disturbance
and the setW is convex and contains the origin. In addition
the system is subject to constraints on either or both the states
and the control inputs i.e.x(t) ∈ X, u(t) ∈ U, ∀t ∈ N. We
assumeX andU are convex polyhedral. Consider the output to
be constrained

yc(t) = Cx(t) +Du(t) +Dww(t). (2)

By an appropriate choice of matrixC, D and a setY, all con-
straints mentioned can be summarized by

yc(t) ∈ Y. (3)

Assume that the setY is convex and contains the origin.

2.2 The Mixed Logical Dynamical Form of Piecewise Lin-
ear Systems

Here the mixed logical dynamical form [11] which is equiv-
alent to piecewise linear systems is introduced. Consider the
following general piecewise linear system

x(t+ 1) = Aix(t) +Biu(t) for x(t) ∈ Xi (4)

y(t) = Cix(t) +Diu(t) (5)

wherex(t) ∈ R
n is the state,u(t) ∈ R

m is the input,Xi is a
partition of the state set which satisfiesXi∩Xj = ∅ and∀i 6= j,
∪s

i=1Xi = X and we assume that(Ai, Bi) is controllable.

The piecewise linear system (1) can be transformed mixed log-
ical dynamical system formulation. The mixed logical dynam-
ical system [11] form is

x(t+1)=Ax(t)+B1u(t)+B2δ(t)+B3z(t)+Bpw(t) (6a)

E2δ(t)+E3z(t) ≤ E1u(t)+E4x(t)+E5. (6b)

wherex ∈ R
n is the state of the systemu ∈ R

m is the com-
mand input.δ ∈ {0, 1}rl andz ∈ R

rc represent respectively
auxiliary logical and continuous variables. Assume that sys-
tem (6) is completely well-posed [11], which in words means
that for allx, u, w within a bounded set the variablesδ, z are
uniquely determined.

2.3 Constrained Positively Invariant Set

The constrained positively invariant set [12, 13] is explained
in order to use it for an end set constraint of receding horizon

control. Consider the control inputu = Kix for the system (1)
then the system can be rewritten as

x(t+ 1) = (Ai +BiKi)x(t) +Bww(t) (7)

yc(t) = (C +DKi)x(t) +Dww(t). (8)

For each closed-loop system, we define a state constraint set.

Definition 1 [12, 13] State constraint setX((C +
DKi),Dw,Y,W) is defined by

Xi = {x|(C +DKi)x+Dww ∈ Y,∀w ∈ W}. (9)

Remark 1 Necessary and sufficient conditionyc(t) ∈ Y for
possible disturbancew(t) ∈ W is x(t) ∈ Xi.

Definition 2 [12, 13] Oi ⊂ R
n contains origin in its interior.

Oi is a constrained positively invariant set, if it is a positively
invariant set and is contained inXi((C +DKi),Dw,Y,W).

If a constrained positively invariant set exists, for any initial
statex(0) ∈ Oi andw(t) ∈ W, thenx(t) ∈ Oi for all t ∈ Z

+,
whereZ

+ denotes the set of nonnegative integer.

Definition 3 Maximal constrained positively invariant set is
defined as follows

O∞i = {x(0)|yc(t|x(0), w) ∈ Y,∀t ∈ Z
+,∀w ∈ W}. (10)

Maximal constrained positively invariant setO∞i can be ob-
tained by recursive process proposed in [12, 13]. Next we de-
fine a set which is used for an end set constraint of receding
horizon control as

P := ∩s
i=1O∞i. (11)

3 Robust Receding Horizon Control Problem

3.1 Robust Receding Horizon Control Law

Since the state can not be steered to the origin due to existing
disturbancew(t), the control objective is to drive the state of
the system to the set which is constructed by invariant sets.In
this paper, we propose 2 modes for the control law.

mode 1: The control law is the formu = Kix.

mode 2: At time t, predictions for possible disturbance are rep-
resented by{wt+k}, and{ut+k} denotes the input sequence for
the disturbance realization. For the sake of simplicity we define
xt+k|t := x(t + k, x(t), uk−1

0 , wk−1

0 ) and{zt+k|t}, {δt+k|t}
are similarly defined respectively.

The prediction for statext+k|t is defined as follows

xt+k+1|t = Axt+k|t +B1ut+k +B2δt+k|t+
B3zt+k|t +Bpwt+k (12a)

E2δt+k|t + E3zt+k|t ≤ E1ut+k + E4xt+k|t + E5 (12b)



At current timet, let x(t) be the current state. Consider the
following min-max problem,

min
U

max
W

J(U,W,∆, Z, x(t)) (13)

subject to

{

the end set constraint
(3), (6)

(14)

J(U,W,∆, Z, x(t)) := ‖Pxt+N |t‖∞+
N−1
∑

k=0

{

‖Q1xt+k|t‖∞ + ‖Rut+k‖∞+

‖Q2δt+k|t‖∞ + ‖Q3zt+k|t‖∞
}

(15)

where a notation‖v‖∞ denotes ‖v‖ = maxi |vi| for
v = [v1, v2, · · · , vl]

T andU := {ut, . . . , ut+N−1}, W :=
{wt, . . . , wt+N−1}, ∆ := {δt|t, . . . , δt+N−1|t} Z :=
{zt|t, . . . , zt+N−1|t}. N is predictive horizon andP ∈ R

n×n,
Q1 ∈ R

n×n, R ∈ R
mc+ml×mc+ml , Q2 ∈ R

rl×rl , Q3 ∈
R

rc×rc are nonsingular weighting matrices respectively.

The formulation (13), (14) can be written as a mixed integer
linear programming by using following approach. First we in-
troduce a vectorV

V :=
{

εx
0 , . . . , ε

x
N , ε

δ
0, . . . , ε

δ
N−1,

εz
0, . . . , ε

z
N−1, ε

u
0 , . . . , ε

u
N−1

}

(16)

whereε satisfies the following inequalities






−εx
N1n ≤ ±Pxt+N |t, − εx

k1n ≤ ±Q1xt+k|t

−εu
k1m ≤ ±Rut+k, − εδ

k1rd
≤ ±Q2δt+k|t

−εz
k1rc

≤ ±Q3zt+k|t

(17)

1k is a column vector of ones of lengthk, i.e. 1k :=
[1 1, . . . , 1]T ∈ R

k. Then the vectorV represents an upper
bound onJ(U,W,∆, Z, x(t)) as

J̃(U,W,∆, Z, V, x(t)) :=
N
∑

i=0

εx
i +

N
∑

i=0

(εu
i + εδ

i + εz
i ). (18)

Concluding, the min-max problem (13), (14) can be denoted as

min
U

max
W

J̃(U,W,∆, Z, V, x(t)) (19)

s.t.







xt|t = x(t)
xt+N |t ∈ P
(3), (12), (17)

(20)

By plugging (12) into (19) and (20), and by defining the ma-
tricesG, S, F respectively the min-max problem (19) and (20)
can be rewritten in the more simple form

min
pc,pd

max
q
Ĵ(pc, pd, q) s.t. (pc, pd, q) ∈ S

Ĵ(pc, pd, q) := fT
c pc + fT

d pd + gT q

S := {(pc, pd, q) : Fcpc + Fdpd +Gq ≤ Hx(t) + r}(21)

wherepc denotes the continuous components of(U, V,∆, Z)
andpd denotes discrete ones and the vectorq represents a com-
ponent ofW .

By relaxing the conditions for the discrete componentpd as
0 ≤ pd ≤ 1, the min-max problem (21) can be rewritten as

Ĵ∗ = min
p

max
q
Ĵ(p, q) s.t. (p, q) ∈ S ′ (22)

Ĵ(p, q) := [ fT
c fT

d ]

[

pc

pd

]

+ gT q

= fT p+ gT q (23)

S ′ :=

{

(p, q) : [Fc F ′
d ]

[

pc

pd

]

+Gq ≤ Hx(t) + r′
}

= {(p, q) : Fp+Gq ≤ Hx(t) + r′} . (24)

wheref := [ fT
c fT

d ], p :=
[

pT
c pT

d

]T
, F := [Fc F ′

d ].

3.2 The control algorithm

A robust receding horizon control algorithm for the piecewise
linear systems (1) with disturbancew(t) ∈ W is presented as
follows. Supposeu∗t denotes the first element of optimal input
sequence for the optimization problem (22).

Algorithm 1 :
Data:x(t)
Algorithm: IF x(t) ∈ P

THEN (mode 1)u(t) = Kix(t).
ELSE (mode 2)u(t) = u∗t .

Theorem 1 Suppose thatεx
k = 0 ∀x(k) ∈ ∪s

i=1O∞i, u(k) =
Kix(k). Then the control law given by Algorithm 1 satisfies
the constraints (3) and drives the statex(t) to the union of
constrained positively invariant sets∪s

i=1O∞i.

Proof: At time t, state x(t), let V ∗
t :=

J̃(U∗
t ,∆

∗
t , Z

∗
t , V

∗
t ,W

∗
t , x(t)) denotes the optimal cost

which responds to the optimal input sequencesU∗
t , ∆∗

t , Z∗
t ,

∗
tV and the disturbance sequenceW ∗

t . At time t, the first
element of the optimal sequence is applied, and disturbance
takes a certain valuew(t).

At time t + 1, consider an input sequenceUt+1 =
{ut+1, ut+2, · · · , uN−1,Kixt+N |t} in which the last element
might not be optimal. If the input sequenceUt+1 is used we
obtain the following inequality.

V ∗
t+1 ≤ J̃(Ut+1,∆

∗
t+1, Z

∗
t+1, V

∗
t+1,W

∗
t+1, x(t+ 1)) (25)

The right hand side of inequality (25) leads

r.h.s = V ∗
t − (εx

0 + εu
0 + εδ

0 + εu
0 ) + εx

N+1. (26)

At time stepN + 1 we will obtainx ∈ P because of the ter-
minal constraintxt+N+1 ∈ P. Then the input must beu(k) =
Kixt+N |t+1 from the Algorithm 1. We leadsεx

N+1 = 0, and

V ∗
t+1 ≤ V ∗

t − (εx
0 + εu

0 + εδ
0 + εu

0 ). (27)



Becauseε ≥ 0, the cost is monotonically nonincreasing. As it
is bounded below by zero, it must consequently converge to a
constant value, so thatV ∗

t − V ∗
t+1 → 0 ast → ∞. Then we

have

εx
0 + εu

0 + εδ
0 + εu

0 ≤ V ∗
t − V ∗

t+1. (28)

This leadsεx
0 + εu

0 + εδ
0 + εu

0 → 0, t→ ∞. Hence by the defi-
nitions ofε the state converges toP which includes the origin.
Further when the state in the setP, the control law changes
to u = Kix. Consequently the control algorithm satisfies the
constraints and drives the state in∪s

i=1Oi and in the control al-
gorithmt the constraints is satisfied since the two control modes
guarantee the constraints satisfaction. 2

Theorem 1 guarantees that the state of the system can be steered
to the set∪s

i=1O∞i with no constraint violation in spite of ex-
istence of disturbance. The setO∞i is depend on the design of
feedback gainKi, X andU and we can design the gainKi. The
control mode 1 is mode for keeping the state in the setP and
mode 2 is mode for steering the state to the setP. However,
the computation of the algorithm is demanding since mode 2
solves the min-max optimization problem each time steps.

3.3 Piecewise Affine Controller

Here we consider the off-line computation of (21) to reduce the
on line computation. We can obtain the min-max solution by
calculating the vertices because the min-max problem (21) is
linear [16]. The sequence is summarized algorithm 2.

Algorithm 2 :

1) Obtain vertices of the polyhedronS ′ [17].

2) By the vertices obtained 1), define the vertices(pi, qi), i =
1, 2, . . . , l which satisfy

pi = argmin
p
Ĵ(p, q), s.t. (p, qi) ∈ S ′. (29)

3) The vertex which maximizêJ is a min-max solution.

Theorem 2 Let the vector(p, q) be one of a vertex of the poly-
hedronS ′ for x(t). For the vertex(p, q) let FA, GA, HA, rA
represent the matrices corresponding to active constraints(N
denotes inactive constraints)

[FA GA ]

[

p

q

]

= HAx(t) + rA (30)

[FN GN ]

[

p

q

]

≤ HNx(t) + rN . (31)

And matricesVA and VN are defined asVA := [FA GA ],
VN := [FN GN ].

Then in the regionD(x)

D(x) =

{

x(t) :
{VN (V T

A VA)−1V T
A HA −HN}x(t)

< rN − VN (V T
A VA)−1V T

A rA

}

(32)

the statex(t) and the vertex(p, q) are satisfy
[

p

q

]

= ψ(x(t))

ψ(x(t)) := (V T
A VA)−1V T

A (HAx(t) + rA). (33)

Proof: When(p, q) is a vertex of the polyhedronP, the matrix
VA is full rank. HenceV T

A VA is nonsingular and we obtain
the equation (33). By substituting the equation (33) into the
equation (31) the region (32) is obtained. 2

By theorem 2 the vertices ofS ′ are piecewise affine with re-
spect to the statex(t) and the objective function̂J for the ver-
tex (p, q) can be denoted as

Ĵ∗(x(t)) :=
[

fT gT
]

ψ(x(t)). (34)

Ĵ∗ is also piecewise affine with respect to the statex(t). From
these properties the following theorem can be obtained.

Theorem 3 Let (p1, q1) be the min-max solution for the state
x(t) in the set of vertices of the polyhedronS ′ and(pi, qi), i =
2, 3, . . . , s denote other vertices. And let(pi, qi), i =
2, 3, . . . , k be the vertices which have intersecting pointsqi for
the setΠq(S

′) andD(x(t)), ψ(x(t)) and Ĵ obtained by theo-
rem 2 are denoted with appropriate subscripts.

Then the conditions for the vector
[

p1

q1

]

= ψ1(x(t)) (35)

being the min-max solution for problem (21) are

(necessary condition)x(t) ∈ D1(x(t))

(sufficient condition)

x(t) ∈

(

k
⋂

i=1

Di(x(t))

)

∩

{

x(t) : Ĵ1(x(t)) > Ĵi(x(t)),
i = 2, 3, . . . , k

}

Proof: Necessary condition: Active constraints must be invari-
ant when the min-max solution(p1, q1) is given by the equa-
tion (35). Hence by the theorem 2 the necessary condition is
obtained.
Sufficient condition: If the vertex(p1, q1) is the min-max so-
lution, then the objectĴ1 must be larger than other objects
for other vertices(pi, qi), i = 2, 3, . . . , k. Hence the vertices
(pi, qi) is represented by equation (33), andĴ1 > Ĵi. 2

By theorem 3 the linear min-max solution(p, q) is piecewise
affine with respect to the statex(t). Once we obtain the min-
max solution for the statex(t) the min-max solution for other
state can be obtained by using the equation (35). Hence the
min-max problem can be solved for each state by using theo-
rem 2. The min-max model predictive control lawu(t) is the
component ofψ(x(t)) which corresponds tout

u(t) = [0 · · · 0 I 0 · · · 0]ψ(x(t)). (36)



Hence when we implement the control mode 2, only a piece-
wise affine function needs to be evaluated at each time step.
Hence algorithm 1 can be modified as follows.

Algorithm 1’ :
Data:x(t)
Algorithm: IF x(t) ∈ P

THEN (mode 1)u(t) = Kix(t).
ELSE (mode 2)u(t) = [0 · · · 0 I 0 · · · 0]ψ(x(t)).

The Algorithm 1’ can be implemented using the pre-computed
off-line explicit solutionψ(x(t)) and real time optimization
can be avoided. However implementation of the Algorithm 1’
may still require a significant amount of computations.

3.4 Approximate Algorithm

In this section, we consider an approximate algorithm for mode
2 control law by exploiting the approximate algorithm [14].

Error bounds : When constructing approximate min-max so-
lutions it is necessary to compute the approximation error.The
approximate solution̂z0(x) = [pT

0 qT
0 ]T is defined on an arbi-

trary polyhedronX0 ⊂ R
n and the corresponding cost is given

by

Ĵ0 = fT p0 + gT q0. (37)

We will compute bounds on the error̂J∗ − Ĵ0.

Let the polyhedronX0 be represented by its verticesV =
{v1, v2, . . . , vM}. Define the linear function̄J(x) = L̄0x+ l̄0
as the solution to the following LP:

min
L̄0,l̄0

(

L̄0v + l̄0
)

s.t. L̄0vi + l̄0 ≥ Ĵ(vi), ∀i ∈ {1, 2, . . . ,M}. (38)

Similarly, define the linear function

J(x) = Ĵ∗(v) + ∇T Ĵ∗(v)(x− v) = L0x+ l0 (39)

wherev ∈ X0 is arbitrary. For the linear functionsJ , J̄ we
obtain the following theorem.

Theorem 4 For all x ∈ X0 the following inequalities hold

J(x) ≤ J∗(x) ≤ J̄(x). (40)

Proof: The upper bound is obtained from the constaint in LP
(38). The lower bound is derived as follows

Ĵ∗(x) ≥ Ĵ∗(v) + ∇T Ĵ∗(v)(x− v) (41)

sinceĴ∗ is convex.2

It follows thatε1 ≤ Ĵ∗ − Ĵ0 ≤ ε2 where

ε2 = max
x∈X0

(J̄ − Ĵ0), ε1 = max
x∈X0

(Ĵ0 − J). (42)

Then we introduce an valueε as the error bound.

ε = max(−ε1, ε2) (43)

Constraint Violation : Here we consider violation of the con-
straints by using the approximate solution. In the min-max
problem the constraints is represented as

[F G ]

[

p

q

]

≤ Hx+ r. (44)

The vector̃δ(x) is defined by

δ̃(x) = D([F G]ẑ0(x) −Hx− r) (45)

whereD is a diagonal scaling matrix with positive elements.
The maximum violation of each constraint within a polyhedron
X0 is computed by solving the following LP:

δj = max
x∈X0

δ̃j(x), j = 1, 2, . . . , q. (46)

In order to reduce the computation we consider orthogonal par-
titioning (Figure 1). This partitioning method is porposedin
[14]. We construct approximate solutionz0(x) in polyhedron
X ⊂ R

n. First the algorithm will consider the whole region

Figure 1: Partition of a rectangular region in a 2-dimensional
sate space.

X0 = X. The algorithm computes min-max solutions of the
problrem (22) at the2n verteces of the hypercubeX0.

z0
i (x) = K0

i x+ g0
i (47)

Then construct the approximate solution as

ẑ0(x) =
1

2n

2
n

∑

i=1

K0
i x+

1

2n

2
n

∑

i=1

g0
i . (48)

Using the mesurementsε andδj the partitioning algorithm is
obtained.

Algorithm 3 (Partitioning Algorithm):

1) Initialize the partition to the whole hypercube, i.e.X =
{X}. Mark the hypercubeX as unexplored.

2) Select any unexplored hypercubeX0 ∈ X . If no such hy-
percube exists, terminate with the partitionX .

3) Compute the solution to the problem (21) at the2n vertices
of the hypercubeX0.



4) From the min-max solutions at the vertices of the hyper-
cube, compute a state feedback as an approximate solution
for the regionX0.

5) Determine if the hypercube needs to be split in order to re-
duce the approximate error boundε or the constraint vio-
lations boundδ. If ε ≤ ε̄, δ ≤ δ̄ holds then go to step 6.
Otherwise, markX0 explored and to step 2.

6) Split the hypercubeX0 2n cubesX1, X2, . . . ,X2n .
Mark them all unexplored, removeX0 form X , add
X1, X2, . . . ,X2n toX and go to step 2.

The Algorithm 3 will not terminate before the cost and con-
straint errors respect their bounds in all hypercubes of theparti-
tion. In the Algorithm 3D > 0, ε̄ andδ̄ > 0 can be considered
as design parameters. For the min-max problem (22) the parti-
tioning algorithm terminates after a finite number of steps with
an approximate solution̂z0 and associate cost̂J0 that satisfies

sup
x∈X

∣

∣

∣
Ĵ0 − Ĵ∗

∣

∣

∣
≤ ε̄ (49)

and constraints satisfying

sup
x∈X

D([F G]ẑ0(x) −Hx− r) ≤ δ̄. (50)

4 Conclusion

In this paper, we propose an approximate robust receding hori-
zon control algorithm for piecewise linear systems affected by
additive bounded disturbances. It has two control modes based
on feedback min-max model predictive control, in the reced-
ing horizon control mode we employ the equivalence of piece-
wise linear systems and MLD systems and propose the end
set constraint which consists of constrained positively invari-
ant sets. To reduce computations we propose an algorithm that
will determine the approximate solution by using orthogonal
partitioning.
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