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Abstract 
This paper includes the description of a batch beer 
fermentation process that has been optimised using a 
technique based on the application of calculus of variations.  
The gradient method in function space is thus introduced as a 
valuable tool for the optimal control of the beer fermentation 
process selected.  The results obtained for three different 
cases using this method are also included. 

1  Introduction 
The term �fermentation� is derived from the Latin verb 
fervere, that means to boil, thus describing the appearance of 
the action of yeast on extracts of fruit or malted grain [9].  
Yeast is a single-celled micro organism that reproduces by 
maturing.  The conventional way for beer fermentation is to 
add yeast to the worth and wait for some time, letting the 
yeast consume substrates and produce ethanol (without 
stirring).  According to the industry, lager yeast strains are 
best used at temperatures ranging from 7 to 15ºC [5].  
Herewith, lager yeasts develop slower than ale yeasts, and 
with less surface foam they tend to settle down to the bottom 
of the fermentor close to the end of the fermentation (referred 
to as bottom yeasts).  The ultimate flavour of the beer 
depends significantly on the strain of lager yeast and the 
temperatures at which it was fermented.  Thus, fermentation 
can be accelerated with an increase of temperature but, 
however, some contamination risks (Lactobacillus, etc.) and 
undesirable by-products (diacetyl, ethyl acetate, etc.) could 
appear. 

Biotechnological processes, as the fermentation one, may be 
conveniently classified according to the mode chosen for 
process operation: either batch, fed-batch or continuous [6].  
During batch operation of a process, no substrate is added to 
the initial charge nor is product removed until the end of the 
process.  Conditions are continuously changing with time, 
and the fermentor is an unsteady-state system, although in a 
well-mixed reactor, conditions can be assumed to be 
consistent throughout the reactor at any instant of time [4]. 

Most real life processes cannot be represented by a 
deterministic model (an exact representation of the process) 

because of the dynamic nature of the process and the lack of 
information and other uncertainties being associated with the 
available data.  In practice, all systems are usually non-linear 
and, therefore, may exhibit forms of behaviour that are not at 
all apparent from the study of the linearised versions.  The 
model is not expected to be a reconstruction of the process, 
rather it is intended to serve as a set of operators on the 
identified set of inputs, producing similar output as expected 
from the process. 

Continuous constrained optimisation techniques such as 
bound-constrained optimisation problems, play an important 
role in the development of software for the general 
constrained problem because many constrained codes reduce 
the solution of the general problem to the solution of a 
sequence of bound-constrained problems.  It is also important 
in applications because parameters that describe physical 
quantities are often constrained to lie in a given range [3]. 

A method of first order gradients is probably the easiest and 
most stable computation of optimal control, because if the 
system state equations are stable in forward time then the co-
state equations are stable when integrated in reverse time.  
Convergence is not usually critically dependent on a first 
approximation.  For the particular case of the continuous 
process that the beer fermentation presents, a direct method 
known as the gradient method in function space has been 
selected [2, 8]. 

2  The Batch Beer Fermentation Process 
The mathematical model chosen to be part of the simulation 
(and subsequently the optimisation process) is the kinetic 
model by Andres-Toro et al. [1] since it has been obtained 
from many experimental studies at laboratory scale showing 
good results.  It takes into account realistic aspects of the 
process such as characteristics of the wort and yeast, and also 
two important by-products of the fermentation: ethyl acetate 
and diacetyl. 

Biomass is segregated into three different types of cells: lag, 
active and dead.  The whole process can be divided in two 
successive phases: a lag phase and a fermentation phase.  A 
scheme of the process with its main variables is presented in 
Figure 1.  Table 1 describes the nomenclature used for this 
mathematical model. 



Fig. 1: Process scheme for the kinetic model  [1]. 
 

Parameter Description Unit 
µa Ethanol production rate h-1 
µD Specific yeast settling down rate g/l 
µeas Ethyl acetate coefficient rate g/l 
µlag Specific rate of latent formation h-1 
µs Substrate consumption rate h-1 
µx Specific yeast growth rate h-1 

acet Ethyl acetate concentration ppm 
diac Diacetyl concentration ppm 

e Ethanol concentration g/l 
f Fermentation inhibitor factor g/l 

kdc Diacetyl appearance rate  
kdm Diacetyl reduction rate  
km Yeast growth inhibition parameter g/l 
ks Sugar inhibition parameter g/l 
s Concentration of sugar g/l 
s0 Initial concentration of sugar g/l 
t Time h 
T Temperature °C 

xactive Suspended active biomass g/l 
xdead Suspended dead biomass g/l 
xlag Suspended latent biomass g/l 

Table 1: Nomenclature used 

Herewith, the enunciation of the model corresponding to the 
lag and fermentation phases is as follows: 
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To describe the evolution of the by-products that have an 
important impact (ethyl acetate contributes with a fruity odour 

and flavour, and diacetyl makes beer heavy and sweet 
flavoured), the following equations are established: 
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Since the process depends on temperature, the value of all 
parameters of the model is calculated by exponential 

equations of the Arrhenius type (
B

RTA eµ = ⋅ ).  The constant 
values of kdc and kdm were calculated with the experimental 
data for the diacetyl concentration's behaviour: 
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3  Formulation of The Optimal Control Problem 
The beer fermentation model described in Section 2 has been 
implemented in the SIMULINK environment.  This 
implemented model includes the objective function to be 
maximised.  The original objective function defined intends 
to reach the required ethanol level in the industrial 
fermentation without quality loss or contamination risks and 
also maintaining a good implementable profile for the 
industry [1].  The following sub functions are defined 
including penalty parameters to obtain an approximation of an 
objective function to be maximised: 
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with N∆t = tf. 

The intention of each of these factors in the objective function 
is as follows:  J1 measures the final ethanol production, J2 
limits the level of ethyl acetate at the end, J3 limits the 
diacetyl concentration at the end, J4 limits the temperature 
along the process, and J5 penalises brisk changes in 
temperature. 

These terms together provide an overall cost function of the 
process: 
  (29) 1 2 3 4J J J J J J= + + + +

Following the simulation of the industrial profile and after 
several experimentation with the SIMULINK model of the 
process [2]; the terms J2 and J3 have been found to be 
negligible compared with J1.  The last term J5 has been 
ignored at this stage in order to simplify the optimal control 
formulation and as a result, there is a significant reduction to 
the objective function and number of state equations.  These 
conditions can be considered a special case for the 
optimisation where . 2 3 5 0J J J= = =

With this, a new performance index Jr can be described as 
follows: 

minimise 
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Together with this, the reduced state and control signals (xi 
and u) are defined: 
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Subsequently, replacing these variables in equations 30-34 for 
the special case: 
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where the given initial conditions are stated and: 
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The optimisation problem can thus be written in the form: 

minimise 
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4  Application of Calculus of Variations 
The standard necessary optimality conditions for an 
unconstrained optimal control problem can be found by 
means of calculus of variations.  This principle is now 
applied to the optimisation problem and thus, the Hamiltonian 
(H) can be defined as [7]: 
  (49) ( , )du TH ce p f x u= +
Therefore, the Hamiltonian gradient can be represented as 
follows: 
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One of the necessary optimality conditions for a local 
maximiser is that this gradient should be equal to zero, so 
that: 
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It is important to note that since c and d are both positive, the 
equation 51 will only give a valid (real) result for u when: 
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The co-state equations are: 
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Then, the value of the different terms of these matrices can be 
calculated with partial derivatives from equations 36-39 and 
the initial conditions. 

5  The Gradient Method in Function Space 
In order to find the numerical computation of optimal control 
of both continuous and discrete-time systems there are mainly 
two approaches according to Noton [8]: indirect and direct 
methods of minimisation of a performance index (objective 
function).  In the direct approaches to minimisation, the state 
equations are influenced only by the control u(t) and the 
minimisation of the objective function J(u) by direct 
adjustment of u(t) is sought. 

A method of first order gradients is the simplest approach to a 
direct method in which the state and co-state equations 
remain separated.  The logical and convenient approach is to 
regard continuous time systems as the limiting case of 
discrete systems as the subinterval of time tends to zero. 

The method of steepest descent (first order gradients) consists 
therefore of applying the iterative correction: 
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where e is an arbitrary constant provided to regulate 
convergence (stability).  Since H depends on the co-state 
variables, the f(t) have to be generated by an iterative process. 

Thus, the algorithm can be described as follows: 

Data: tf, e 
Step 0: initialisation: Set iteration counter k = 1, and guess 

u(t)0 for the interval [0,tf]. 
Step 1: Compute x(t) and Jr from equations 47 and 46. 
Step 2: Compute the co-state vector p(t) by solving equation 

54 in reverse time. 
Step 3: Compute the Hamiltonian gradient Hu from equation 

50. 
Step 4: Update u(t) using equation 55.  That is: 
  (56) 1( ) ( )k k

uu t u t eH+ = −
Set k = k+1 and repeat from Step 1 until convergence 
is achieved. 

Note that because equation 51 is not solved explicitly, the 
associated validity condition is not an issue. 





Herewith, three cases have been considered in order to 
initialise the input temperature profile: 

Case 1: u(t) has been initialised at the optimal constant 
solution obtained using the MATLAB routine fminbnd, based 
on golden section search and parabolic interpolation, that is: 

[ ]( ) 14.6211,  0,160u t t= ∈  

Case 2: u(t) has been initialised at an arbitrary steady-state 
solution, that is: 

[ ]( ) 10,  0,160u t t= ∈  

Case 3: u(t) has been initialised at the industrial profile 
(defined by Andres-Toro et al, [1]). 

For each of these cases e = 1 was set initially.  Adaptation of 
this parameter was required during the optimisation routine 
by means of two regulating parameters k1 and k2 (set a priori 
to 1.1 and 0.75 respectively) which regulate at every iteration, 
the value of e by multiplying either k1 to increase or k2 to 
decrease it.  This adjusting procedure depends on the 
convergence of the real performance value obtained for every 
iteration. 

The MATLAB routine ode23 (low order method) was used to 
solve the state and co-state differential equations.  The 
iterations were considered to have converged when an 
increase in the value of Jr was observed.  The SIMULINK 
model was finally used to investigate the final individual 
performance components.  The results are summarised in 
Table 2. 
 
Case J(initial) Iter-

ations 
Jr J(final) Total 

time* 
1 597.8082 48 601.8149 599.01 39.166 
2 470.3171 253 601.9525 595.34 276.267 
3 548.2027 273 601.9667 593.13 278.761 

*Time in seconds using an 800MHz CPU PC with 256MB 
RAM. 

Table 2: Results obtained with the gradient method 

6  Analysis of Results 
With the optimum steady-state control profile obtained, an 
increment in the performance index from the original 518.90 
with the industry�s temperature profile has been reached to a 
new 597.80 value.  This means a percentage increase of more 
than 15% by making the problem formulation simpler. 

With the help of an adaptation technique for the value of e, 
the optimisation results using the gradient method in function 
space have been satisfactory after several tests.  It is 
significant to mention that little computational effort (overall 
process time) has been required to obtain the results.  The 
value of the performance index obtained for all three cases 
studied has been greater than the original value with the initial 
profile.  An important increase has been attained for Case 1, 
using the optimal constant profile as the initial profile 
(599.01).  Convergence problems were reasonably few, given 

that to obtain the optimised solutions testing was not 
extensive. 

The results for the maximum value of the performance index 
obtained among the different techniques and cases reviewed, 
have been included below (Case 1 using the gradient method). 

Figure 2 includes a comparison between the initial and final 
temperature control profiles applied to the mathematical 
model.  Then, Figure 3 shows the convergence development 
of the parameters u(t) and Jr versus the number of iterations. 
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The optimised temperature profile obtained can now be 
applied to the SIMULINK model that includes all the 
variables from the original objective function.  The new value 
of the performance index can be attained in this way.  Figure 
4 illustrates the SIMULINK model that includes the 
mathematical equations of the fermentation process, it also 
includes the values obtained for the different parameters using 
the selected Case 1 with the gradient method. 
 
 
 
 



 
 

Fig. 4: SIMULINK model used for beer fermentation process 

7  Conclusions and Further Work 
In this paper, the mathematical model of a beer fermentation 
process has been reviewed in order to use it as the subject of 
optimal control.  After the application of calculus of 
variations to the optimisation problem, a solution using a 
gradient method in function space has been achieved.  Results 
for three particular cases has been included and the values 
achieved demonstrate how helpful this optimisation technique 
is for the fermentation process considered. 

Further work can involve the use of different well-established 
optimisation methods adapted for the optimal control of the 
particular fermentation process included in this work. 
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