
NONLINEAR MODEL PREDICTIVE CONTROL USING
AUTOMATIC DIFFERENTIATION

Yi Cao∗, R. Al-Seyab

School of Engineering, Cranfield University, UK
∗ Email: y.cao@cranfield.ac.uk. Tel: 01234750111. Fax: 01234750728

Keywords: Nonlinear Model Predictive Control, Dynamic Op-
timization, Automatic Differentiation, Evaporation Process

Abstract

Although nonlinear model predictive control (NMPC) might be
the best choice for a nonlinear plant, it is still not widely used.
This is mainly due to the computational burden associated with
solving a set of nonlinear differential equations and a nonlin-
ear dynamic optimization problem. In this work, a new NMPC
algorithm based on nonlinear least square optimization is pro-
posed. In the new algorithm, the residual Jacobian matrix is
efficiently calculated from the model sensitivity functions with-
out extra integrations. Recently developed automatic differen-
tiation techniques are applied to get the sensitivity functions
accurately and efficiently. The new algorithm has been applied
to an evaporation process with satisfactory results to cope with
large setpoint changes, measured and unmeasured severe dis-
turbances and process-model mismatches.

1 Introduction

Model predictive control (MPC) strategies have been well re-
ceived by industry because they are intuitive and can explic-
itly handle MIMO systems with input and output constraints.
Until recently, industrial applications of MPC have relied on
linear dynamic models even though most processes are non-
linear. MPC based on a linear model is acceptable when the
process operates at a single setpoint and the primary use of
the controller is the rejection of small disturbances[17]. Op-
erating points of modern chemical processes vary over large
regions. Such processes cannot be modelled adequately using
linear models. These conditions are observed in many cases
including change over in continuous processes, tracking prob-
lems in startup and batch processes and the control of nonlinear
reactors [17, 2]. Because these processes make transition over
the nonlinear range of the system, linear MPC often results in
poor control performance. To properly control these processes
a nonlinear dynamic process model has to be used, rather than a
linear convolution model [1]. Recognizing this need, a number
of MPC algorithms incorporating nonlinear prediction mod-
els (hence called as nonlinear MPC or NMPC) have appeared
lately [18, 6].

The objective of NMPC is to select a set of future control
moves (control horizon) in order to minimize a function based
on a desired output trajectory over a prediction horizon. The

introduction of nonlinear models inside the control algorithm
does not cause major problems from a theoretical point of view
[1]. However, the computation involved to solving the opti-
mization problem at every sampling time can become so inten-
sive, particularly for high-dimensional systems, that it could
make on-line applications almost impossible [19]. There exist
a number of strategies for tracking the optimal control problem
through nonlinear programming (NLP): successive lineariza-
tion, simultaneous methods, sequential approach, and others
[11, 14]. In a successive linearization solution, the Jacobian
linearization is performed over the prediction horizon or at a
number of time steps in the prediction horizon [3, 21, 12]. Si-
multaneous solution, transforming the differential equations to
algebraic equations which are solved as nonlinear equality con-
straints in the optimization [7, 16]. In the sequential approach,
improved closed-loop performance is achieved as the nonlin-
ear model is used directly in the NMPC calculations. Stan-
dard NLP however is not designed to handle dynamic con-
straints. This limitation can be overcome using a two-stage
approach where an optimization routine serves as an outer loop
to iteratively select new sets of manipulated variables moves,
while an differential equation solver is used to integrate the dy-
namic equations at each iteration of optimization [11, 1]. This
is known as sequential solution because the optimization and
integration problems are solved iteratively until the desired ac-
curacy is obtained.

In general, a major part of the optimization calculations involve
the evaluation of a function and its derivatives of one kind or
the other. The accuracy and speed, with which such deriva-
tives are calculated, is crucial to the success and speedy conver-
gence of the calculation procedure. The gradient information
were previously estimated using numerical methods like finite
differences but such estimates are subject to truncation error
when the differencing intervals are numerically large, and sub-
ject to round-off error when they are small. In addition, the
run time is unacceptably high, particularly for problems with a
large number of independent variables [8]. Automatic or algo-
rithmic differentiation (AD) find the derivatives of a function
given in the form of a computer code using the chain rule with
no truncation error for any selected outputs with respect to se-
lected inputs with about the same accuracy and efficiency as
the function value themselves [10].

In this work, a new NMPC algorithm based a nonlinear least
square optimization problem is proposed. The nonlinear least
square problem can be efficiently solved by only using residual
Jacobian matrix. An efficient algorithm is derived to calculate



the residual Jacobian matrix directly from the model sensitiv-
ity function without extra integrations. The sensitivity func-
tions can be accurately and efficiently obtained from the state
trajectory by using AD techniques. These three features make
the new algorithm computationally efficient. To demonstrate
the new algorithm, a benchmark example of an industrial evap-
orator [15] has been chosen as a case study. The process is
a multi-input multi-output nonlinear system with a number of
constraints. The process is open-loop unstable due to integrat-
ing characteristics of the liquid level in the evaporator separa-
tor. Effective control of this system using traditional PID con-
trollers was not very successful especially for large setpoint
changes. Predictive control was also considered by a number
of workers [12, 15]. However, linear MPC was failed to con-
trol this process for both the regulating and tracking problems.
A NMPC strategy based on a successive linearization solution
to control this process under a large setpoint-change condition
was proposed in [12]. A good performance was observed after
re-linearizing the nonlinear process model for every few steps.
However, disturbances have not been considered there. In this
work, the new NMPC strategy is applied to control the process
for both setpoint tracking and disturbance rejection. The pa-
per is organized as follows: a new NMPC algorithm based on
nonlinear least square optimization and using model sensitiv-
ity functions to get the residual Jacobian matrix is proposed in
section 2. The AD tool applied to get the sensitivity function
is described in section 3. Section 4 provides the evaporation
process case study to demonstrate the use of the new NMPC
algorithm. The paper is concluded in section 5.

2 Nonlinear Model Predictive Control

2.1 Nonlinear least square problem

The nonlinear model predictive control considered is to solve
the following nonlinear optimization problem at each sampling
point:

min
u≤uj≤u

j=0,...,M−1

φ =
1
2

P∑
k=1

eT
k Wkek (1)

s.t. ẋ = f(x, u, d), t ∈
[
t0, tP

]
(2)

x(t0) = x0, xk := x(tk) = x(t0 + kT )
ek := xk − rk, k ∈

[
1, P

]
uj := u(tj) = u(t), t ∈

[
tj , tj+1

]
uj = uM−1, j ∈

[
M, P − 1

]

whereT is the sampling period,M andP are control and pre-
diction horizons respectively,x ∈ Rn, u ∈ Rm andd ∈ Rq

are state, input and disturbance variables respectively,Wk and
rk are the weighting matrix and the reference vector attk re-
spectively,u andu are constant vectors determining the input
constraints. The inequalities for input constraints are element-

by-element inequalities. Let

ew
k = W

1/2
k ek (3)

E = [ewT
1 · · · ewT

P ]T (4)

U = [uT
0 · · ·uT

M−1]
T (5)

U = [uT · · ·uT ]T ∈ RmM (6)

U = [uT · · ·uT ]T ∈ RmM (7)

Then the optimization problem of (1) can be restated as a stan-
dard nonlinear least square problem:

min
U≤U≤U

φ(U) =
1
2
E(U)T E(U) (8)

The gradient,G(U) and Hessian matrix,H(U) of (8) have a
special structure:

G(U) = JT (U)E(U) (9)

H(U) = JT (U)J(U) + Q(U) (10)

whereJ(U) ∈ RnP×mM is the Jacobian matrix of residual
vector,E(U) andQ(U) is defined as:

Q(U) =
nP∑
i=1

Ei(U)Hi(U) (11)

whereEi is the ith element ofE andHi is the Hessian ma-
trix of Ei. The matrixQ(U) has the property that whenU
approaching optimal solution, residual‖E(U)‖ tends to zero
then alsoQ(U) tends to zero. Therefore, an efficient algorithm
can be applied to solve this problem [13, 5].

2.2 Jacobian matrix calculation

To efficiently solve the nonlinear least square problem, the
Jacobian matrix ofE is to be derived in this section. The
nP ×mM Jacobian matrix is defined as:

J(U) =
[
∂Ei

∂Uj

]
, i ∈ [1, nP ], j ∈ [1,mM ] (12)

The Jacobian matrix can be partitioned intoP ×M blocks as

J(U) = [Ji,j ], i ∈ [1, P ], j ∈ [1,M ] (13)

where each block is ann×m matrix defined as,

Ji,j =
∂eW

i

∂uj−1
= W

1/2
i

∂ei

∂uj−1
= W

1/2
i

∂xi

∂uj−1
(14)

Since a future input cannot have an effect on a past state,Ji,j =
0 for i < j, i.e. the Jacobian matrix is low block-triangular.

To solve equation (2) requires information of future distur-
bances. Since the future disturbances are unknown in many
cases, it is assumed in the following calculation that future dis-
turbances are constant as current measurements if disturbances



are measured, or as their nominal values if they are not mea-
surable. Taking partial derivative on both sides of (2) gives:

d
dt

∂x

∂uj−1
=

∂ẋ

∂uj−1
= fx

∂x

∂uj−1
+ fu

∂u

∂uj−1
(15)

Equation (15) is a linear time-varying system with initial condi-
tion, ∂x(t0)/∂uj−1 = 0. For j < M , the input,∂u(t)/∂uj−1

is an impulse function:

∂u(t)
∂uj−1

=
{

I, t ∈ [tj−1, tj ]
0, otherwise

(16)

For j = M , the input is a step function,

∂u

∂uM−1
=

{
I, t ≥ tM−1

0 otherwise
(17)

Generally, the linear time-varying equation (15) has no analyt-
ical solution although it can be represented in a state-transition
matrix form [4]. Numerically, equation (15) can be solved to-
gether with the state equation (2) using a differential equation
solver. The total number of differential variables to be solved
in (15) isn×m×M .

Equation (15) can be simplified by assuming that the sensitiv-
ity functions,fx andfu are piecewise constant. In this case,
within a sampling period, (15) is a linear time-invariant sys-
tem. Hence, analytical solutions can be obtained. LetAk =
efx(tk)T andBk =

∫ T

0
efx(tk)τ dτfu(tk), zi,j = ∂xi/∂uj−1

andvi,j = ∂ui/∂uj−1, then equation (15) can be discretized
as

zi,j = Ai−1zi−1,j + Bi−1vi−1,j (18)

For j < M , vi−1,j = 0 if i > j andvi−1,j = I, zi−1,j = 0, if
i = j. Thus,

zi,j =
{

Ai−1zi−1,j for i > j
Bj−1 for i = j

(19)

Recursively, the following solution can be derived:

zi,j = Ai−1Ai−2 · · ·AjBj−1 (20)

For j = M , vi−1,j = I if i ≥ j. DenoteΦ(i, k) =
AiAi−1 · · ·Ak, andΦ(i − 1, i) = I, then the solution for this
case is

zi,M =
i∑

k=M

Φ(i− 1, k)Bk−1 (21)

2.3 Nonlinear model predictive control algorithm

Based on the algorithm to calculate the residual Jacobian ma-
trix, the proposed nonlinear model predictive control algorithm
can be described as follows:

1. Collect current process information, such as measure-
ments, measurable disturbances and setpoint changes.

2. Apply nonlinear least square optimization solver to get a
promising guess of next control horizon.

3. The solver calls the objective function to calculate the cost
corresponds to the control horizon provided.

4. The cost subroutine calls an ordinary differential equation
solver to predict the state trajectory based on the control
horizon provided.

5. Based on the prediction trajectory obtained, the cost sub-
routine applies an AD tool to get the sensitivity function
of the trajectory.

6. The residual Jacobian matrix is calculated according to the
sensitivity function obtained.

7. The residual vector and residual Jacobian matrix is re-
turned to the optimization solver. If the terminal condi-
tions are not satisfied, the solver updates a new control
horizon and the procedural is repeated from step 3. Other-
wise, the first point of the control horizon is implemented
to the process control system and the procedural is re-
peated from the step 1.

Remark 1 Most Newton-type dynamic optimization algo-
rithms involve an inverse integration for co-state or adjoint
variables in order to get gradient information. In the proposed
algorithm, the gradient information is obtained without such
integration. After calculating the state trajectory, only alge-
braic calculations are involved in the procedural to get resid-
ual Jacobian matrix. Therefore, efficiency is greatly improved
in the proposed algorithm.

Remark 2 For small systems, the sensitivity function might be
able to be derived analytically. However, for large systems,
particularly for a practical application, it is not a trivial task
to get analytic derivative functions. Sometime, it is even not
possible. Recently AD techniques have emerged to provide help
in this aspect. The proposed algorithm provides a link point
where an AD tool can be involved to solve the online dynamic
optimization problem.

Remark 3 For a feasible problem, the convergence of the al-
gorithm is mainly determined by the nonlinear least square
solver used. In this work, the solver provided in MATLAB Op-
timization Toolbox is applied. It is based on the Levenberg-
Marquardt method[13, 5], which uses a scalar to control both
search direction and magnitude. When the scalar is zero,
the search direction is identical to that of the Gauss-Newton
method, whilst as the scalar tends to infinity, search direction
tends toward a steepest descent direction. Therefore, in most
cases, the value of cost function is non-increasing and the al-
gorithm is convergent.

Remark 4 Nonlinear least square is a special case of general
nonlinear optimization problems. The main advantage of us-
ing the nonlinear least square formulation is its efficiency due
to the special structure of its gradient (9) and Hessian (10),
whilst the disadvantage is that it cannot directly handel hard



constraints on output variables. A possible solution is to con-
vert the hard constraints to soft ones by using Lagrange multi-
pliers.

3 Automatic Differentiation

Automatic differentiation (AD) is the generic name for tech-
niques that use the computational representation of a function
to produce analytic values for the derivatives [10]. Some tech-
niques produce code for the derivatives at a general pointx by
manipulating the function code directly. Other techniques keep
a record of the computations made during the evaluation of the
function at the specific pointx and then review this informa-
tion to produce a set of derivatives atx. AD uses the chain rule
based techniques for evaluating the derivatives with respect to
the input variables of function defined by a high-level computer
language program. It relies on the fact that all computer pro-
grams no matter how complicated use a finite set of elementary
(unary e.g. exp(.), sin(.), sqrt(.),etc, or binary e.g. +, *, /,etc)
operations as defined by the programming language. The value
of the function computed by the program is simply a compo-
sition of these elementary functions, with its partial derivatives
are known. Then the chain rule of differential calculus is ap-
plied over and over again combining these stepwise derivatives
to yield the derivatives of the whole program [20, 10].

There are two basic modes of AD: the forward and reverse
modes. The ‘forward mode’, which is called sometimes
‘bottom-up algorithm’, computes derivatives of intermediate
variables appearing in the process of function computation with
respect to a single variable synchronically with computation of
the values of intermediate variables themselves. The ‘reverse
mode’, which is called sometimes ‘backward mode’ or ‘top-
down algorithm’, computes the derivatives in the direction re-
verse to that of computing the function value. More details
about these modes can be found in [20, 10].

A variety of tools exist for AD in standard programming lan-
guages. These including ADIFOR, Odysee, ADOL-C, and
TAMC. A MATLAB AD toolbox, MAD[9], is used in this
work.

4 Evaporation Control Case Study

4.1 Evaporator

This case study is based on the forced-circulation
evaporator[15], and shown in Figure 1. In this process, a
feed stream enters the process at concentrationX1 and tem-
peratureT1, with flow rateF1. It is mixed with recalculating
liquor, which is pumped through the evaporator at a flow rate
F3. The evaporator itself is a heat exchanger, which is heated
by steam flowing at a rateF100, with entry temperatureT100

and pressureP100. The mixture of feed and recalculating
liquor boils inside the heat exchanger, and the resulting mixture
of vapour and liquid enters a separator where the liquid level is
L2. The operating pressure inside the evaporator isP2. Most
of the liquid from the separator becomes the recalculating

liquor; a small proportion of it is drawn off as product, with
concentrationX2, at a flow rateF2 and temperatureT2. The
vapour from the separator flows to a condenser at flow rateF4

and temperatureT3, where it is condensed by being cooled
with water flowing at a rateF200, with enter temperature
T200 and exit temperatureT201. Variable names, description,
standard steady state values, and engineering units are listed in
Table 1 and model equations are given in Appendix A.

The model has 20 variables and 12 equations. Hence, the pro-
cess has 8 degrees of freedom, four of which are disturbances,
i.e. inlet flowrate,F1, composition,X1 and temperature,T1,
and cooling water inlet temperature,T200 and rest are manip-
ulated variables,i.e. outlet flowrate,F2, steam pressure,P100,
cooling water flowrate,F200 and circulating flowrate,F3. In
the case study,F3 is controlled manually,i.e. set to a constant.
All model equation are differentiable, hence automatic differ-
entiation techniques are applicable to this problem.

steam
F100

P100
T100

separator
P2, L2

product
F2, X2, T2

feed
F1, X1, T1

condensate
F5

cooling
water

F200, T200

evaporator

condensate

T201

condenser
F4, T3

F3

Figure 1: Evaporator System

4.2 Nonlinear model predictive control

The control objective of the case study is to track setpoint
changes ofX2 from 25% to 15% andP2 from 50.5 kPa to 70
kPa when disturbances,F1, X1, T1 andT200 are varying within
±20% of their nominal values. The control system is config-
ured with three manipulated variables,F2, P100 andF200 and
three measurements,L2, X2 andP2. All manipulated variables
are subject to a first-order lag with time constant equal to 0.5
min and saturation constraints,0 ≤ F2 ≤ 4, 0 ≤ P100 ≤ 400
and0 ≤ F200 ≤ 400.

The main performance limitation of the process is the cooling
flowrate constraints. At the nominal operation point, the maxi-
mum increase rate ofP2 (corresponding toF200 = 0) is F4/4,
which is 2 kPa/min whenX2 = 25 % and 1.65 kPa/min when
X2 = 15. Therefore, setpoint increase ofP2 is specified within
20 min, i.e. increase rate is about 1 kPa/min in order to make
the problem feasible.

All disturbances are simulated as a step signal passing through



Table 1: Variables and Optimal Values
Var. Description Value Units
F1 Feed flowrate 10 kg/mim
F2 Product flowrate 2 kg/mim
F3 Circulating flowrate 50 kg/mim
F4 Vapor flowrate 8 kg/mim
F5 Condensate flowrate 8 kg/mim
X1 Feed composition 5 %
X2 Product composition 25 %
T1 Feed temperature 40 oC
T2 Product temperature 84.6oC
T3 Vapor temperature 80.6 oC
L2 Separator level 1 meter
P2 Operating pressure 50.5 kPa
F100 Steam flowrate 9.3 kg/mim
T100 Steam temperature 119.9oC
P100 Steam pressure 194.7 kPa
Q100 Heat duty 339 kW
F200 Cooling water flowrate 208 kg/mim
T200 Inlet C.W. temperature 25 oC
T201 Outlet C.W. temperature 46.1oC
Q200 Condenser duty 307.9 kW

a first-order lag. The amplitudes of step changes are randomly
produced within the±20% range of the nominal values. The
changing intervals and time constants of the first-order delays
are different for different disturbance variables shown in Ta-
ble 2.

Table 2: Disturbance model parameters
Disturbance Interval [min] Time constant [min]

F1 5 0.2
X1 2 0.2
T1 1 1

T200 1 1

The NMPC is designed with the following parameters: sam-
pling period, T = 1 min, P = 10 min, M = 3 min,
W ≡ diag[100, 1, 1], u = [0, 0, 0]T andu = [4, 400, 400]T .
It is assumed thatF1 is measurable disturbance whilst other
three disturbances are not measured. The nonlinear dynamic
model of the process is used as the prediction model for NMPC
whilst the actuator lags and disturbances lags are ignored from
the prediction. The ignored lags play as process-model mis-
matches for the NMPC. It has been observed that due to these
mismatches, implementing the second point of the control
moves calculated is better than using the first one.

Simulation is performed with the above configuration. The re-
sults are shown in Figure 2. It can be seen from Figure 2 that
measured outputs follow the setpoints quite well (a)–(c) in spite
of the existence of severe disturbances (g)–(j). This is achieved
without violating the input constraints (d)–(f). Therefore, the
NMPC controller is effective and satisfies the performance re-
quirements proposed.

0.5

1

1.5

L2
 (

m
)

(a) Separator Level

10

20

30

X
2 

(%
)

(b) Product Concentration

40

60

80

P
2 

(k
P

a)

(c) Operating Pressure

0

2

4

F
2 

(k
g/

m
in

)

(d) Product Flow Rate SP

100

200

300

P
10

0 
(k

P
a)

(e) Steam Pressure SP

0

200

400

F
20

0 
(k

g/
m

in
)

(f) Water Flow Rate SP

8

10

12

F
1 

(k
g/

m
in

)

(g) Feed Flow Rate

4

5

6

X
1 

(%
)

(h) Feed Concentration

0 50 100
30

40

50

Time (minutes)

T
1 

(o C
)

(i) Feed Temperature

0 50 100
20

25

30

Time (minutes)

T
20

0 
(o C

)

(j) Water Temperature

Figure 2: Simulation result. (a)–(c) Measured outputs with set-
points. (d)–(f) Manipulated variables. (g)–(j) Disturbances.

It is worth to mentioned that in the problem formulation, input
constraints are explicitly specified as hard constraints, there-
fore they are not included in the cost function. Constraints on
input change rate are also ignored in the objective function be-
cause the actuator lags in the model are thought to be suffi-
cient to represent such physical limitation. Since the objective
function only contains control errors, the simulation results are
almost the bets performance achievable within the hard input
constraints.

5 Conclusions

A new algorithm for nonlinear model predictive control is pro-
posed. Based on a nonlinear least square optimization problem,
an efficient algorithm to calculate the residual Jacobian matrix
is derived. With the new approach, the gradient information
can be obtained without further integration of the sensitivity
differential equations. The new algorithm also provides a link
point where recently developed automatic differentiation tech-
niques can be applied to get derivatives (sensitivity functions)
accurately and efficiently. The evaporation case study shows
that satisfactory performance is obtained with the controller us-
ing the new NMPC algorithm.

References

[1] B.W. Bequtee. Nonlinear control of chemical processes:
A review. Ind. Eng. Chem. Res., 30:1391–1413, 1991.

[2] L.T. Biegler. Advance in nonlinear programming con-
cepts for process control.Journal of Process Control,



8(5):301–311, 1998.

[3] D.D. Brengle and W.D. Seider. Multistep nonlinear pre-
dictive controller. Ind. Eng. Chem. Res., 28:1812–1822,
1989.

[4] C.T. Chen. Linear System Theory and Design. Oxford
University Press, New York, third edition, 1999.

[5] Jr. Dennis, J.E. Nonlinear least squares. In D. Jacobs,
editor,State of the Art in Numerical Analysis, pages 269–
312, York, England, 1977. Academic Press.

[6] M. Diehl, H. G. Bock, J. P. Schlöder, R. Findeisen,
Z. Nagy, and F. Allg̈ower. Real-time optimization and
nonlinear model predictive control of processes governed
by differential-algabric equations.Journal of Process
Control, 12:577–585, 2002.

[7] J.W. Eaton and J.B. Rawling. Feedback control of non-
linear processes using online optimization techniques.
Comp. Chem. Engng, 14(4–5):469–479, 1990.

[8] D. Elizondo, B. Cappelaere, and C. Faure. Automatic ver-
sus manual model differentiation to compute sensitivities
and solve non-linear inverse problems.Computers and
Geosciences, 28:309–326, 2002.

[9] Shaun Forth. MAD – a MATLAB automatic differenti-
ation toolbox. Eng. System Dep. Cranfield University,
2001.

[10] A. Griewank. Evaluating Derivatives. SIAM, Philadel-
phia, PA, 2000.

[11] M. A. Henson. Nonlinear model predictive control: cur-
rent states and future directions.Computer and Chem.
Engng., 23:187–202, 1998.

[12] J. M. Maciejowski.Predictive Control with Constraints.
Prentice Hall, Harlow, England, 2002.

[13] D. Marquardt. An algorithm for least-squares estimation
of nonlinear parameters.SIAM J. Appl. Math., 11:431–
441, 1963.

[14] A.M. Morshedi. Universal dynamic matrix control.
In Third International Conference on Chemical Process
control, page 547, New York, 1986.

[15] R.B. Newell and P.L. Lee.Applied Process Control – A
Case Study. Prentice Hall, Englewood Cliffs, NJ, 1989.

[16] A. Patwardhan, J.B. Rawlings, and T.F. Edgar. Nonlinear
model predictive control.Chem. Engng Comm., 87:123–
141, 1990.

[17] S. Piche, B. Sayyar-Rodsari, D. Johnson, and M. Gerules.
Nonlinear model predictive control using neural net-
works. IEEE control system magazine, 20(3):53–62,
2000.

[18] L.O. Santos, P.A.F.N.A. Afonso, J.A.A.M. Castro,
N.M.C. Oliveira, and L.T. Biegler. On-line implementa-
tion of nonlinear MPC; an experimental case study.Con-
trol Engineering Practice, 9(9):847–857, 2001.

[19] P. B. Sistu, R. S. Gopinath, and B. W. Bequette. Com-
putational issues in nonlinear predictive control.Comput.
Chem. Eng., 17:361–367, 1993.

[20] A. Verma. An introduction to automatic differentiation.
Current Science, 78:804–807, 2000.

[21] Y. Zhu and F. Butoyi. Case studies on closed-loop identi-
fication for MPC.Control Engineering Practice, 10:403–
417, 2002.

A Model equations

dL2

dt
=

F1 − F4 − F2

20
(22)

dX2

dt
=

F1X1 − F2X2

20
(23)

dP2

dt
=

F4 − F5

4
(24)

T2 = 0.5616P2 + 0.3126X2 + 48.43 (25)

T3 = 0.507P2 + 55.0 (26)

F4 =
Q100 − 0.07F1(T2 − T1)

38.5
(27)

T100 = 0.1538P100 + 90.0 (28)

Q100 = 0.16(F1 + F3)(T100 − T2) (29)

F100 = Q100/36.6 (30)

Q200 =
0.9576F200(T3 − T200)

0.14F200 + 6.84
(31)

T201 = T200 +
13.68(T3 − T200)
0.14F200 + 6.84

(32)

F5 =
Q200

38.5
(33)


	Session Index
	Author Index



