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Abstract 
In this paper, an extended linearized neural state space 
(ELNSS) model is proposed and used to design an 
approximate pole assignment control strategy for a class 
of nonlinear systems. At first, the applicability of the 
ELNSS model to approximate affine nonlinear systems 
is studied, where the extended Kalman filter (EKF) 
algorithm is employed to train the weights of the 
ELNSS model.  It has been shown that such a training 
algorithm can guarantee the convergence of the network 
weights. Using the trained weights in the ELNSS model, 
the design of an approximate pole assignment controller 
is performed using a state feedback framework. The 
convergence of the approximate pole assignment 
adaptive control algorithm is also analyzed. 

 
1. Introduction 

 
It is well known that in the neural network based 
controller design ([1]-[3]), the primary task is to 
construct a neural network of a suitable type and 
architecture. Once this is completed, the controller 
design and system analysis, such as the convergence 
and stability of the closed loop system, can be readily 
carried out.  In this context, a number of neural 
network based control structures have been developed.  
Examples are feedforward neural network control 
schemes ([1]-[3], [16]) and radial basis function based 
modelling and control methods ([14]-[16]).  In 1995, 
a neural state space model for the identification and 
robust control design of nonlinear systems was 
proposed [1]. From then on, many researchers have 
adopted this neural state space structure to model and 
analyze the system, and to design various controllers 
for nonlinear systems [2~4]. Despite many reported 
successful applications of the neural state space model 
to nonlinear system identification  and  control,  the 
 
 
 
 

actual procedure of designing a controller using the 
neural state space models is similar to the formulations  
of other neural networks based controllers and in 
general complicated procedures are involved. 
 
In this paper, an extended linearized neural state space 
model is proposed. The ELNSS model is of a 
controllable canonical form which simplifies the 
required controller design. Moreover, the weights in the 
ELNSS model are composed of multi-layers neurons 
which enables the ELNSS model to effectively 
approximate general unknown nonlinear functions. The 
questions to be asked here is whether this new type of 
neural state space model ([1]) can be used for the 
identification of nonlinear systems in the same way as 
that of a multiplayer feedforward neural network 
(MFNN). In this paper, the feasibility of using ELNSS 
to model affine nonlinear systems is investigated. 
Indeed, the weights training for the ELNSS model 
employs the well-known extended Kalman filter (EKF) 
algorithm.  This procedure is the same as the situation 
when the EKF method is applied to the training of 
MFNNs. It has been shown that the convergence of the 
training algorithm can be guaranteed if the associated 
learning rate is correctly chosen. 
 
It is well known that the pole assignment method is an 
effective and simple scheme in linear control system 
design, where the controller can be obtained so as to 
guarantee the stability of the closed loop system. For 
nonlinear systems, several pole assignment control 
methods have been developed through the concept of 
closed loop linearizations [5~9]. Since the ELNSS 
model exhibits a quasi-linear character ([1]), the pole 
assignment controller design can be also applied to the 
ELNSS models. In this paper, a nonlinear approximate 
pole assignment control algorithm is proposed using an 
ELNSS model and the convergence of the closed loop 
system is analyzed.  
 
 
 
 
 



 
2. Modelling using an ELNSS model 

 
Consider the following discrete nonlinear dynamic 
system 
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where x(k)∈ Rn is the state vector, u(k)∈ Rm is the input 
vector and y(k)∈ Rr is the output vector.  

 
This is a general nonlinear expression for nonlinear 
systems whose direct control formulation is difficult to 
perform. To overcome this difficulty, the following 
extended linearization model of nonlinear system was 
proposed in [12]. 
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where ))(( kxA and ))(( kxB are general nonlinear 

functions of the state x(k) at discrete sample time k. 
For system (2), an extended linearized neural state 
space model is established, which is in fact a recurrent 
network model of the following form 
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where X(k), Y(k) and U(k) are state, output and input, 
respectively, and σ(• ) is a sigmoid function. Consider 
an SISO nonlinear system and suppose that matrix A  
is of a controllable companion canonical form 
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where { )(),( kbka ii } are nonlinear functions of the 

state vector X with the following neural networks form 
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and ijW  are the weights in the ELNSS model, and 

iξ  is the threshold. The advantage of the ELNSS 

model is that each element of A and B is the nonlinear 
combination of the state vector with the form that is 
similar to a neural network. As a result, the  
 
 

 
 

 
well-established linear system approaches can be 
readily extended to the controller design for the 
nonlinear systems represented by ELNSS models. 
It is well known that the nonlinear discrete systems 
described by (1) can be approximated by the dynamic 
systems constituted by neural networks with arbitrary 
accuracy. Since the ELNSS model is a special recurrent 
neural network, the feasibility of using ELNSS model 
for the identification of nonlinear discrete systems can 
be proved similarly.  In the rest of this paper, we 
consider the following affine unknown nonlinear 
system  
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where the purpose of system identification is to use the 
measured inputs and the outputs to estimate (i.e., to 
model) the unknown nonlinear functions )(•f  and 

)(•g .  By choosing the state as follows 
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then equation (6) can be described in the state space 
form to give 
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When BP feedforward neural networks with more than 
one hidden layers are adpoted to model  unknown 
nonlinear functions )(•f  and )(•g , respectively, there 

exist weight matrices *W and *V  such that  
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where *W and *V are constant vectors constitued by 
*** ,, iiji vww  and *

ijv , respectively, and )(•H is  a 

sigmoid function. Thus, the system described by (6) 
can be represented as  

kk uVkxgWkxfy )),((ˆ)),((ˆ **
1 +=+      (9) 

 

 

 



 

When ELNSS model is adopted to estimate the 
unknown )(•f  and )(•g , it can be rewritten as 
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where ))(( kxf i and ))((~ kxg can be represented as 

)),((ˆ *Wkxf  and )),((ˆ *Vkxg  in (9), respectively. 

))((
~

kxf can be considered as the output of a new 

neural network whose output of hidden layer is 
))(( kxfi , and output of the output layer is )(kxi . As 

such,  there exists a weight **W vector that makes 

)),((
~ **Wkxf be equivalent to )),((ˆ *Wkxf . Since the 

neural network described by (9) can identify the 
nonlinear systems represented by (6), the ElNSS 
model can be also used for the identification of the 
nonlinear systems described by equation (6).  Similar 
to other neural networks, the ELNSS model can be 
trained by using several training methods, such as the 
well known back propagation algorithms, the 
conjugate gradient method [10], Levenberg-Marquardt 
optimisation algorithm [11] and methods based on 
genetic algorithms [12]. In this study, the extended 
Kalman filter (EKF) algorithm [16] is adopted to train 
the ELNSS model so as to ensure fast convergence. It 
should be noticed that the learning rate in EKF could 
be made adaptive. Therefore the problem of a properly 
tuning of the learning rate can be avoided.  The 
principle of EKF is as follows:  
Considering the nonlinear system described by (1) that 
is modeled by an ELNNS model. Denote the 
parameters of the ELNNS model as θ, and then the 
nonlinear state space equation of the ELNNS model 
can be rewritten as 

        θ(k+1)=θ(k)                    (11) 
ym(k)=f(θ(k))+v(k)                (12) 

where v(k) is a noise.  With the EKF training 
algorithm, the ELNSS model parameters are updated 
as follows: 
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where K(k) is the Kalman gain matrix, P(k) is the 
estimated error covariance matrix, and R(k) is the 
estimated covariance  matrix of noise v(k).  For  
SISO systems R(k) = r(k) is an estimate of covariance of 
noise v(t). In this context, it can be further obtained by  
the following recursive calculation 
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where H(k) is a Jacoobian matrix of output y(k) with 
respect to parameter vector )(kθ at time k. This means 

that H(k) can be calculated from 
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With respect to the convergence of learning process, 
the following theorem can be established. 
 
Theorem 1: The convergence of the ELNSS model 
(11)-(12) can be guaranteed if η  in (13) is chosen as  
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and the optimal η  is given by  

    max
* /1 g=η                      (25) 

Proof: Denote )()()( kykyke m−= , then one can 

choose the following Lyapunov function 
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Assuming the modelling error is approximated as 
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  it can be shown that 
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If condition (22) is satisfied, then from equation
 (28) it can be seen that 0)( <∆ kV . 

 
3. Nonlinear system approximate 

 
Because the ELNSS model can approximate a class of 
nonlinear systems and represent pseudo-linearity,  
control design approaches, such as model reference 
adaptive control and pole assignment method, can be 
applied to the nonlinear system modelled by the 
ELNSS scheme. In this section, a new nonlinear pole 
assignment control method is introduced. Different 
from other nonlinear pole assignment method through 
output feedback linearizations, the purpose of the new 
nonlinear pole assignment method is to ensure that the 
closed loop state space equation of the ELNSS model 
has the same set of poles as the desired linear system 
controlled by a state feedback scheme. The procedures 
of controller design are as follows: 

 
Step 1: An ELNSS model with following form is used 
for the modelling of a nonlinear system. 

    



















=•

)()(

1

010

0010

)(

1 kaka

A

n���

����

��

�

 

[ ]100)](,0,0[)( �� ==• CkbB T       (29) 

If 0)( ≠kb and not all )(kai are zero, 

system },{ BA is completely controllable at each 

sample time. From the feasibility proof of using the 
ELNSS model for the identification of affine nonlinear 
systems in section 2, it can be seen that there exist 

model parameters { **, ba WW }, which make the ELNSS 

model be equivalent to the identified nonlinear system. 

In this case, *A is constituted by )(* kai �and *B is 

constituted by )(* kb and )(* kai  and )(* kb are 

nonlinear functions constituted by { )(* kWa , )(* kx } 

and { )(* kWb , )(* kx }, respectively. 

Step 2: Define a state feedback gain matrix as K , 
which is a vector in SISO system. 
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then it can be seen that each element in K vector is a 
function of state X and weight W. 
 
Step 3: The output of the controller is as follows 

 )()()( krkKXku +−=                 (30) 

which leads to the following ELNSS model based 
closed loop system  
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Step 4: Set the desired pole vector of the closed loop 

system as ],,[ 21 nP λλλ ��

�

=  then the expected linear 

system state space model is given by 
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To design the controller, it requires that Φ=A
~

.  This 
means that  
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In this context, the ELNSS model based closed loop 
system is made completely equal to the linear system 
with expected eigenvalues. Therefore, the dynamic 
performance of nonlinear system can be determined by 
altering the poles of expected linear system (33).  In 
terms of stability, since the ELNSS model is an 
extended linearization of the identified nonlinear 
system, the ELNSS model based closed loop system is 
stable.  This indicates that the nonlinear system 
represented by ELNSS model is stable if all the poles 
are within the unit circle. As for a time-variant 
nonlinear system, a nonlinear pole assignment adaptive 
algorithm can be similarly developed. In the adaptive 
framework, the parameters { )(),( kWkW ba } in the 

ELNSS model are learnt online. When the output of 
ELNSS model tracks the output of real system with 
satisfactory accuracy, the ELNSS model is the  
 
 
 
 



 
 
instantaneous linearization model of the real system 
([19]). The state feedback gain vector at each sample 
time k can be calculated by using )(kWa , 

)(kWb and equations (31)~(35) as follows. 
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The resulting controller can therefore be obtained by 
substituting (36) into (30).  In terms of the 
convergence for the adaptive controller given by 
equation (36), the following theorem can be 
established: 

 
Theorem 2: If an ELNSS model is trained by EKF 
method and condition (22) is satisfied, then the 
adaptive ELNSS model based approximate pole 
assignment control algorithm (36) is convergent. 

 
Proof: Let an ELNSS model to be the identification 
model of the nonlinear system, then the parameters 
{ )(),( kWkW ba } in the ELNSS model at each sample 

time can be obtained by the EKF training method, 
where the state feedback vector at each sample time is 
calculated using equation (36). 

 
Following the proof of theorem 1, it can be concluded 

that there exist parameters { ** , ba WW } and state vector 
*x , such that the ELNSS model },{ ** BA can be 

made equivalent to the identified nonlinear system. By 
choosing the same Lyapunov function as (26) and 
following the convergence proof of the training 
process in theorem 1, it can be seen that condition (22) 
also guarantees. 
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Substituting equations (37) and (38) into equation 
(36), it can be further obtained that 
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and in terms of the pole assignment, we have 
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Equation (40) indicates that the poles of the closed loop 
system is convergent to those of the desired linear 
system.  The stability of desired closed loop system is 
therefore guaranteed when its poles are placed inside 
the unit circle. As such, the approximate pole 
assignment adaptive control algorithm (36) is 
convergent. 
 
4. An example 
Consider an affine nonlinear system of the following 
form: 
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The architecture of the ELNSS model is selected 
whose input is given by I(t)=[x1(t), x2(t), x3(t), u(t-1)]T. 
Suppose that the initial EKF identification parameters 
are P(0)=105*I, R(0)=2*10-5, then after 18 training 
epochs, the mean squared error between the output of 
the ELNSS model and the system (41) is 2.69*10-6. 
The weights of the ELNSS model are therefore 
obtained.  The  training data is input again to test the 
performance of identification, where the mean squared 
error between the output of ELNSS model and the 
output of the system (41) is 3.72*10-5. 
 
Using the established ELNSS model, an approximate 
pole assignment controller is designed according to (30) 
and (35) with the poles of the desired closed loop linear 
system being as follows: 

     ]108.0,108.0,108.0[ 533 −−− ×××=p  

The reference trajectory is described by the following 
equation 
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The simulated closed loop response is shown in Figure 
1, where the mean squared of tracking error is 
6.72*10-5. 

 
 
5. Conclusions 
In this paper, an extended linearized neural state space 
model is developed and used to model a class of 
nonlinear dynamic systems. Since the ELNSS model  
 
 
 
 
 



 
 
 
exhibits pseudo-linearity nature, most linear system 
controller design approaches can be applied to the 
ELNSS model represented systems. In particular, the 
ELNSS model is an approximation of Volterra basis 
neural networks in some cases. Therefore, the 
ELNSS model is suitable to model the system with 
polynomial characteristics. In the paper the extended 
Kalman filtering based learning algorithm ([12]) is 
adopted to estimate the parameters of the ELNSS 
model. The applicability of using ELNSS to model a 
class of nonlinear systems has been proved. The 
nonlinear system approximate pole assignment 
control approach was proposed using the ELNSS 
model. The convergence of corresponding adaptive 
algorithm was investigated.  In fact, the closed loop 
system stability is guaranteed by choosing a suitable 
set of poles of an expected linear system. 

 
Acknowledgements:- The work is funded by NSFC 
under 69974017 and 60274020, and Guangxi NSF 
0135065 and Hebei NSF 602621.  

 
References 

 
[1] J. A. K. Suykens, and B. DeMoor, and J. 

Vandewalle, “Nonlinear system identification using 
neural state space models, applicable to robust 
control design, Int. J. Control, Vol. 62, No. 1, pp. 
129-152, (1995). 

[2] J. M. Zamarreno, P. Vega, “State space neural 
network. properties and application”, Neural 
networks, Vol. 11, pp. 1099-1112, (1998) 

[3] J. M. Zamarren, P. Vega, L. D. GarcmHa and M. 
Francisco, “State-space neural network for 
modelling, prediction and control”, Control 
Engineering Practice, Vol. 8, pp. 1061-1075, (2000). 

[4] H. Zhao; J. Guiver; R. Neelakantan; L.T. Biegler, 
“A nonlinear industrial model predictive controller 
using integrated PLS and neural net state space 
model, Proc. 14th IFAC, Vol. N, pp. 13-18, (1999). 

[5] T. Oguchi, A. Watanabe, T. Nakamizo, “A finite 
pole assignment procedure for retarded nonlinear 
systems”, Proceeding of ACC, pp. 2682-2686, 
(1997). 

[6] W. Daniel, C. Ho, J. Lam, J. Xu, “Neural 
computation for robust approximate pole 
assignment”, Neurocomputing Vol. 25, pp. 191-211, 
(1999). 

[7] Y. Li Y, B. Zhang and C. Cao, “A neural network 
method of linearization and pole assignment for 
the nonlinear control system”, ACTA, 
AUTOMATICA SINICA, Vol. 22, No. 6, pp. 
708-712, (1996). 

 

 

 

 

 

[8] B. Friendland, “Advanced control system design, 
Prentice-hall, Englewood Cliffs, NJ, (1996). 

[9] J. A. Leonard, and M. A. Kramer, “Improvement of 
the back-propagation algorithm for training neural 
networks”, Comput. Chemical Eng., Vol.14, pp. 
337-341, (1990). 

[10] D. Marquardt, “An algorithm for least squares 
estimation of nonlinear parameters,” SIAM J. Appl. 
Math., Vol.11, pp. 431-441, (1963). 

[11] D. E. Goldberg, “Genetic algorithms in Search, 
Optimization & Machine Learning Reading”,, MA: 
Addison-Wesley, (1989). 

[12] V. Gintaras, Puskorius and F. Lee, “Neurocontrol  
of nonlinear dynamical systems with Kalman filter 
trained recurrent networks”, IEEE Trans. On 
Neural Networks, Vol. 5, no. 2, pp.279-297, 
(1994). 

[13] H. Wang, M. Brown and C. J. Harris, "Neural 
network based modelling of unknown nonlinear 
systems subject to immeasurable disturbances", 
IEE Proc. on Control Theory and Applications, Vol. 
141, pp. 216-212, (1994). 

[14] H. Wang, M Brown and C. J. Harris, "Modelling and 
control of nonlinear, operating point dependent 
systems via associative memory networks", Int. J. 
of Dynamics and Control, Vol. 7, pp. 199 – 218, 
(1996).  

 
[15] J. Noriega, and H. Wang, "A direct adaptive neural 

network control for unknown nonlinear systems 
and its application", IEEE Transactions on Neural 
Networks, Vol. 9, pp. 27-34, (1998). 

 
[16] Q. Wu, Y. Wang and H. Wang, “An extended 

linearized neural state space based modeling and 
control”, The Proc. of the 15th IFAC World 
Congress, Barcelona, Spain, (2002). 

� � � � � � � � � � � � � � � � � � � � � �
�

� � � �

� � �

� � � �

� � 	

� � 	 �

� � 


� � 
 �

� � �

��
� � � � � 
�

�

 
Fig 1. Closed loop system response of example 1. 
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