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Abstract: This paper addresses the design of traff ic state 
estimator for traff ic flow in motorway stretches. Motorway 
traff ic dynamics is modelled by a stochastic macroscopic 
traff ic flow model, while a traff ic state estimator is designed 
based on the extended-Kalman-filtering methodology. 
Besides the estimation of normal traff ic variables, the 
developed traff ic state estimator deals with the on-line 
estimation of unknown model parameters. Simulation 
investigations were conducted to test the traff ic state 
estimator under various traff ic conditions in a motorway 
stretch. 
 
1 Introduction 

Traff ic state estimation had been identified as an important 
task within a traff ic control loop already in the 1970s [13]. 
Traff ic state estimation for a motorway network refers to 
estimating all traff ic variables of the network at the current 
time instant based on available real-time traff ic 
measurements. More precisely, based on a limited amount of 
available measurement data from traff ic detectors, the 
estimation algorithms should deliver a complete image of the 
network’s traff ic state at the current time. It should be 
emphasized that the number of traff ic variables to be 
estimated may be much larger than the number of traff ic 
variables that are directly measured, and this is in fact the 
essential contribution of the motorway traff ic state estimation 
task. 

For traff ic state estimation, a limited number of research 
works produced and proposed corresponding estimation 
algorithms that were almost exclusively based on the seminal 
methodology of (extended) Kalman filtering. First 
applications of traff ic state estimation were reported in traff ic 
surveill ance systems for short inter-detector distances 
[6,8,11,12,16]. In these and later investigations, e.g. [1,15], 
only short sections with a length below 2 km were 
considered, see a review in [5]. The applied models were 
relatively simple (due to the short inter-detector distances). 
Later approaches [2,3] started using more comprehensive 
dynamic traff ic flow models, which opened the way to the 
consideration of longer motorway stretches (2~4 km), while 

more recent investigations [9,10] elaborated on some 
technical details based on previously proposed basic ideas. A 
noteworthy feature of some of these approaches is the real-
time estimation not only of normal traff ic variables, but also 
of some important traff ic model parameters (e.g. the free 
speed, the critical density, etc.), which may change due to 
environmental impact (weather conditions, darkness) or due 
to changing traff ic composition (e.g. percentage of trucks), 
see [4,7,16].  

Based on the extended Kalman filter, this paper follows a 
similar avenue to traff ic state estimation and exploits to the 
extent possible the previous approaches and investigations. 
The added value and innovative aspects of this paper as 
compared to previous investigations include: 
• Development of a general approach to real-time complete 

traff ic state estimation for motorway stretches.  
• Design and application of a traff ic state estimator to 

motorway stretches with on-ramps and off -ramps, which 
were not considered in previous works. 

• On-line estimation of unknown important model 
parameters such as free speed, critical density, and 
exponent. 

• Test of the designed traff ic state estimator under various 
traff ic conditions on a motorway stretch with on/off -ramps 
and a long inter-detector distance (5 km) in simulation.  

The rest of the paper is organized as follows: Section 2 
presents a general stochastic macroscopic model for traff ic 
flow in motorway stretches as well as a real-time traff ic 
measurement model, which are both organized in a state-
space form as required for the design of the traff ic state 
estimator. While constructing the state-space model, special 
attention is paid to the handling of the boundary conditions 
and unknown parameters of the macroscopic traff ic flow 
model. In Section 3, a number of simulations are conducted to 
test the performance of the designed traff ic state estimator 
and investigate the significance of on-line model parameter 
estimation. Finally, some conclusions are given in Section 4.  
 
2 Modelli ng and methodologies 

2.1 Macroscopic traff ic flow model of a motorway 
stretch 



A second-order validated macroscopic traffic flow model [14] 
is employed to describe dynamic traffic flow behaviour along 
a motorway stretch in terms of appropriate aggregate traffic 
variables. For the convenience of computation, a considered 
motorway stretch is sub-divided into a number N  of 
segments with lengths i∆ , Ni  , ,1 �= , while the time is 

discretized based on a time step T  and the time indices 
�,2  ,1  ,0=k . The aggregated traffic variables are expressed 

in this discrete space-time frame as follows: 
• Traffic density )(kiρ  (in veh/km/lane) is the number of 

vehicles in segment i  at time kT , divided successively 
by the segment length i∆  and lane number iλ .  

• Space mean speed )(kvi  (in km/h) is the average speed of 

all vehicles included in segment i  at time kT . 
• Traffic flow )(kqi  (in veh/h) is the number of vehicles 

leaving segment i  during the time period ])1(  ,[ TkkT + , 

divided by T . 
• Inflow )(kri  (in veh/h) at the on ramp and outflow )(ksi  

(in veh/h) at the off-ramp in segment i  (if any). 
The macroscopic model was shown to work pretty accurately 
with segment lengths in the order of 500 m (or less) [14]. 
While subdividing a motorway stretch into segments, care 
should be taken that any geometric inhomogeneities or 
installed traffic detectors along the motorway stretch are 
located at the boundaries of the segments. Moreover, each 
segment is allowed to have at most one on-ramp and one off-
ramp, both preferably at the upstream boundary of the 
segment.  

For a segment i , the macroscopic model equations are 
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where )(kiβ  (dimensionless) denotes the exiting rate at the 

off -ramp in segment i  (if any); τ , ν , κ , fv , crρ , and a  

are model parameters which are given the same values for all 
segments; in particular, fv  denotes the free speed, crρ  the 

critical density, and a  the exponent of the stationary speed 

equation; )( kv
iξ  and )( kq

iξ  denote zero-mean Gaussian 

white noise acting on the empirical speed equation and the 
approximate flow equation, respectively, to emulate the 

modelli ng inaccuracies. Note that Equation (1) is not 
corrupted by noise as it reflects the conservation of vehicles, 
which holds strictly in any case. The model parameters are 
normally unknown. However, it is reported in [14] that the 
model results are most sensitive to variations of the free 
speed, critical density, and exponent. In addition, these three 
model parameters may vary with daytime, weather, and other 
external conditions. Based on the fundamental diagram 

)()( ρρρ VQ ⋅= , the capacity of a stretch (per lane) may be 

deduced as  
[ ]avavq crfcrfcap 1exp) , ,( −⋅⋅= ρρ . (6) 

According to this segment traff ic flow model, )(kiρ  and 

)(kvi  may be viewed as (independent) segment variables of 

segment i  ( )(kqi  can be calculated from )(kiρ  and )(kvi ). 

On the other hand, for each time instant k , traff ic variables 
)(1 kqi− , )(1 kvi−  and )(1 ki+ρ  as well as )( kr i  and )( kiβ  

(if any) are needed for calculating )1( +kiρ  and )1( +kvi . 

These variables are boundary variables of segment i , 
incorporating the impact of the adjacent segments on the 
traff ic dynamics of segment i . Clearly, the complete 
macroscopic model of a motorway stretch can be built upon a 
chain of segment models interconnected via their respective 
boundary variables. More precisely, the stretch model of N  
segments consists of N2  equations with N2  independent 
segment variables 2211  , , , vv ρρ , …, NN v ,ρ  and a number 

of boundary variables: (a) flow at the stretch origin 0q , (b) 

speed at the stretch origin 0v , (c) density at the stretch end 

1+Nρ , (d) on-ramp inflows ir  (if any), and off -ramp exiting 

rates iβ  (if any). 

2.2 Model of traffic measurements 

Traff ic detectors are installed along motorway stretches at a 
separation of several kilometres as a main tool for obtaining 
real-time traff ic measurements. This paper only deals with the 
measurements of flow and mean speed, see also [17] for 
occupancy measurements.  

Consider a traff ic detector installed at the boundary of two 
adjacent segments i  and 1+i . For the flow measurement, we 
have 
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where )( kmq
i  denotes the flow measurement during the time 

period ]  ,)1[( kTTk − , and )(kq
iγ  the flow measurement 

noise. Except for the measurement of 0q , we have by (5)  
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For the mean speed measurement, we have  
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where )( kmv
i  denotes the speed measurement during the time 

period ]  ,)1[( kTTk −  and )(kv
iγ  the speed measurement 

noise. Regarding on/off -ramps, only flow measurements are 



of interest. The on-ramp and off-ramp flow measurements 

)( km r
i  and )( km s

i  (if any) are modelled, respectively, as 
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where )(kr
iγ  resp. )(ks

iγ  denote the on-ramp resp. off-ramp 

flow measurement noise. All measurement noise involved in 
(7)~(11) is assumed zero-mean Gaussian white. 

2.3 State-space model 

Define vectors z , d , p , 1
�

 as follows: 
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Note that if some segments do not include an on-ramp or off -
ramp, then vector d  is reduced accordingly. With the aid of 
these vectors, the macroscopic traff ic flow model of a 
motorway stretch can be expressed in a state-space form 

)]( ,)( ),( ),([)1( 1 kkkkk �pdzhz =+  (12) 

where h  is a nonlinear vector function corresponding to the 
N2  model equations. The utili zation of (12) requires the real-

time availabilit y of boundary variables )(kd  and the 

determination of the model parameters )(kp . However, some 

elements of )(kd  may not be measured or even not 

measurable while )(kp  are normally unknown (or partially 

unknown). More specifically, for )(kd , 

• Upstream boundary flow 0q  and speed 0v  are usually 

measured by a traff ic detector installed at the uppermost 
boundary of the motorway stretch, while downstream 
boundary density 1+Nρ  may not be directly measurable.  

• On-ramp inflows ir  are sometimes not measured when 

traff ic detectors are not installed at the corresponding on-
ramps.  

• Direct measurements of exiting rates iβ  are usually not 

available although off -ramp outflows is  may be 

measured.  

In order to overcome the obstacle due to partially missing 
boundary measurements and unknown model parameters, 
(12) has to be reformed. The main idea is to “eliminate” )(kd  

and )(kp  from the model by converting them into state 

variables. To this end, an auxili ary equation is introduced for 
d  as follows 

)()()1( 2 kkk �dd +=+ , (13) 

where )(2 k�  represents a vector of zero-mean Gaussian 

white noise. Similarly, unknown model parameters are 
modelled via  

)()()1( 3 kkk �pp +=+ , (14) 

where )(3 k�  represents a vector of zero-mean Gaussian 

white noise. The covariance matrices of )(2 k�  and )(3 k�  

must be chosen so as to reflect the typical time variations of 
the boundary variables and model parameters to be tracked. 

Combining (12), (13) and (14) leads to the following 
augmented state-space model 
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nonlinear differentiable vector function f  can be determined 
accordingly. As a result, all boundary variables and unknown 
model parameters are transformed into a part of the 
augmented model state x  (to be estimated).  

Consider a motorway stretch with traff ic detectors installed at 
its uppermost and lowermost boundaries, at some on/off -
ramps, and perhaps also at some internal segment boundaries. 
In terms of (15), the traff ic measurements formulated by (7)-
(11) can be rewritten in a compact form 

))(  ),(()( kkk �xgy =  (16) 

where vector y  consists of all measurements of flow and 

mean speed; g  is a nonlinear differentiable vector function; 

vector �  is a function of vector �  and vector 	  (consisting 

of all measurement noise in (7)-(11)). Equations (15) and (16) 
constitute a complete motorway traffic dynamic system 

( )
�
yx  , , ,Σ . 

2.4 Traffic state estimator design based on the extended 
Kalman filter 

Consider the dynamic system model ( )
�
yx  , , ,Σ . Assume 

that � ,  , and the system’s initial state satisfy some basic 

conditions [17]. At any time instant k , given )(ky  (and its 

values at all previous time instants), it is the goal of the traff ic 
state estimator to deliver state estimates )/1(ˆ kk +x  so as to 

minimize the covariance of the estimation error  

)]}1/(ˆ)([)]1/(ˆ)({[)( T −−⋅−−= kkkkkkEkJ xxxx  (17) 

where )1(ˆ kk +x  denotes the state estimate for time instant 

1+k  based on measurements available up to the k-th instant. 
Based on the extended-Kalman-filtering method, the traff ic 
state estimator can be designed as follows: 
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Where )(kK  is the gain matrix, which is calculated on-line 

based on the linear Taylor-expansion of f  and g  at 

)  ),1/(ˆ( 0x −kk  for each k . Although some other canonical 

forms can also be constructed based on the traffic flow model 

and the measurement model [17], ( )��
yx  , , ,Σ  leads to a 

straightforward, general, and unique formulation of the traffic 
state estimator for any motorway network of any topology, 
size, characteristics, and with any number and locations of 
sensors. Note that the extended Kalman filter represents a 
suboptimal solution for this problem (minimization of (17)), 



as an optimal filter for nonlinear systems would need infinite 
dimensions. 
 
3 Simulation investigations 

3.1 Simulation setup 

3.1.1 Description of a motorway stretch example 

A motorway stretch of 9 km is considered for the simulation 
investigations. The whole stretch is divided into 18 segments, 
each with a length of 500 m, while 10 segments in the middle 
of the stretch (4th to 13th; totally 5 km long) are considered for 
the traff ic state estimation. Fig. 1 displays these 10 segments 
(numbered from 1 to 10) and several adjacent upstream and 
downstream segments. An on-ramp is located in segment 7, 
while an off -ramp is located in segment 9. The whole 
motorway stretch has three lanes. Each lane upstream of 
segment 12 has a capacity of 2000 veh/h, while each lane 
downstream of segment 12 (including segment 12) has a 
capacity of 1500 veh/h. The free speed, critical density, and 
exponent parameter for the stretch upstream of segment 12, 
are 120 km/h, 33.5 veh/km/lane and 1.4324, respectively. 
Figure 2 shows the mean trajectories of the utili zed 
mainstream and on-ramp traff ic demands, while the off -ramp 
exiting rate varies randomly between 4% and 18%. Traff ic 
dynamics in the motorway stretch are simulated by use of the 
macroscopic traff ic flow model (12), while the augmented 
model (15) (but without noise involved) is employed by the 
traff ic state estimator. Since the traff ic state estimator has no 
prior knowledge on the real model parameter values, the 
following assumed values are used as the initial values of the 
model parameters in the traff ic state estimator model: 

capfcap qavq ⋅= 85.0)  ,  ,( 0cr000 , ρ  with 0fv =108 km/h, 

ne veh/km/la36.850 =crρ , 0a =1.1779. The utili zed time 

steps for the model emulating the reality and the model 
employed in the traff ic state estimator are both 10 s. The 
detector configuration is displayed in Fig. 1, where the grey 
bars represents detectors.  

For this motorway stretch, the internal segment state vector z  
consists of the traff ic densities iρ  and space mean speeds iv  

in the segments 1 ~ 10, while the boundary variables are 
upstream boundary flow 0q , upstream boundary speed 0v , 

downstream boundary density 11ρ , on-ramp inflow 7r , and 

off -ramp exiting rate 9β . Thus, we have 

[ ] T  
971100101011                        avrvqvv crf ρβρρρ �=x ,

T 
97101000 ]          [ srvqvq mmmmmm=y . 

All noise considered in the investigations is zero-mean 
Gaussian white.  

3.1.2 Traffic scenario 

The traff ic scenario is designed as follows: 
• The mainstream traff ic demand is quite fluctuated during 

the whole simulation horizon (Fig. 2).  
• A traff ic incident occurs in segment 12 at about 7:33 AM 

and lasts 33 minutes, during which two lanes in segment 

12 are blocked. As a result, a serious traff ic congestion 
forms and spreads rapidly upstream into the estimated part 
of the motorway stretch.  

• The total in-coming flow of segment 12 exceeds the 
capacity during the peak period (10:30 AM~12:00 AM); 
the formed congestion propagates upstream into the 
estimated motorway stretch.  

Both congestions are built up outside the estimated part of the 
motorway stretch, but we expect its impact on the stretch’s 
traff ic conditions to be appropriately tracked by the estimator 
based on the real-time traff ic measurements. 

3.2 Simulation results  

A number of simulation investigations have been conducted 
to test the performance of the designed traff ic state estimator. 
The length of the simulation horizon is 6 hours. A small part 
of the testing results are presented in Figs. 3 ~ 8. The reader 
may refer to [17] for more results. The unit of y-axis in each 
figure is “km/h” for speed, “veh/km/lane” for density, and 
dimensionless for the exiting rate and exponent. The 
estimation of three segment variables is presented in Figs. 3 ~ 
5. In each of these figures six trajectories are displayed, which 
may be classified into two categories: (1) speed and (2) 
density. Each category includes three trajectories: (a) real 
trajectory (emulated reality), (b) estimation trajectory with 
on-line model parameter estimation (estimation 1), and (c) 
estimation trajectory without on-line model parameter 
estimation (estimation 2). The estimation of the exiting rate is 
shown in Fig. 6, while Figs. 7 and 8 display the estimates of 
the free speed and critical density.  

The first investigation is conducted with the on-line model 
parameter estimation under the initial condition 

capcap qq ⋅= 85.00 ,  (as aforementioned). Let us focus on the 

trajectories of the emulated reality and “estimation 1” in Fig. 
3 for segment 9. From 7:00 AM to 7:30 AM, segment 9 is in 
the free-flow condition with a speed of about 100 km/h. At 
7:33 AM an incident occurs in segment 12 and the resulting 
congestion spill s back rapidly and reaches segment 9. As 
displayed, within half an hour (7:30 AM~8:00 AM) the speed 
drops steeply to about 15 km/h, while the density trajectory 
suddenly rises to 60 veh/h/lane. At about 8:07 AM, the 
incident is cleared, following which the speed and density 
values return to their former free-flow levels. From 9:00 AM 
to 10:30 AM, the mean value of the main demand rises from 
1000 veh/h to 4800 veh/h (see Fig. 2) and maintains this level 
until 11:00 AM. It is depicted in Fig. 3 that the segment speed 
is steadily decreasing since 9:00 AM while the density 
increases continuously. Similar observations apply to the 
other segments, and indeed a second traff ic congestion 
appears first in segment 12 at about 10:30 AM since its in-
coming flow exceeds the capacity, which persists until 12:00 
AM; this traff ic congestion reaches segment 9 and persists 
during 10:45 AM~11:45 AM. Obviously, segment 9 
experiences various traff ic conditions over the simulation 
horizon, and the estimated trajectories resulting when on-line 
model parameter estimation is activated (estimation 1) are 
seen to track the real trajectories under all traff ic conditions. 
Similarly good estimation results are achieved for the other 



segments (except in an initial warm-up period needed for the 
on-line parameter estimation [17]), see Figs. 4 and 5 for 
segments 7 and 3 as two examples. Note in particular the 
correct estimation of the space-time extent of both 
congestions within the freeway stretch. 

Although only the estimation of 9β  is shown in Fig. 6, it 

should be mentioned that the boundary variables 0q , 0v , 7r , 

and 11ρ  are also estimated similarly accurately. The 

estimates of fv , crρ  and a  approach and fluctuate around 

the real values (see e.g. Figs. 7 and 8 for fv  and crρ ), which 

appears to be suff icient for the traff ic state estimator to 
deliver proper estimation results of the segment variables.  

The second investigation addresses the significance of the on-
line model parameter estimation, which is conducted under 
the same initial condition, but with the on-line model 
parameter estimation switched off , i.e. keeping the model 
parameters at their respective initial values over the whole 
simulation horizon. Comparison between trajectories 
“estimation 2” and “estimation 1” in Figs. 3 ~ 5 indicates that 
without the on-line parameter estimation, an estimation bias is 
created for each segment variable.  

Some investigations were also conducted under condition 

capcap qq ⋅= 15.10 , . The conclusions already drawn from the 

case capcap qq ⋅= 85.00 ,  were found to apply also to this case. 

In addition, some issues such as sensitivity of the traff ic state 
estimator to initial model parameter values and dynamic 
tracking of time-varying model parameters are also 
investigated, see [17] for more details. 
 
4 Conclusions 

The investigation results provide suff icient evidence for the 
following conclusions: 
(1) As compared to the previous investigations, a simple, 

general, and complete approach has been developed for 
traff ic state estimation in motorway stretches. 

(2) Satisfactory estimation results have been achieved by 
applying the designed traff ic state estimator to a 
motorway stretch with on/off -ramps and a long inter-
detector distance (5 km) under various traff ic situations. 

(3) On-line model parameter estimation is indispensable to 
a proper traff ic state estimation, particularly in case of 
poor prior parameter calibration.  

The development of a generic traff ic state estimator for 
motorway networks and the performance evaluation based on 
real traff ic data are under way and will be reported later.  
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Fig. 1.  A test motorway example. 

Fig. 2.  Utilized traffic demands. 
 

Fig. 3.  Segment 9. Fig. 4.  Segment 7. 

Fig. 5.  Segment 3. Fig. 6.  off-ramp exiting rate. 

Fig. 7.  Free speed. Fig. 8.  Critical density. 
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