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Abstract

In the recent years various nonlinear model predictive control
(NMPC) schemes have been derived that achieve guaranteed
stability of the closed loop. However, most of these schemes
are based on the assumption that the full state information is
available. Since in general not all states can be directly mea-
sured, it is of paramount importance how one can estimate the
not directly measurable states without jeopardizing the stabil-
ity of the closed-loop. To overcome this problem it has been
shown in recent works, that combining sampled-data NMPC
for continuous time systems with high-gain observers can lead
to semi-global practical stability. However, the resulting output
feedback controller uses a high-gain observer which is formu-
lated in observability normal form. Thus explicit knowledge of
the inverse of the observability map is required. In this paper
we show that one can also use high-gain observers in original
coordinates, thus allowing to circumvent the explicit knowl-
edge of the inverse of the observability map. The resulting
output feedback schemes is applied to the control of a mixed
culture bioreactor.

1 Introduction

Model predictive control for systems described by nonlinear
ODEs or difference equations has received considerable atten-
tion over the past years. Several schemes that guarantee sta-
bility in the state feedback case exist by now, see for exam-
ple [1,5, 16] for recent reviews. Much fewer results are avail-
able in the case when not all states are directly measured. To
overcome this problem, often a state observer together with a
stabilizing state feedback NMPC controller is used. However,
due to the lack of a general nonlinear separation principle, the
stability of the resulting closed loop must be examined sepa-
rately.

Several researchers have addressed the output feedback NMPC

problem. The approach in [6] derives local uniform asymptotic
stability of contractive NMPC in combination with a “sampled”
state estimator. In [14,15], see also [19], asymptotic stability
results for observer based discrete-time NMPC for “weakly de-
tectable” systems are given. The results allow, in principle, to
estimate a (local) region of attraction of the output feedback
controller from Lipschitz constants. However, it is in general
not clear which parameters in the state feedback controller and
observer should be changed to increase the region of attraction,
or how to recover the region of attraction of the state feedback
controller. In contrast to these approaches, the control strate-
gies derived in [7,8, 12, 18] establish semi-global stability re-
sults, delivering direct tuning knobs to increase the resulting
region of attraction of the closed-loop. The approach presented
in [18] consist of an optimization based moving horizon ob-
server combined with the so called dual-mode NMPC scheme
proposed in [17].

In [12] asymptotic stability for instantaneous NMPC using
high-gain observers for state recovery is obtained. The draw-
back is that the open-loop optimal control problem appearing in
the NMPC controller must be solved at every time instant. To
avoid this the results have been expanded in [7, 8] to the gen-
eral sampled-data NMPC case, showing that the closed-loop
is semi-global practically stable. In sampled-data NMPC the
open-loop optimal control problem is only solved at discrete
sampling instants and the resulting optimal input signal is ap-
plied open-loop in between.

While the results given in [8] allow to consider a wide class
of systems, assuming that a uniform observability assumption
holds, in its basic formulation they require the observer to be
implemented in observability normal-form coordinates. Often
this is difficult, since one has to find the explicit inverse of the
observability map to transfer the resulting state estimates back
to the original coordinates. In this paper we show, based on the
results given in [4, 13], that the observer can be also designed
in original coordinates. Using a suitable DAE integrator, this
allows to avoid the explicit knowledge of the inverse of the
observability map and thus simplifies the implementation of
the controller.



The paper is structured as follows: In Section 2 we review the
NMPC output feedback scheme given in [8]. Based on this
we show in Section 3 how one can design high-gain observers
that do not require the explicit knowledge of the inverse of the
observability map. The resulting output feedback scheme is
employed in Section 4 to the control of a mixed culture biore-
actor.

2 Semi-Globally Practically Stable Output-
Feedback NMPC using High-Gain Observers

We consider nonlinear systems given by
y = h(z) 1)

where z € X C R™ denotes the system state, u € Y C R™
is the system input, y € RP is the measured output, and X', U
denote the constrained sets of allowed states and inputs. The
sets X and U are such that &/ C RP is compact, X C R" is
connected and (0,0) € X xU. With respect to the functions
F:R*xU — R*and h: R" x Y — RP we assume that they
are sufficiently smooth. Furthermore, the origin is as stationary
point, i.e. f(0,0) = 0and A(0) = 0.

We consider uniform complete observable systems. Uniform
complete observability is defined in terms of the observability
map #, which is given by the successive differentiation of the
output y:

z = f(z,u),

YT = I:y]_,y‘]_,...,ygrl),y27-..,ypa-.-;y}h---ayérp)]

= H(z,U)T

Here Y is the vector of output derivatives, U contains the in-
put and all input derivatives that appear. We assume that the
system is uniform complete observable and, for simplicity of
presentation, we furthermore assume that # is independent of
the derivatives of the system input, i.e. U = u™.

Assumption 1 ( Uniform Complete Observability without
Input Derivatives): The system (1) is uniformly completely
observable in the sense that there exists a set of indices
{r1,...,rp} such that the mapping Y = #(z, ) depends only
on z and w, is smooth with respect to z and its inverse from Y’
to z is smooth and onto for any u.

2.1 NMPC State Feedback

In the framework of predictive control, the input is defined by
the solution of an open-loop optimal control problem that is
solved at sampling instants. Between the sampling instants the
optimal input is applied open-loop. For simplicity we denote
the sampling instants by ¢;, with ¢; —¢;_; = &, § being the
sampling time. For a given ¢, ¢; should be taken as the nearest
sampling instant ¢; < ¢. The open-loop optimal control problem

INote that similar to[8] we canin principle also allow 7 to depend on input
derivatives. However, this would complicate the presentation and is thus not
considered here.

solved at any ¢; is given by:

I;I(I?J(ﬂ(-),w(tz)) (2a)
subject to: z=f(z,a), z(r=0)=z(t;) (2b)
a(r)eU, z(r)eX T€[0,Ty] (2c)
#(T,) €€ (2d)

The cost functional J is defined over the control horizon T}, by
the stage cost F' and the terminal penalty E.

TP
J(a(-);mm))::/o F(2(r), a(r))dr + E(#(T,)).

Instead of going into details on the different stabilizing state
feedback NMPC schemes, we merely assume in the following
that the NMPC scheme fits into the given frame and satisfies
the following assumptions.

Assumption 2 There exists a simply connected region R C
X CR™ (“region of attraction of the state feedback NMPC””)
with 0 € R such that:

1. The stage cost F' : R xU — R is continuous, satisfies
F(0,0) =0, and is lower bounded by a class X function?
ap: ap(||lz]l +(lull) < F(z,u) V(z,u)eR xU.

2. The optimal control @*(7; z) is piecewise continuous and
locally Lipschitz in z in R, uniformly in 7. That is, for
a given compact set Q@ C R ||@*(1;21) — @* (75 22)|| <
Ly||z1—z2|| VT€[0,T}), z1,22 €, where L,, denotes
the Lipschitz constant of @*(7; ) (as a function of z) in
Q.

3. The value function, which is defined as the optimal value
of the cost for every z € R V(z) := J(a*(-;z);z) is
Lipschitz for all compact subsets of R and V(0) = 0,
V(z) > 0for all ze R/{0}.

4. Along solution trajectories starting at a sampling instant
t; at z(¢;) € R, the value function satisfies

ti+T
Via(ti+7)-V(z(t:)) < - f(m(S),U(S))ds, 0<r.

To establish the output feedback stability result it is further-
more necessary that for any compact subset S C'R we can find
a compact outer approximation Q.(.S) that contains S and is
invariant under the NMPC state feedback.

Assumption 3 For all compact sets S C R there is at least one
compact set Q.(S) = {z€R|V(z) <c} such that S C Q.(S).

Assumptions 2.1 and 2.4 are satisfied by many stabilizing
NMPC schemes. In principle Assumptions 2.2, 2.3 and 3 can
also be satisfied. However, in general it is difficult to check
them a priori, see [8-10].

2A continuous function o :
strictly increasing and a:(0) = 0.

[0,00) — [0,00) isa K function, if it is



2.2 High Gain State Estimation

The system state is recovered by an high-gain observer. Appli-
cation of the coordinate transformation ¢ := H(z,u), where
H is the observability mapping, to the system (1) leads to the
system in observability normal form in ¢ coordinates

{ = A+ Bo(¢,u),
y = C(¢.

The matrices A, B and C have the following structure

01 0 -0

001 -0
A = blockdiag [41,... Ap], 4; = | : .

0 e 01

Q cer eee een 04 7y xr;
B = blockdiag B, . .., By) ,B; = [0 0 1]:“
C = blockdiag[Cy,...,Cp] ,Ci=[1 0 - 0],

and ¢ : R* x R™ — RP is the “system nonlinearity” in ob-
servability normal form. The high-gain observer®

¢ = A + Ho(y — CO) + BH(C, u) @)

allows recovery of the states [2, 22] ¢ from information of y(¢)
assuming that

Assumption 4 <f> in (4) is globally bounded.

The function ¢ is the approximation of ¢ that is
used in the observer.  The observer gain matrix H,
is given by H, = blockdiag[H.z,...,Hep], with
Hgi:[agz)/e, agz)/e2,...,a53)/e”], where € is the so-
called high-gain parameter since 1/e goes to infinity for e — 0.
The ag.’)s are design parameters and must be chosen such that
the polynomials

s"+agi)s"_1+- . -+a£f),ls+a£f) =0,1i=1,...,p

are Hurwitz.

Note that estimates obtained in ( coordinates can be trans-
formed back to the = coordinates by # = H~1(¢, u).

2.3 Semi-Global Practical Stability

The overall output feedback control presented in [7,8] con-
sists of the NMPC state feedback controller and a high-gain
observer. The open-loop input is only calculated at the sam-
pling instants using the state estimates of the observer. The ob-
server itself operates continuously. Assuming that #(¢;) € R,
the input applied to the system is given by:

u(t) == a*(t — ti; £(t:))

where @* (-; £(¢;)) is the optimal open-loop input signal of the
NMPC optimal control problem (2) obtained at time ¢; using

3We use hatted variables for the observer states and variables.

the state estimate Z(¢;) for prediction. The estimated state Z(¢;)
is given by

B(t:) = H M (C(8), ulti; (ti1))),

where f(t,-) is the high-gain observer state in observability nor-
mal form. Thus, in between sampling instants ¢; to ¢;1 an
open-loop input is applied to the system.

Note that the observer estimate is not bounded to the feasibility
region R of the NMPC controller. Since the open-loop optimal
control problem will not have a solution outside R, we define
the input in this case to an arbitrary, bounded value.

The results in [7, 8] are derived in scaled observer coordinates.
For this we define i as the scaled observer error,

n= [77111---77]17‘17---77]p17---=n13""p ], with Nij = 712“7].” .
Hence { = ¢—D.n with D, = blockdiag[D 1, D2, - - , De p),
D.; = diag [e"~*,...,1]. Under the stated assumptions us-

ing the scaled observer error, it is shown in [8] that the output
feedback scheme can achieve practical stability: For any small
set containing the origin, there exists an observer gain and a
sampling time such that the trajectories converge to the set in
finite time and stay inside the set.

Theorem 1 (Semi-global practical stability)

Given arbitrary compact sets @ C R” and S C R. Then, for
any p > 0, there exists §7 > 0 such that for 0 < § < 67,
there exists an €7 > 0 such that for all 0 < € < €}, and all
(zg,m0) € S x Q, the trajectories (z(t),n(t)) stay bounded,
converge in finite time to the set ||(z,n)|| < p, and z(t) € R
V¢ > 0.

Note that the high-gain observer is formulated in scaled ob-
server coordinates, while the NMPC controller is formulated
in the original coordinates.

3 Output-Feedback NMPC using High-Gain
Observers in Original Coordinates

The output feedback NMPC approach outlined in the previous
section uses a high-gain observer in observability normal form
coordinates, and relies on explicit knowledge of # 1. Often,
however, it is difficult to obtain H ! explicitly. In this sec-
tion we first outline an observer where the explicit knowledge
1 can be avoided to a large extent, and then present an ob-
server where the knowledge is avoided alltogether. The latter
approach allows to design the NMPC state feedback controller
and the state estimator directly in original coordinates and sim-
plifies the over all design.

One simple way to avoid the explicit knowledge of Hltoa
large extent is to set ¢ = 0 in (4), which satisfies Assumption 4.
Then the observer is given by

C= A+ H.(y - CO).



In this case the observer error still converges to any desired
bound for any sufficiently small € [20,21]. However, the per-
formance might degrade significantly. The key advantage is
that the inverse of the observability map # is only necessary at
the sampling instant. Rewriting equation (2.3) leads to

~

C(ts) = H(2(t:), u(ts; £(ti-1)))- (5)

In principle this equation, together with the known values of
¢(t;) and u(t;, Z(¢;_1)), can be added to the dynamic optimiza-
tion problem (2) that is solved in the NMPC controller at time
t;. This does not change the solution of (2), since the value
of Z is, due to the uniform complete observability assumption,

uniquely defined by (5).

Another possibility to avoid explicit information on %=1 is to
rewrite the observer equations in terms of the original coor-
dinates [4,13]. It has the advantage that {~! is not directly
needed for the implementation of the observer. As a starting
point consider the high-gain observer in the ¢ coordinates as
given in (4), assuming ¢ = ¢ (no mismatch between the esti-
mator and the real system)

¢ = A¢ + Bo(C,u) + H.(y — 9)- (6)

Applying & = H~({,u), which exists due to Assumption 1
using

OH ;

oz " ()

(=
we obtain:

&= [%7; (2,u):| (AH(2,u) + BO(H(&,u), u))

8 L) )

The first part is equivalent to f(z, u) which leads to:

S s on,. 1" .
T :f(.’B,U)+ 92 (£,’U,) He(y—h(x,u)). (8)
Thus, it is “only” necessary to know [%(:ﬁ,u)]_l. If

[0H /dx(&,u)] " is not known, one can left-multiply (8) by
OH /0z. The resulting system can be efficiently solved using
DAE integrators. Note that, similarly to #, it is normally not a
problem to obtain % from the system equations (1) via simple
calculations or using automatic algebraic differentiation.

The same observer structure is used in [4,13]. In [13] an ad-
ditional projection is required since systems that are not uni-
formly completely observable and control laws that are not
globally bounded are considered. This projection is not neces-
sary here, since the input resulting from the NMPC controller
is bounded, and since we limit ourself to uniformly completely
observable systems.

Since the convergence properties of the observer (8) is equiv-
alent to the observer in observability coordinates, the stability

results given in Section 2 stay unchanged. The approaches out-
lined allow to implement the high-gain observer and NMPC
controller in original coordinates, leading to a simplified im-
plementation and design.

4 Example

In this section the output feedback NMPC approach using the
high-gain observer in original coordinates is applied to the
control of a continuous mixed culture bioreactor as presented
in [11]. The schematics of the considered process is shown in
Figure 1. The system consists of a culture of two cell strains

I¢,q, Sf

Figure 1: Continuous mixed culture bioreactor.

that have different sensitivity to an external growth-inhibiting
agent. The cell density of the inhibitor resistant strain is de-
noted by ¢z, the cell density of the inhibitor sensitive strain is
denoted by co, and the substrate and inhibitor concentrations in
the reactor are denoted by S and I. Simple material balances
lead to:

X m($) - Den,

2 (8,1 = D)en,

% =-pal+ DIy —-1I),

B (R —m(S D+ D (S - 5).

Here D is the dilution rate ¢/V and Y;, Y> are the yields of
the species and u1(S) and p2(S, I) are the growth rates of
the species, which are described by Monod type expressions.
The inputs to the system are the dilution rate u; = D and the
inhibitor addition rate u = DI;. The outputs available for
control are y; = In g—; which can be thought of as an turbid-
ity measurement and the cell density of species one, y2 = ¢;.
The control objective is to stabilize a given steady state. Note,
that the system satisfies the assumptions required for apply-
ing the output feedback scheme proposed, i.e. the observabil-
ity map given by H = [y1, 91, §1,y2] is (locally) invertible in
the region of interrest. We use the high-gain observer outlined
in Section 3 for state recovery, where the observer is imple-
mented using a DAE integrator to “avoid” the explicit inver-
sion of OH /0z(Z,u). As state feedback NMPC scheme, the
quasi-infinite horizon NMPC strategy [3] with a (sufficiently



small) fixed sampling time of § = 2hrs and a prediction hori-
zon T, = 20hrs is used. The optimal input at every sampling
instant is obtained by mathematical programming parameteriz-
ing the input as piecewise constant, with 10 control intervals.
Thus the derivative of the input over one sampling time is zero,
i.e. once continuously differentiable. The cost F' weighs the
quadratic deviation of the states and inputs from their steady
state values. The parameters o for #, are chosen to: agl) =2,
af? =2, ol = 1and o = 1. Toillustrate the stability
and performance of the closed loop we consider different ob-
server gains e while keeping (the sufficiently small) sampling
time § constant. In all simulations the observer is initialized
with the correct values for ¢; and ¢» (since they can be directly
obtained from the measurements), whereas the other observer
states are initialized with the steady state value. Figure 2 exem-
plary shows closed loop system trajectories projected onto the
c1/co phase plane for different observer gains k£ = % in com-
parison to the state feedback NMPC controller starting from
the same initial condition. Figure 3 shows the corresponding

0.065
0.06
0.055F
2 0.05¢
N
(8]
0.045r-
0.04+ — state feedback ||
’ == k=1
o k=0.1
- = k=0.01
0.1 0.11 0.12 0.13 0.14 0.15 0.16
c, [9/

Figure 2: Phase plot of ¢; and ¢

time behavior of the inhibitor concentration I and the inhibitor
addition rate (input us) for different values of €. Additionally,
the real cost occurring, i.e. the integrated quadratic error be-
tween the steady state values for the states and inputs in trans-
formed coordinates, is plotted. One can clearly see the in this
example utilized over the sampling time constant input to the
system. Furthermore, as can be seen, the larger the observer
gain (the smaller €), the closer the trajectories converge to the
state feedback case. The cost of the output feedback controller
approaches the cost of the state feedback controller for lower e,
which shows the recovery of performance. Notice that we use
relatively low gains for the observer, meaning that e is large.
This example verifies the stability of the closed loop and the
recovery of performance for increasing values of the observer
gain using a high-gain observer in original coordinates.
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Figure 3: Trajectories of I, uz and summed up cost

5 Conclusions

To derive stable output feedback NMPC is of practical as well
as of theoretical relevance. In this paper we showed that the
sampled-data output feedback NMPC approach for continuous
time systems derived in [7, 8] also allows to use high-gain ob-
server in original coordinates. This is, as shown, advantageous,
since it avoids the explicit knowledge of the inverse of the ob-
servability map. In the resulting scheme both the observer and
the NMPC controller are formulated in original coordinates.
The high-gain observer used involves the (local) inverse of the
Jacobian of the observability map with respect to the state. As
outlined, using DAE integrators it is even possible to avoid the
explicit knowledge of this inverse, making the implementation
of the high-gain observer rather simple. The resulting closed-
loop keeps the same stability properties as the approach given
in [7, 8], namely semi-global practical stability.
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