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Abstract: This paper addresses the design of traffic state
estimator for traffic flow in motorway stretches. Motorway
traffic dynamics is modelled by a stochastic maaoscopic
traffic flow model, while atraffic state estimator is designed
based on the extended-Kaman-filtering methoddogy.
Besides the estimation of norma traffic variables, the
developed traffic state estimator deds with the on-line
estimation of unkrmown model parameters. Simulation
investigations were nducted to test the traffic state
estimator under various traffic conditions in a motorway
stretch.

1 Introduction

Traffic state estimation had been identified as an important
task within a traffic control loop already in the 1970s [13].
Traffic state estimation for a motorway network refers to
estimating all traffic variables of the network at the current
time instant based on avalable red-time traffic
measurements. More predsely, based on a limited amount of
available measurement data from traffic detedors, the
estimation algorithms dhould deliver a complete image of the
network’s traffic state & the arrent time. It should be
emphasized that the number of traffic variables to be
estimated may be much larger than the number of traffic
variables that are diredly measured, and this is in fad the
essential contribution of the motorway traffic state estimation
task.

For traffic state estimation, a limited number of reseach
works produced and proposed corresponding estimation
algorithms that were dmost exclusively based on the seminal
methoddogy of (extended) Kaman filtering. First
applicdions of traffic state estimation were reported in traffic
surveillance systems for short inter-detedor distances
[6,8,11,1216]. In these ad later investigations, e.g. [1,15],
only short sedions with a length below 2 km were
considered, see areview in [5]. The gplied models were
relatively simple (due to the short inter-detedor distances).
Later approaches [2,3] started using more @mprehensive
dynamic traffic flow models, which opened the way to the
consideration of longer motorway stretches (2~4 km), while

more recent investigations [9,10] elaborated on some
technicd detail s based on previously proposed baesic ideas. A
noteworthy fedure of some of these gproades is the red-
time estimation not only of normal traffic variables, but also
of some important traffic model parameters (e.g. the free
spedl, the citicd density, etc.), which may change due to
environmental impad (weaher conditions, darknesg or due
to changing traffic compasition (e.g. percentage of trucks),
seel4,7,16].

Based on the extended Kaman filter, this paper follows a
similar avenue to traffic state estimation and exploits to the
extent posshle the previous approaches and investigations.
The alded vaue and innovative apeds of this paper as
compared to previous investigations include:

« Development of a general approac to red-time complete
traffic state estimation for motorway stretches.

* Design and applicaion of a traffic state estimator to
motorway stretches with on-ramps and off-ramps, which
were not considered in previous works.

e Online etimation of unkmown important model
parameters guch as free speal, criticd density, and
exponent.

e Test of the designed traffic state estimator under various
traffic conditions on a motorway stretch with on/off-ramps
and alonginter-detedor distance (5 km) in simulation.

The rest of the paper is organized as follows. Sedion 2
presents a general stochastic maaoscopic model for traffic
flow in motorway stretches as well as a red-time traffic
measurement model, which are both organized in a state-
space form as required for the design of the traffic state
estimator. While mnstructing the state-space model, spedal
attention is paid to the handling of the boundary conditions
and unkrown parameters of the macroscopic traffic flow
model. In Sedion 3, anumber of simulations are anducted to
test the performance of the designed traffic state estimator
and investigate the significance of on-line model parameter
estimation. Finally, some conclusions are given in Sedion 4.

2 Modeélling and methodologies

2.1 Macroscopic traffic flow model of a motorway
stretch



A second-order validated macroscopic traffic flow model [14]
is employed to describe dynamic traffic flow behaviour along
a motorway stretch in terms of appropriate aggregate traffic
variables. For the convenience of computation, a considered
motorway stretch is sub-divided into a number N of
segments with lengths A;, i=1---,N, while the time is
discretized based on a time step T and the time indices
k=0, 1, 2,---. The aggregated traffic variables are expressed
in this discrete space-time frame as follows:

o Traffic density p; (k) (in veh/km/lane) is the number of

vehicles in segment i at time KT, divided successively
by the segment length A; and lane number A; .

»  Space mean speed v; (K) (in km/h) is the average speed of
al vehiclesincluded in segment i at time KT .

o Traffic flow g;(k) (in veh/h) is the number of vehicles
leaving segment i during the time period [KT, (k+2)T],
divided by T.

e Inflow r,(k) (in veh/h) at the on ramp and outflow s; (k)
(in veh/h) at the off-ramp in segment i (if any).

The macroscopic model was shown to work pretty accurately
with segment lengths in the order of 500 m (or less) [14].
While subdividing a motorway stretch into segments, care
should be taken that any geometric inhomogeneities or
installed traffic detectors along the motorway stretch are
located at the boundaries of the segments. Moreover, each
segment is allowed to have at most one on-ramp and one off-
ramp, both preferably at the upstream boundary of the
segment.

For asegment i , the macroscopic model equations are
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where B; (k) (dimensionlesg denotes the exiting rate & the
off-ramp in segment i (if any); 7, v, Kk, V¢, P, and a
are model parameters which are given the same values for all
segments; in particular, v; denotes the free speed, p. the

criticd density, and a the exponent of the stationary speed
equation; &Y(k) and &7(k) denote zeo-mean Gaussan

white noise ading on the empiricd speel equation and the
approximate flow eguation, respedively, to emulate the

modelling inacarades. Note that Equation (1) is not
corrupted by noise & it refleds the mnservation of vehicles,
which holds grictly in any case. The model parameters are
normally unkrown. However, it is reported in [14] that the
model results are most sensitive to variations of the free
spedl, criticd density, and exponent. In addition, these three
model parameters may vary with daytime, weaher, and ather
external conditions. Based on the fundamental diagram
Q(p) =p IV (p), the capadty of a stretch (per lane) may be

deduced as
qcap(vf ’ pcr ’ a) = Vf |:nbcr @Xd— ]/a] : (6)

According to this sgment traffic flow model, p;(k) and
v; (k) may be viewed as (independent) segment variables of
segment i (q; (k) can be cdculated from p; (k) and v; (k) ).
On the other hand, for eat time instant k, traffic variables
Gi-a(K), Viea(K) and pi (k) aswell as ri(k) and B; (k)
(if any) are neaded for cdculating p;(k+21) and v;(k+1).
These variables are boundary variables of segment i,
incorporating the impad of the aljacent segments on the
traffic dynamics of segment i. Clealy, the @mplete
maaoscopic model of a motorway stretch can be built upon a
chain of segment models interconneded via their respedive
boundary variables. More predsely, the stretch model of N
segments consists of 2N equations with 2N independent
segment variables pq,Vy, P, Vs, ..., Py,Vy and a number
of boundary variables: (a) flow at the stretch origin g, (b)
sped at the stretch origin vy, (€) density at the stretch end
P+, (d) onramp inflows r; (if any), and off-ramp exiting
rates B; (if any).

2.2 Modd of traffic measurements

Traffic detedors are installed along motorway stretches at a
separation of several kilometres as a main todl for obtaining
red-time traffic measurements. This paper only deds with the
measurements of flow and mean speel, see &so [17] for
occupancy measurements.

Consider a traffic detedor installed at the boundary of two
adjacent segments i and i +1. For the flow measurement, we
have

mi(k) =q; (k) +y{ (k) 7
where m? (k) denotes the flow measurement during the time
period [(k-1)T, kT], and y3(k) the flow measurement
noise. Except for the measurement of ¢, , we have by (5)

m(k) = pi (k) I (K) T + &3(k) + yi(K). ®
For the mean spead measurement, we have
m’ (k) = v; (k) +y7 (k) )

where my (k) denotes the speed measurement during the time

period [(k-1)T, KT] and y;’(k) the speed measurement
noise. Regarding on/off-ramps, only flow measurements are



of interest. The on-ramp and off-ramp flow measurements
m' (k) and m$ (k) (if any) are modelled, respectively, as

m (k) = (k) + ' (k) (10)
mP(k) = § (k) +y7(k)

= B, (k) Wpi—1(K) 4 (K) Dy + &L(K) + yi(k)

where y; (k) resp. y°(k) denote the on-ramp resp. off-ramp

flow measurement noise. All measurement noise involved in
(7)~(11) is assumed zero-mean Gaussian white.

(11)

2.3 State-space model
Definevectors z, d, p, &, asfollows:
Z:[Pl Vi Pa Voo Py VN]T

d:[QO Vo Pnsa feee Iy Bree BN]T
p=[vi Py &'
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Note that if some segments do not include an on-ramp o off-
ramp, then vedor d is reduced acordingly. With the ad of
these vedors, the maaoscopic traffic flow model of a
motorway stretch can be expressed in a state-spaceform

z(k +1) = h{z(k), d(k), p(k), & (k)] (12

where h is a nonlinea vedor function corresponding to the
2N model equations. The utili zation of (12) requiresthe red-
time availability of boundary variables d(k) and the

determination of the model parameters p(k) . However, some
elements of d(k) may not be measured o even not
measurable while p(k) are normally unkrmown (or partialy
unkrmown). More spedficdly, for d(k),

e Upstream boundary flow g, and speel v, are usualy

measured by a traffic detedor installed at the uppermost
boundary of the motorway stretch, while downstream

boundary density py ., may not be diredly measurable.

e On-ramp inflows r, are sometimes not measured when
traffic detedors are not installed at the corresponding on-
ramps.

» Dired measurements of exiting rates [3; are usually not
available athough off-ramp outflows s may be
measured.

In order to overcome the obstade due to partially missng
boundary measurements and unkmown model parameters,
(12) hasto be reformed. The main ideaisto “eliminate” d(k)
and p(k) from the model by converting them into state
variables. To this end, an auxili ary equation is introduced for
d asfollows

d(k+2 =d(k) +&,(k), (13
where &,(k) represents a vedor of zero-mean Gaussan
white noise. Similarly, unkmown model parameters are
modelled via

p(k +1) = p(k) +&3(k) , (14

where £5(k) represents a vedor of zero-mean Gausdan
white noise. The wvariance matrices of &,(k) and &s(k)
must be chosen so as to refled the typicd time variations of
the boundary variables and model parametersto be tradked.

Combining (12), (13) and (14) leads to the following
augmented state-spacemodel

x(k +1) =f[x(k),&(k)], 19

where x:[zT d’ pT]T, g:[§I &7 g;]T, and the
nonlinea differentiable vedor function f can be determined
acordingy. As aresult, all boundary variables and unknown

model parameters are transformed into a part of the
augmented model state x (to be estimated).

Consider a motorway stretch with traffic detedors installed at
its uppermost and lowermost boundaries, at some on/off-
ramps, and perhaps aso at some internal segment boundaries.
In terms of (15), the traffic measurements formulated by (7)-
(112) can be rewritten in a ammpad form

y(k) =g(x(k), n(k)) (16)

where vector y consists of all measurements of flow and
mean speed; g is a nonlinear differentiable vector function;
vector n is afunction of vector § and vector y (consisting

of all measurement noise in (7)-(11)). Equations (15) and (16)
congtitute a complete motorway traffic dynamic system

2(x,y,&m).

2.4 Traffic state estimator design based on the extended
Kalman filter

Consider the dynamic system model 2(x,y,&,n). Asame
that &, n, and the system’s initial state satisfy some basic
conditions [17]. At any time instant k, given y(k) (and its
values at all previoustime instants), it is the goal of the traffic
state estimator to deliver state etimates X(k +1/k) so as to
minimizethe covariance of the estimation error

I(K) = E{[x(k) = x(k/k = D] Ox(k) = %(k/k =D} (17)
where X(k +1/k) denotes the state estimate for time instant

k +1 based on measurements avail able up to the k-th instant.

Based on the extended-Kaman-filtering method, the traffic

state estimator can be designed as foll ows:

X(k+1/k) =f[x(k/k-1), O] + K(K)[y(k) —g(X(k/k -1), 0)]
model correction

18
Where K (k) is the gain matrix, which is calculated (on—)line
based on the linear Taylor-expansion of f and g at
(X(k/k =1), 0) for each k. Although some other canonical
forms can also be constructed based on the traffic flow model
and the measurement model [17], Z(x,y,g,n) leads to a

straightforward, general, and unique formulation of the traffic
state estimator for any motorway network of any topology,
size, characteristics, and with any number and locations of
sensors. Note that the extended Kalman filter represents a
suboptimal solution for this problem (minimization of (17)),



as an optimal filter for nonlinea systems would need infinite
dimensions.

3 Simulation investigations
3.1 Simulation setup
311

A motorway stretch of 9 km is considered for the simulation
investigations. The whole stretch is divided into 18 segments,
ead with alength of 500 m, while 10 segments in the middle
of the stretch (4™ to 13"; totally 5 km long) are mnsidered for
the traffic state estimation. Fig. 1 dsplays these 10 segments
(numbered from 1 to 10 and severa adjacent upstrean and
downstream segments. An on-ramp is located in segment 7,
while a off-ramp is locaed in segment 9. The whole
motorway stretch has three lanes. Each lane upstream of
segment 12 has a cgadty of 2000 veh/h, while eab lane
downstrean of segment 12 (including segment 12) has a
cgpadty of 1500 veh/h. The free spedd, criticd density, and
exponent parameter for the stretch upstrean of segment 12,
are 120 km/h, 335 vehkm/lane and 14324 respedively.
Figue 2 shows the mean trgedories of the utilized
mainstream and on-ramp traffic demands, while the off-ramp
exiting rate varies randomly between 4% and 18%. Traffic
dynamics in the motorway stretch are simulated by use of the
maaoscopic traffic flow model (12), while the aigmented
model (15) (but without noise involved) is employed by the
traffic state estimator. Since the traffic state estimator has no
prior knowledge on the red model parameter values, the
following assumed values are used as the initial values of the
model parameters in the traffic state estimator model:
qcapjo(vfo, Peror 89) = 0.850t)c4p with  v;,=108 km/h,

Pero = 36.85veh/km/lane, a,=1.1779 The utilized time

steps for the model emulating the redity and the model
employed in the traffic state estimator are both 10 s. The
detedor configuration is displayed in Fig. 1, where the grey
bars represents detedors.

Description of a motorway stretch example

For this motorway stretch, the internal segment state vedor z
consists of the traffic densities p; and spacemean spedls v;
in the segments 1 ~ 10, while the boundary variables are
upstream boundary flow qg, upstrean boundary speel v,

downstream boundary density p;,, on-ramp inflow I, and
off-ramp exitingrate 4. Thus, we have

X:[Pl Vi Pro Vig Go Vo Pu1 17 Bo Vi Por a]Tv

y=[mg mg mg, mig m; mg] "

All noise wnsidered in the investigations is zero-mean
Gausdan white.

3.1.2  Traffic scenario

The traffic scenario is designed as foll ows:

e The mainstream traffic demand is quite fluctuated during
the whole simulation horizon (Fig. 2).

e A traffic incident occurs in segment 12 at about 7:33 AM
and lasts 33 minutes, during which two lanes in segment

12 are blocked. As a result, a serious traffic congestion
forms and spreads rapidly upstream into the estimated part
of the motorway stretch.

e The total in-coming flow of segment 12 exceeals the
cgpadty during the ped period (10:30 AM~12:00 AM);
the formed congestion propagates upstrean into the
estimated motorway stretch.

Both congestions are built up outside the estimated part of the

motorway stretch, but we exped its impad on the stretch’s

traffic conditions to be gpropriately tracked by the estimator
based on the red-time traffic measurements.

3.2 Simulation results

A number of simulation investigations have been conducted
to test the performance of the designed traffic state estimator.
The length of the simulation horizon is 6 hours. A small part
of the testing results are presented in Figs. 3 ~ 8. The reader
may refer to [17] for more results. The unit of y-axisin eah
figure is “km/h” for speed, “veh/km/lane” for density, and
dimensionless for the eiting rate axd exponent. The
estimation of three segment variablesis presented in Figs. 3 ~
5. In ead of these figures $x trgjedories are displayed, which
may be dasdfied into two caegories: (1) speed and (2)
density. Each caegory includes three trgjedories: (a) red
trajedory (emulated redity), (b) estimation trgjedory with
on-line model parameter estimation (estimation 1), and (c)
estimation trgjedory without on-line model parameter
estimation (estimation 2). The estimation of the eiting rate is
shown in Fig. 6, while Figs. 7 and 8 dsplay the estimates of
the freespead and criticd density.

The first investigation is conducted with the on-line model
parameter  estimation urder the initia  condition
Ocap,0 = 0.85[¢,, (as aforementioned). Let us focus on the

trajectories of the emulated redity and “estimation 1" in Fig.
3 for segment 9. From 7:00 AM to 7:30 AM, segment 9 isin
the freeflow condition with a speed of about 100 km/h. At
7:33 AM an incident occurs in segment 12 and the resulting
congestion spills badk rapidly and readies sgment 9. As
displayed, within half an hour (7:30 AM~8:00 AM) the spedl
drops geeply to about 15 knmv/h, while the density trgjedory
suddenly rises to 60 veh/h/lane. At about 8:07 AM, the
incident is cleaed, following which the speed and density
values return to their former freeflow levels. From 9:00 AM
to 1030 AM, the mean value of the main demand rises from
1000veh/h to 4800veh/h (seeFig. 2) and maintains this level
until 11:00 AM. It is depicted in Fig. 3 that the segment speed
is dedily deaeaing since 9:00 AM while the density
incresses continuoudly. Similar observations apply to the
other segments, and indeed a seond traffic congestion
appeas first in segment 12 at about 10:30 AM since its in-
coming flow exceals the @padty, which persists urtil 12:00
AM; this traffic congestion readies sgment 9 and persists
during 10:45 AM~11:45 AM. Obviousy, segment 9
experiences various traffic conditions over the simulation
horizon, and the estimated trajedories resulting when on-line
model parameter estimation is adivated (estimation 1) are
seen to tradk the red trgjectories under all traffic conditions.
Similarly good estimation results are adieved for the other



segments (except in an initial warm-up period needed for the
on-line parameter estimation [17]), see Figs. 4 and 5 for
segments 7 and 3 as two examples. Note in particular the
corred estimation of the spacetime etent of both
congestions within the freeway stretch.

Although only the estimation of B4 is $own in Fig. 6, it
should be mentioned that the boundary variables q,, vg, 7,
and p,;; ae dso estimated similarly acarately. The
estimates of v;, p., and a approach and fluctuate aound
the red values (see eg. Figs. 7 and 8for v; and p, ), which

appeas to be sufficient for the traffic state estimator to
deliver proper estimation results of the segment variables.

The second investigation addresses the significance of the on-
line model parameter estimation, which is conducted under
the same initial condition, but with the on-line model
parameter estimation switched dff, i.e. keging the model
parameters at their respedive initial values over the whole
simulation horizon. Comparison between trgjedories
“estimation 2" and “estimation 1” in Figs. 3 ~5 indicates that
without the on-line parameter estimation, an estimation biasis
creaed for eat segment variable.

Some investigations were dso conducted under condition
Qeap,0 =115, - The conclusions aready drawn from the

Case (gp,0 = 0.8508),, Were found to apply also to this case.

In addition, some isaues such as sensitivity of the traffic state
estimator to initial model parameter values and dynamic
tracking of timevarying model parameters are dso
investigated, see[17] for more detail s.

4 Conclusions

The investigation results provide sufficient evidence for the
following conclusions:

(1) As compared to the previous investigations, a simple,
general, and complete goproach has been developed for
traffic state estimation in motorway stretches.
Satisfadory estimation results have been achieved by
applying the designed traffic state estimator to a
motorway stretch with on/off-ramps and a long inter-
detedor distance (5 km) under various traffic situations.
On-line model parameter estimation is indispensable to
a proper traffic state estimation, particularly in case of
poor prior parameter cdibration.

The development of a generic traffic state estimator for
motorway networks and the performance evaluation based on
red traffic data ae under way and will be reported later.
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