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Abstract

Learning for feedforward neural networks can be regarded as
a nonlinear parameter estimation problem with the objective of
finding the optimal weights that provide the best fitting of a
given training set. The extended Kalman filter is well-suited
to accomplishing this task, as it is a recursive state estima-
tion method for nonlinear systems. Such a training can be per-
formed also in batch mode. In this paper the algorithm is coded
in an efficient way and its performance is compared with a va-
riety of widespread training methods. Simulation results show
that the latter are outperformed by EKF-based parameters op-
timization.

1 Introduction

After the development of backpropagation (BP) [1], plenty of
algorithms have been proposed to optimize the parameters in
feedforward neural networks. Although BP has been success-
fully applied in a variety of areas, its convergence is slow, thus
making high-dimensional problems intractable. Its slowness is
to be ascribed to the use of the steepest-descent method, which
performs poorly in terms of convergence in high-dimensional
settings [2], and to the fixed, arbitrarily chosen step length.
For these reasons, algorithms using also the second derivatives
have been developed (see, e.g., [3]) and modifications to BP
have been proposed (see, e.g., the acceleration technique pre-
sented in [4] and the approach described in [5], which is aimed
at restoring the dependence of the learning rate on time). The
determination of the search direction and of the step length by
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using methods of nonlinear optimization has been considered,
for example, in [6].

Further insights can be gained by regarding the learning of
feedforward neural networks as a parameter estimation prob-
lem. Following this approach, training algorithms based on the
extended Kalman filter (EKF) have been proposed (see, e.g.,
[7, 8, 9, 10, 11, 12]) that show faster convergence than BP.
However, the advantages of EKF-based training are obtained
at the expense of a notable computational burden (as matrix
inversions are required) and a large amount of memory.

Recursive methods have been developed such that the data
available at each step are used to optimize the weights. Clearly,
such approaches are well-suited to dealing on line with a large
amount of data on line but may suffer from poor performance.
Computational efficiency can improved by using Lagrangian
techniques [13]. In this context, the EKF provides a nice
framework to perform optimization incrementally (i.e., one
data block at a time), with advantages with respect to BP [14].

In this paper, optimization of parameters in feedforward neu-
ral networks is investigated following an EKF-based approach.
The paper is organized as follows. Section 2 is focused on the
approximation properties of neural networks. The basic algo-
rithm to perform EKF learning is presented in Section 3, as well
as a batch-mode EKF learning. Section 4 includes simulation
results, showinh that the proposed approach outperforms back-
propagation and other well-known training algorithms. The
conclusions are drawn in Section 5.

2 On the approximation properties of neural
networks

We considerfeedforward neural networks(in the following,
for the sake of brevity, often called “neural networks” or sim-
ply “networks,”) composed ofL layers, withνs computational
units in the layers (s = 1, . . . , L). The input–output mapping



of theq-th unit of thes-th layer is given by

yq(s) = g

[
νs−1∑
p=1

wpq(s)yp(s− 1) + w0q(s)

]
,

s = 1, . . . , L ; q = 1, . . . , νs (1)

whereg : R→ R is calledactivation function. The coefficients
wpq (s) and the so-calledbiasesw0q (s) are lumped together
into the weights vectorsws . We let

w
4
= col

(
w1 , w2 , . . . , wL

) ∈ W ⊂ Rn,

where

n
4
=

L∑
s=0

νs+1 (νs + 1)

is the total number of weights. The function implemented by a
feedforward neural network with weights vectorw is denoted
by γ (w, u) , γ : Rn×Rm → Rp , whereu ∈ U ⊂ Rm is the
network input vector.

The data set consists of input/output pairs(ut, yt) , t =
1, 2, . . ., where ut ∈ U ⊂ Rm andy

t ∈ Y ⊂ Rp represent
the input and the desired output of a general neural networkγ,
at the timet , respectively (hence,ν0 = m and νL = p ). If
one assumes the data to be generated by a sufficiently smooth
function f : Rm −→ Rp , i.e., y

t = f(ut) (suitable smooth-
ness hypotheses onf can be assumed according to the process
generating the data), then the approximation properties of feed-
forward neural networks guarantee the existence of a weights
vectorw∗ ∈ W ⊂ Rn such that

f(u) = γ(w∗, u) + η , ∀u ∈ U, (2)

whereη is the network approximation error andU ⊂ Rm (see,
e.g., [15, 16]). Now, letηt be the error made in approximating
f by the neural network implementing the mappingγ, for the
inputut. Such a network can be represented as

{
wt+1 = wt
y

t = γ ( wt, ut ) + η
t

t = 1, 2, . . . , (3)

where the network weights play the role of a constant state
equal to the “ideal” network weights vectorw∗, i.e., w1 =
w2 = . . . = wP

4
= w∗ , andη

t ∈ K ⊂ Rp is a noise vector.
The fictitious dynamic equations (3) allow one to regard super-
vised learning of feedforward neural networks as the problem
of estimating the state of a nonlinear system. The measurement
equation defines the nonlinear relationship among inputs, out-
puts, and weights according to the functionγ implemented by
the network. From now on we suppose that the network activa-
tion function in (1) belongs to the classC1 (R) .

The representation (3) will be used in the following as the de-
parture point to derive a training algorithm as a recursive state
estimator for the system representing the network.

3 EKF-based parameters optimization for neu-
ral networks

A general EKF-based weights optimization algorithm can be
described as follows.

EKF Algorithm . The estimateŵt of the network weights at
time t = 1, 2, . . . is given by

ŵt = ŵt−1 + Kt

[
y

t − γ (ŵt−1, ut)
]

(4)

where

Ht =
∂γ(w, u)

∂w

∣∣∣∣
w=ŵ

t−1,u=u
t

(5)

Kt = PtH
T
t

(
HtPtH

T
t + Rt

)−1
(6)

Pt+1 = Pt −KtH
T
t PT

t + Qt, (7)

P0 and Rt are symmetric positive definite matrices,Qt is
a symmetric positive semidefinite matrix, and (4) is initialized
with a givenŵ0 .

The extended Kalman filter is the Kalman filter of an approxi-
mate model of the nonlinear system linearized around the last
estimate [17, 18, 19]. In the Kalman filter it is feasible to
carry out the off-line computation of error covariance (i.e.,Pt )
and gain (i.e.,Kt ) matrices; on the contrary, for the extended
Kalman filterHt is a function ofŵt−1 andut , which requires
the on-line computation of such matrices.

Remark. The matrix Qt is usually taken equal either to the
null matrix or to ε I, with a small ε. The choice ofRt turns
out to be more critical, as it represents the amount of the ap-
proximation error. Clearly, at first, it is difficult to figure it out
since it depends on the structure of the networks with the initial
choice of the weights, i.e.,̄w0 . In order to overcome this issue,
the matrixRt is chosen quite large and tuned on-line (see, for
example, [9], p. 962, formulas (34)–(36)).

EKF-based optimization can be used also in a batch mode.
Batch training overcomes the issues arising with large data set
by dividing the patterns into data batches of fixed length and by
training the network with each batch at a time [20]. The pro-
posed approach includes both standard EKF and batch-mode
learning and is well-suited to dealing with large amount of data.
According to recent results [21], we propose to shift the data
batch of d steps, in general, withd ≤ N , as shown in Fig.
1. Full batch training may be obtained by choosingd equal to
N .

Let us now consider a temporal window movingd stages at a
time, where1 ≤ d ≤ N . Given a fixed number of iterations,
say t, t = 1, 2, . . . , N + t − 1 input/output patterns of the



Figure 1: Thed-step batch-mode training.

Figure 2: Comparison between the one-step and theN -step batch-mode training.

data set are explored ifd = 1 and N(t + 1) − 1 if d = N .
In a general case , the amount of patterns processed at stept is
equal toN + d t− 1 (see Fig. 2).

Let

G
(
w, ut

t−N+1

) 4
=




γ
(
w, ut−N+1

)
γ

(
w, ut−N+2

)
...

γ (w, ut)


 ∈ Rp N (8)

where ut
t−N+1

4
= col

(
ut−N+1, ut−N+2, . . . , ut

) ∈ UN

(recall that ut ∈ U ⊂ Rm). Similarly, let yt
t−N+1

4
=

col
(
y

t−N+1, yt−N+2, . . . , yt

)
.

Thus, the extension of the EKF training to the generald-step
case may be expressed as follows.

Batch-mode EKF (BEKF) Algorithm . The estimatêwt , t =
N, N + 1, . . . of the network weights is given by

ŵt = ŵt−1 +Kt

[
yd(t−N)+N−1

d(t−N)

−G (ŵt−1, u
d(t−N)+N−1
d(t−N) )

]
(9)

where

Ht =
∂G(w, u)

∂w

∣∣∣∣
w=ŵ

t−1,u=ud(t−N)+N−1
d(t−N)

(10)

Kt = PtHT
t

(HtPtHT
t +Rt

)−1
(11)

Pt+1 = Pt −KtHT
t PT

t +Qt, (12)

P0 and Rt are symmetric positive definite matrices,Qt is
a symmetric positive semidefinite matrix, and (9) is initialized
with a givenŵN−1 .

Note that algorithm BEKF exactly corresponds to the EKF
training if d and N are both taken equal to 1. As, at each time

t , N input/output pairs are processed instead of one, more
computation is involved as the matrix to invert is of dimension
(pN)2 instead ofp2 . This, however, makes efficient coding
crucial as larger matrices are involved in the computation.

A generalization of the previous algorithm consists in repeating
the weight and covariance updates by using the same batch of
input/output patterns. Following [22] for the sake of compari-
son with alternative training methods, the repetitions are called
epochs. Such a training method is called Iterated Batch-mode
EKF (IBEKF) learning and corresponds to the procedure given
below.

Iterated Batch-mode EKF (IBEKF) Algorithm . The esti-
mate ŵt , t = N, N + 1, . . . of the network weights is given
by

w̃1 = ŵt−1

for i = 1, 2, . . . , NE

Hj =
∂G(w, u)

∂w

∣∣∣∣
w=w̃

i,u=ud(t−N)+N−1
d(t−N)

Kj = PjHT
j

(HjPjHT
j +Rj

)−1

Pj+1 = Pj −KjHT
j PT

j +Qj

w̃i+1 = w̃i +Kj

[
yd(t−N)+N−1

d(t−N)

−G (w̃i, u
d(t−N)+N−1
d(t−N) )

]

j = j + 1

end

ŵt = w̃NE+1

where P0 and Rj are symmetric positive definite matrices,
Qj is a symmetric positive semidefinite matrix,NE is the num-
ber of epochs, and the algorithm is initialized with a given
ŵN−1 and j = 1.



Algorithm Mean Error Mean Time (s) Mean Err · Time (s)
trainb 7.0494·10−2 4.979 3.51·10−1

trainbfg 9.7237·10−3 6.143 5.91·10−2

traincgb 1.8239·10−2 5.138 9.62·10−2

traincgf 1.3644·10−2 5.035 6.90·10−2

trainekf 2.5044·10−4 1.384 3.41·10−4

traingda 5.7891·10−2 2.298 1.33·10−1

traingdx 7.1620·10−2 2.301 1.64·10−1

trainlm 5.5580·10−3 4.097 2.27·10−2

trainoss 1.0452·10−2 4.907 5.17·10−2

trainrp 3.8550·10−2 2.311 8.92·10−2

trainscg 1.1021·10−2 3.916 4.31·10−2

Table 1: Predictions with a 6–neuron one-hidden-layer neural network withd = 10, N = 10, andNE = 10

Algorithm Mean Error Mean Time (s) Mean Err · Time (s)
trainb 5.6550·10−2 4.997 2.83·10−1

trainbfg 1.3295·10−2 6.640 8.86·10−2

traincgb 1.7554·10−2 5.128 9.01·10−2

traincgf 1.0989·10−2 5.030 5.68·10−2

trainekf 1.3101·10−4 2.164 2.91·10−4

traingda 4.3441·10−2 2.330 1.01·10−1

traingdx 4.9537·10−2 2.270 1.13·10−1

trainlm 8.4738·10−3 6.755 5.67·10−2

trainoss 8.9392·10−3 4.841 4.31·10−2

trainrp 3.6963·10−2 2.350 8.70·10−2

trainscg 1.2280·10−2 3.991 4.90·10−2

Table 2: Predictions with a 9–neuron one-hidden-layer neural network withd = 10, N = 10, andNE = 10

IBEKF reduces to BEKF algorithm ifNE = 1. It is worth to
remark that IBEKF training method turns out to be the result of
the application of the so-called Iterated Extended Kalman filter
to the problem considered (see, e.g., [23]). The use of iterated
Kalman filtering techniques to solve nonlinear programming
problems is discussed in [14].

4 Numerical results

In this section, a problem of prediction for a chaotic time se-
ries is considered to evaluate the effectiveness of EKF learn-
ing (trainekf) in comparison with other widely used train-
ing algorithms (see [22]): batch training with weight and
bias learning rules (trainb), BFGS quasi-Newton backpropa-
gation (trainbfg), Powell-Beale conjugate gradient backprop-
agation (traincgb), Fletcher-Powell conjugate gradient back-
propagation (traincgf), gradient descent with adaptive learn-
ing rate backpropagation (traingda), gradient descent with mo-
mentum and adaptive backpropagation (traingdx), Levenberg-
Marquardt backpropagation (trainlm), one-step secant back-
propagation (trainoss), resilient backpropagation (trainrp),
scaled conjugate gradient backpropagation (trainscg). In the
tests, we considered the Mackey-Glass series [24], which is

a quite standard benchmark. The discrete-time Mackey-Glass
series is given by the following delay-difference equation:

xt+1 = (1− c1) xt + c2
xt−τ

1 + (xt−τ )10
, t = τ, τ + 1, . . .

(13)
where τ ≥ 1 is an integer. The training data were generated
using the parametersc1 = 0.1, c2 = 0.2, τ = 30 and choosing
the initial values ofxt uniformly distributed between 0 and
0.4. We arranged for data sets made of 100 series, each with
2000 samples. The first 1000 time steps of each series were
omitted. The succeeding 500 time steps were used for training,
the remaining 500 for testing. The prediction is constructed
by assuming that the next valuext+1 depends on a vector of
constant length given by the previousl + 1 samples, that is

xt+1 ← [xt, xt−1, xt−2, . . . , xt−l], (14)

wherel was chosen equal to5. Tables 1 and 2 summarize the
simulation results. Each entry in the tables is averaged over
100 different tests, where time series with different initial con-
ditions (uniformly distributed between 0 and 0.4) and random
initial weights are used in each trial. All training algorithms
used for comparison are available from the Matlab Neural Tool-
box [24].
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Figure 3: Mackey-Glass series predictions with a 9–neuron one-hidden-layer neural network for the four best training methods.



As can be seen in Tables 1 and 2,trainekf outperforms all
the other algorithms in terms of both approximation precision
(see the “Mean Error” column) and computational load (see the
“Mean Time” column). Moreover, as a high precision may re-
quire too much computation, the efficiency may be more fairly
evaluated by comparing the product of these performance in-
dexes, which is given in the last column. The prediction capa-
bilities obtained with the four best training methods (trainekf,
trainbfg, trainlm, and trainoss) with a 9–neuron one-hidden-
layer neural network are shown in Figure 3.

5 Conclusions

The problem of training neural networks via EKF has been con-
sidered and batch-mode EKF learning algorithms have been
proposed to optimize the weights values. Simulation results
show that the EKF training outperforms other well-known
learning algorithms. However, in a fair evaluation of pros and
cons, we have to point out that the EKF has to account for the
storage requirements of the covariance matrix. This issue will
be the objective of future investigations, as well as the conver-
gence properties of EKF training.
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